metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[diamminesilver(I)] 5-nitroisophthalate monohydrate

Di Sun, Geng-Geng Luo, Na Zhang and Rong-Bin Huang*

Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China Correspondence e-mail: rbhuang@xmu.edu.cn

Received 4 February 2010; accepted 1 March 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.046; wR factor = 0.114; data-to-parameter ratio = 12.9.

In the title compound, $[Ag(NH_3)_2]_2(C_8H_3NO_6)\cdot H_2O$, the cations have an almost linear coordination geometry with two ammine ligands and interact with the water molecules $[Ag \cdot \cdot O_{water} = 2.725 \text{ (4)} \text{ and } 2.985 \text{ (4)} \text{ Å}]$. In the crystal, N-H $\cdot \cdot O$ and O-H $\cdot \cdot O$ hydrogen bonds, combined with weak (lone pair) $\cdot \cdot \pi$ [O $\cdot \cdot \text{centroid}$ distance = 3.401 (4) Å] and $\pi - \pi$ stacking [centroid-centroid distance = 3.975 (3) Å] interactions, stabilize the three-dimensional supramolecular network.

Related literature

For general background to crystal engineering and supramolecular chemistry, see: Batten & Robson (1998); Blake *et al.* (1999); Yaghi *et al.* (2003). For general background to noncovalent interactions, see: Biswas *et al.* (2009); Egli & Arkhel (2007); Jeffrey *et al.* (1985); Mooibroek *et al.* (2006); Nishio *et al.* (1998); Rahman *et al.* (2003). For related structures, see: Sun, Luo, Huang *et al.* (2009); Sun, Luo, Xu *et al.* (2009); Sun, Luo, Zhang *et al.* (2009); You & Zhu (2004); You *et al.* (2004); Zheng *et al.* (2002, 2007).

Experimental

Crystal data $[Ag(NH_3)_2]_2(C_8H_3NO_6)\cdot H_2O$ $M_r = 511.01$ Monoclinic, $P2_1/c$ a = 7.692 (2) Å b = 12.229 (3) Å c = 16.379 (4) Å $\beta = 102.100$ (4)°

 $V = 1506.5 (7) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 2.64 \text{ mm}^{-1}$ T = 298 K $0.11 \times 0.10 \times 0.08 \text{ mm}$

Data collection

Oxford Diffraction Gemini S Ultra diffractometer Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2006) $T_{\rm min} = 0.760, T_{\rm max} = 0.817$

Refinement

A

ŀ

$R[F^2 > 2\sigma(F^2)] = 0.046$	204 parameters
$vR(F^2) = 0.114$	H-atom parameters constrained
S = 1.22	$\Delta \rho_{\rm max} = 0.97 \ {\rm e} \ {\rm \AA}^{-3}$
627 reflections	$\Delta \rho_{\rm min} = -0.98 \text{ e} \text{ Å}^{-3}$

7118 measured reflections

 $R_{\rm int} = 0.036$

2627 independent reflections

2500 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

Ag1-N1	2.112 (5)	Ag2-N3	2.088 (4)
Ag1 - N2	2.105 (5)	Ag2-N4	2.094 (4)
6		e	()

Table 2			
Hydrogen-bond	geometry	(Å,	°).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.85	1.96	2.807 (5)	177
0.85	1.88	2.684 (5)	156
0.89	2.35	3.082 (6)	140
0.89	2.10	2.905 (6)	149
0.89	2.09	2.954 (6)	164
0.89	2.36	3.218 (6)	163
0.89	2.28	3.059 (6)	147
0.89	2.57	2.990 (6)	110
0.89	2.08	2.937 (6)	163
0.89	2.06	2.930 (6)	167
0.89	2.02	2.901 (5)	173
0.89	2.23	3.088 (6)	163
0.89	2.14	3.024 (6)	176
0.89	2.15	3.036 (5)	175
	<i>D</i> —H 0.85 0.85 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89	$\begin{array}{c cccc} D-H & H\cdots A \\ \hline 0.85 & 1.96 \\ 0.85 & 1.88 \\ 0.89 & 2.35 \\ 0.89 & 2.09 \\ 0.89 & 2.09 \\ 0.89 & 2.09 \\ 0.89 & 2.28 \\ 0.89 & 2.28 \\ 0.89 & 2.57 \\ 0.89 & 2.08 \\ 0.89 & 2.06 \\ 0.89 & 2.06 \\ 0.89 & 2.02 \\ 0.89 & 2.23 \\ 0.89 & 2.14 \\ 0.89 & 2.15 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) -x, -y + 1, -z + 1; (iii) x, y + 1, z; (iv) -x + 1, -y + 1, -z + 1; (v) $x + 1, -y + \frac{1}{2}, z + \frac{1}{2}$; (vi) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$; (vii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2006); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2006); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1999) and *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97* and *publCIF* (Westrip, 2010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2282).

References

- Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.
- Biswas, C., Drew, M. G. B., Escudero, D., Frontera, A. & Ghosh, A. (2009). *Eur. J. Inorg. Chem.* pp. 2238–2246.
- Blake, A. J., Champness, N. R., Hubberstey, P., Li, W.-S., Withersby, M. A. & Schröder, M. (1999). *Coord. Chem. Rev.* 183, 117–138.
- Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Egli, M. & Arkhel, S. (2007). *Acc. Chem. Res.* **40**, 197–205.
- Jeffrey, G. A., Maluszynska, H. & Mitra, J. (1985). Int. J. Biol. Macromol. 7, 336–348.

- Mooibroek, T. J., Teat, S. J., Massera, C., Gamez, P. & Reedijk, J. (2006). Cryst. Growth Des. 6, 1569–1574.
- Nishio, M., Hirota, M. & Umezawa, Y. (1998). The $C-H\cdots\pi$ Interactions (Evidence, Nature and Consequences). New York: Wiley-VCH.
- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Rahman, A. N. M. M., Bishop, R., Craig, D. C. & Scudder, M. L. (2003). CrystEngComm, 5, 422–428.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sun, D., Luo, G.-G., Huang, R.-B., Zhang, N. & Zheng, L.-S. (2009). Acta Cryst. C65, m305–m307.
- Sun, D., Luo, G.-G., Xu, Q.-J., Zhang, N., Jin, Y.-C., Zhao, H.-X., Lin, L.-R., Huang, R.-B. & Zheng, L.-S. (2009). *Inorg. Chem. Commun.* 12, 782–784.

- Sun, D., Luo, G.-G., Zhang, N., Chen, J.-H., Huang, R.-B., Lin, L.-R. & Zheng, L.-S. (2009). Polyhedron, 28, 2983–2988.
- Westrip, S. P. (2010). publCIF. In preparation.
- Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). *Nature (London)*, **423**, 705–714.
- You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. C60, m517-m519.
- You, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m1624-m1626.
 Zheng, S.-L., Tong, M.-L., Chen, X.-M. & Ng, S. W. (2002). J. Chem. Soc. Dalton Trans. pp. 360–364.
- Zheng, S.-L., Volkov, A. C., Nygren, L. & Coppens, P. (2007). Chem. Eur. J. 13, 8583–8590.

supporting information

Acta Cryst. (2010). E66, m406-m407 [doi:10.1107/S1600536810007725]

Bis[diamminesilver(I)] 5-nitroisophthalate monohydrate

Di Sun, Geng-Geng Luo, Na Zhang and Rong-Bin Huang

S1. Comment

Renaissance in crystal engineering and supramolecular chemistry is due to the diverse and aesthetic structural topologies and potential use in optical, electrical, catalytic, gas storage and even drug delivery as functional solid materials (Batten & Robson, 1998; Blake *et al.*, 1999; Yaghi *et al.*, 2003). In addition to coordination bonds, noncovalent interactions such as hydrogen bond, π – π stacking, C—H··· π , anion··· π , cation··· π and lone-pair(lp)··· π interactions between molecules also play a pivotal role in the stability of molecule packing and govern the physicochemical properties of molecular systems in the condensed phase (Mooibroek *et al.*, 2006; Nishio *et al.*, 1998). Although Ag¹ ion under ammoniacal conditions can form {[Ag(NH₃)₂]⁺}_n (n = 1 or 2) (Zheng *et al.*, 2007), which can be stabilized by supramolecular interactions, only limited [Ag(NH₃)₂]-containing compounds were documented due to the weak Ag—N_{ammine} coordination bond (You *et al.*, 2004; Zheng *et al.*, 2002). Recently, we have pursued systematic investigations about the self-assembly of Ag¹ ion with different bipodal *N*-donor ligands and multicarboxylates under ammoniacal conditions (Sun, Luo, Huang *et al.*, 2009; Sun, Luo, Xu *et al.*, 2009; Sun, Luo, Zhang *et al.*, 2009). In an attempt to exploit the Ag¹/aminopyrazine/H₂nipa system (H₂nipa = 5-nitroisophthalic acid), we surprisingly obtained the title compound.

The title compound comprises two $[Ag(NH_3)_2]^+$ cations, one nipa anion and one uncoordinated water molecule in the asymmetric unit (Fig. 1). Each Ag^I ion is in an almost linear coordination environment, coordinated by two ammonia molecules, forming a cationic $[Ag(NH_3)_2]^+$ monomer. The Ag—N bond lengths range from 2.088 (4) to 2.112 (5) Å (Table 1), which are comparable to the corresponding values observed in other silver(I) compounds (You & Zhu, 2004). The N1—Ag1—N2 [169.90 (19)°] and N3—Ag2—N4 [174.05 (16)°] angles deviate from the ideal 180°, as a result of weak interactions between the Ag^I ions and water molecules. The Ag1…O1Wⁱⁱⁱ and Ag2…O1W^v distances are 2.725 (4) and 2.985 (4) Å, respectively, which suggest anything other than a secondary interaction [symmetry codes: (iii) x, y+1, z; (v) x+1, -y+1/2, z+1/2]. The shortest centroid–centroid distance between neighboring phenyl rings of nipa anions is 3.975 (3) Å, with a large slippage of 2.129 Å, which suggests the existence of a weak offset π - π stacking interaction. On the other hand, one striking feature of the title compound is an lp^{$\dots \pi$} interaction (Biswas *et al.*, 2009; Egli & Arkhel, 2007). A weak lp $\cdot\cdot\cdot\pi$ interaction is observed between the nitro O5 atom and phenyl ring of the nipa anion. The distance between the ring centroid and O5 atom is 3.401 (4) Å. This $lp(O) \cdots \pi$ interaction distance falls in the range of few experimental examples so far reported (Rahman *et al.*, 2003). The angle θ (which corresponds to the angle between the O atom, the ring centroid and the aromatic plane) is 83.7 (3)°, reflecting a significant lp $\cdot\cdot\cdot\pi$ interaction. Every two nipa anions arrange in a parallel manner, forming a dimer through lp(O)... π interactions, and the neighboring dimers pack together through weak π - π stacking interactions into columns running along the *a* axis (Fig. 2).

One of the ammonia molecules forms a bifurcated hydrogen bond (Jeffrey *et al.*, 1985) [N2–H2C···O1Wⁱⁱ and N2–H2C···O6, symmetry code: (ii) -x, -y+1, -z+1]. In addition, the $[Ag(NH_3)_2]^+$ cations, nipa anions and water molecules interact *via* N—H···O and O—H···O hydrogen bonds (Table 2) [average N···O = 3.010 (6), O···O = 2.746 (5) Å] to consolidate the three-dimensional supramolecular network (Fig. 3).

S2. Experimental

All reagents and solvents were used as obtained commercially without further purification. A mixture of Ag₂O (116 mg, 0.5 mmol), 2-aminopyrazine (95 mg, 1 mmol) and H₂nipa (211 mg, 1 mmol) were stirred in CH₃CN/H₂O mixed solvent (8 ml, v/v = 1:1). Then aqueous NH₃ solution (25%) was dropped into the mixture to give a clear solution under ultrasonic treatment. The resultant solution was allowed to evaporate slowly in darkness at room temperature for several days to give colorless crystals of the title compound (yield 61%). They were washed with a small volume of cold CH₃CN and diethyl ether. Analysis calculated for C₈H₁₇Ag₂N₅O₇: C 18.80, H 3.35, N 13.71%; found: C 18.86, H 3.39, N 13.64%.

S3. Refinement

C- and N-bound H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93 and N —H = 0.89 Å and with $U_{iso}(H) = 1.2U_{eq}(C,N)$. H atoms of water molecule were located in a difference Fourier map and refined as riding, with O—H = 0.85 Å and $U_{iso}(H) = 1.2U_{eq}(O)$.

Figure 1

Molecular structure of the title compound, showing the coordination environment around the Ag^I center. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A ball-stick perspective view of the lp(O) π (green dashed lines) and $\pi - \pi$ (blue dashed lines) interactions in the title compound. H atoms and $[Ag(NH_3)_2]^+$ cations have been omitted for clarity.

Figure 3

Perspective views of the three-dimensional supramolecular network incorporating N—H…O and O—H…O hydrogen bonds (dashed lines) viewed along two different directions.

Bis[diamminesilver(I)] 5-nitroisophthalate monohydrate

Crystal data	
$[Ag(NH_3)_2]_2(C_8H_3NO_6)\cdot H_2O$	F(000) = 1000
$M_r = 511.01$	$D_{\rm x} = 2.253 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 4729 reflections
a = 7.692 (2) Å	$\theta = 5.1 - 57.2^{\circ}$
b = 12.229 (3) Å	$\mu = 2.64 \text{ mm}^{-1}$
c = 16.379 (4) Å	T = 298 K
$\beta = 102.100 \ (4)^{\circ}$	Block, colorless
V = 1506.5 (7) Å ³	$0.11 \times 0.10 \times 0.08 \text{ mm}$
Z = 4	

Data collection

Oxford Diffraction Gemini S Ultra diffractometer Radiation source: sealed tube Graphite monochromator Detector resolution: 16.1903 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2006) $T_{\min} = 0.760, T_{\max} = 0.817$	7118 measured reflections 2627 independent reflections 2500 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -9 \rightarrow 9$ $k = -8 \rightarrow 14$ $l = -17 \rightarrow 19$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.114$ S = 1.22 2627 reflections 204 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0451P)^2 + 2.1461P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.97$ e Å ⁻³ $\Delta\rho_{min} = -0.98$ e Å ⁻³ Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0264 (13)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ag1	0.01233 (6)	0.87015 (4)	0.39354 (3)	0.0561 (2)	
Ag2	0.56988 (5)	0.37352 (3)	0.78293 (3)	0.0444 (2)	
C1	0.1106 (5)	0.4687 (4)	0.4096 (3)	0.0272 (9)	
C2	0.1513 (6)	0.3606 (4)	0.4283 (3)	0.0277 (9)	
H2	0.0955	0.3065	0.3922	0.033*	
C3	0.2729 (5)	0.3307 (4)	0.4993 (3)	0.0273 (9)	
C4	0.3475 (6)	0.4110 (4)	0.5543 (3)	0.0294 (10)	
H4	0.4278	0.3929	0.6032	0.035*	
C5	0.3022 (6)	0.5176 (4)	0.5362 (3)	0.0281 (9)	
C6	0.1878 (6)	0.5481 (4)	0.4639 (3)	0.0294 (10)	
H6	0.1631	0.6216	0.4521	0.035*	
C7	-0.0153 (6)	0.4982 (4)	0.3292 (3)	0.0308 (10)	
C8	0.3273 (6)	0.2131 (4)	0.5152 (3)	0.0293 (10)	
N1	-0.1928 (7)	0.8046 (4)	0.3002 (3)	0.0544 (12)	
H1A	-0.1867	0.8333	0.2509	0.065*	
H1B	-0.2977	0.8205	0.3120	0.065*	
H1C	-0.1805	0.7323	0.2983	0.065*	
N2	0.2262 (6)	0.9066 (4)	0.4929 (3)	0.0499 (11)	
H2A	0.2441	0.9786	0.4954	0.060*	
H2B	0.3239	0.8733	0.4846	0.060*	
H2C	0.2011	0.8835	0.5406	0.060*	
N3	0.7101 (6)	0.2725 (4)	0.7167 (3)	0.0411 (10)	
H3A	0.7576	0.2171	0.7490	0.049*	

H3B	0.7962	0.3108	0.7012	0.049*	
H3C	0.6364	0.2466	0.6716	0.049*	
N4	0.4096 (5)	0.4767 (4)	0.8378 (2)	0.0395 (10)	
H4A	0.4737	0.5333	0.8615	0.047*	
H4B	0.3677	0.4399	0.8764	0.047*	
H4C	0.3192	0.5008	0.7988	0.047*	
N5	0.3862 (6)	0.6021 (4)	0.5942 (2)	0.0358 (9)	
O1	-0.0137 (5)	0.5948 (3)	0.3058 (2)	0.0405 (8)	
O1W	-0.0469 (5)	0.0861 (3)	0.3572 (2)	0.0502 (9)	
H1WA	-0.0315	0.0871	0.3073	0.060*	
H1WB	0.0474	0.1189	0.3813	0.060*	
O2	-0.1083 (5)	0.4259 (3)	0.2916 (2)	0.0502 (10)	
O3	0.2508 (5)	0.1444 (3)	0.4657 (3)	0.0494 (10)	
O4	0.4452 (5)	0.1927 (3)	0.5764 (2)	0.0412 (8)	
05	0.4957 (5)	0.5735 (3)	0.6553 (2)	0.0509 (10)	
O6	0.3436 (6)	0.6952 (3)	0.5786 (2)	0.0567 (11)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	<i>U</i> ¹³	U ²³
Agl	0.0498 (3)	0.0475 (3)	0.0734 (4)	-0.00206 (19)	0.0184 (2)	-0.0061 (2)
Ag2	0.0446 (3)	0.0460 (3)	0.0402 (3)	0.00187 (17)	0.00340 (18)	-0.00385 (17)
C1	0.027 (2)	0.030(2)	0.025 (2)	0.0008 (18)	0.0062 (16)	0.0021 (18)
C2	0.032 (2)	0.026 (2)	0.024 (2)	-0.0037 (18)	0.0049 (17)	-0.0045 (17)
C3	0.024 (2)	0.028 (2)	0.030 (2)	0.0005 (18)	0.0057 (17)	0.0014 (19)
C4	0.030 (2)	0.031 (2)	0.027 (2)	0.0013 (19)	0.0049 (17)	0.0026 (19)
C5	0.030 (2)	0.028 (2)	0.027 (2)	-0.0044 (19)	0.0088 (17)	-0.0030 (18)
C6	0.028 (2)	0.029 (2)	0.032 (2)	0.0017 (19)	0.0104 (18)	0.0025 (19)
C7	0.030 (2)	0.028 (3)	0.034 (2)	0.005 (2)	0.0069 (18)	0.006 (2)
C8	0.031 (2)	0.027 (2)	0.031 (2)	0.0054 (19)	0.0082 (19)	0.0019 (19)
N1	0.061 (3)	0.048 (3)	0.055 (3)	0.006 (2)	0.016 (2)	0.001 (2)
N2	0.052 (3)	0.038 (3)	0.062 (3)	0.006 (2)	0.015 (2)	0.009 (2)
N3	0.038 (2)	0.038 (2)	0.043 (2)	-0.0028 (19)	-0.0014 (18)	-0.0036 (19)
N4	0.039 (2)	0.039 (2)	0.039 (2)	-0.0006 (19)	0.0032 (17)	0.0000 (19)
N5	0.042 (2)	0.035 (2)	0.031 (2)	-0.0080 (19)	0.0082 (18)	-0.0020 (18)
O1	0.044 (2)	0.0333 (19)	0.0391 (19)	0.0038 (16)	-0.0021 (15)	0.0113 (16)
O1W	0.045 (2)	0.059 (3)	0.043 (2)	0.0005 (19)	0.0004 (16)	-0.0007 (19)
O2	0.054 (2)	0.037 (2)	0.047 (2)	-0.0080 (18)	-0.0167 (17)	0.0017 (18)
O3	0.060 (2)	0.0287 (19)	0.049 (2)	0.0045 (17)	-0.0119 (18)	-0.0091 (17)
O4	0.0412 (18)	0.0344 (19)	0.0393 (18)	0.0044 (15)	-0.0112 (15)	0.0000 (15)
05	0.060 (2)	0.046 (2)	0.039 (2)	-0.0077 (19)	-0.0089 (17)	-0.0042 (17)
O6	0.088 (3)	0.027 (2)	0.049 (2)	0.002 (2)	-0.001 (2)	-0.0022 (17)

Geometric parameters (Å, °)

Ag1—N1	2.112 (5)	C7—O1	1.243 (6)
Ag1—N2	2.105 (5)	C8—O3	1.228 (6)
Ag2—N3	2.088 (4)	C8—O4	1.229 (5)

A~2 N4	2.004(4)		0 8000
	2.094 (4)		0.8900
$AgI = OIW^{ii}$	2.725 (4)	NI—HIB	0.8900
Ag2—OTW"	2.985 (4)	NI—HIC	0.8900
C1 - C6	1.367 (6)	N2—H2A	0.8900
C1—C2	1.378 (6)	N2—H2B	0.8900
C1C7	1.505 (6)	N2—H2C	0.8900
C2—C3	1.380 (6)	N3—H3A	0.8900
С2—Н2	0.9300	N3—H3B	0.8900
C3—C4	1.374 (6)	N3—H3C	0.8900
C3—C8	1.505 (6)	N4—H4A	0.8900
C4—C5	1.366 (6)	N4—H4B	0.8900
C4—H4	0.9300	N4—H4C	0.8900
C5—C6	1.370 (6)	N5—O6	1.198 (6)
C5—N5	1.460 (6)	N5—O5	1.217 (5)
С6—Н6	0.9300	O1W—H1WA	0.8501
С7—О2	1.220 (6)	O1W—H1WB	0.8500
N2—Ag1—N1	169.90 (19)	O4—C8—C3	117.8 (4)
N3—Ag2—N4	174.05 (16)	Ag1—N1—H1A	109.5
N2—Ag1—O1W ⁱ	91.79 (15)	Ag1—N1—H1B	109.5
N1—Ag1—O1W ⁱ	98.31 (16)	H1A—N1—H1B	109.5
N3—Ag2—O1W ⁱⁱ	74.69 (14)	Ag1—N1—H1C	109.5
N4—Ag2—O1W ⁱⁱ	110.21 (14)	H1A—N1—H1C	109.5
C6-C1-C2	119.3 (4)	H1B—N1—H1C	109.5
C6—C1—C7	120.7 (4)	Ag1—N2—H2A	109.5
C2—C1—C7	119.9 (4)	Ag1—N2—H2B	109.5
C1—C2—C3	121.6 (4)	H2A—N2—H2B	109.5
C1—C2—H2	119.2	Ag1—N2—H2C	109.5
C3—C2—H2	119.2	H2A—N2—H2C	109.5
C4—C3—C2	118.7 (4)	H2B—N2—H2C	109.5
C4—C3—C8	120.4 (4)	Ag2—N3—H3A	109.5
C2—C3—C8	120.9 (4)	Ag2—N3—H3B	109.5
C5—C4—C3	119.1 (4)	H3A—N3—H3B	109.5
C5—C4—H4	120.4	Ag2—N3—H3C	109.5
C3—C4—H4	120.4	H3A—N3—H3C	109.5
C4—C5—C6	122.4 (4)	H3B—N3—H3C	109.5
C4-C5-N5	1122.1(1) 118.5(4)	$A\sigma^2$ _N4_H4A	109.5
C6-C5-N5	110.0(4)	$A\sigma^2$ N4H4B	109.5
C1 - C6 - C5	119.0 (4)	$H4\Delta NA H4B$	109.5
C1-C6-H6	120.6	$\Delta \sigma^2 NA H4C$	109.5
C5 C6 H6	120.6	H4A NA H4C	109.5
$C_{2} = C_{2} = C_{1}$	120.0		109.5
02 - 07 - 01	123.1(4) 1180(4)	$\frac{11+10}{10} = \frac{11+10}{10}$	109.3
02 - 07 - 01	116.9 (4)	06 N5 C5	124.1(4) 118 1(4)
$O_1 - C_1 - C_1$	110.0 (4)	O_{0} N5 C5	110.1(4)
03 - 08 - 04	124.7 (4)		117.0(4)
03-08-03	117.5 (4)	HIWA—UIW—HIWB	99.3

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*+1, -*y*+1/2, *z*+1/2.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
01 <i>W</i> —H1 <i>WA</i> ···O1 ⁱⁱⁱ	0.85	1.96	2.807 (5)	177
O1 <i>W</i> —H1 <i>WB</i> ···O3	0.85	1.88	2.684 (5)	156
N1—H1 B ····O4 ^{iv}	0.89	2.35	3.082 (6)	140
N1—H1 <i>C</i> ···O1	0.89	2.10	2.905 (6)	149
N2—H2A····O3 ⁱ	0.89	2.09	2.954 (6)	164
N2—H2 B ····O4 ^v	0.89	2.36	3.218 (6)	163
N2—H2 C ···O1 W ^{iv}	0.89	2.28	3.059 (6)	147
N2—H2 <i>C</i> ···O6	0.89	2.57	2.990 (6)	110
N3—H3 <i>A</i> ···O2 ⁱⁱ	0.89	2.08	2.937 (6)	163
N3—H3 <i>B</i> ···O1 ^v	0.89	2.06	2.930 (6)	167
N3—H3 <i>C</i> ···O4	0.89	2.02	2.901 (5)	173
N4—H4A····O4 ^{vi}	0.89	2.23	3.088 (6)	163
N4—H4 <i>B</i> ····O3 ^{vii}	0.89	2.14	3.024 (6)	176
N4—H4 C ···O2 ^{iv}	0.89	2.15	3.036 (5)	175

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*+1, -*y*+1/2, *z*+1/2; (iii) -*x*, *y*-1/2, -*z*+1/2; (iv) -*x*, -*y*+1, -*z*+1; (v) -*x*+1, -*y*+1, -*z*+1; (vi) -*x*+1, *y*+1/2, -*z*+3/2; (vii) *x*, -*y*+1/2, *z*+1/2.