metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Triaqua(1,10-phenanthroline-2,9dicarboxylato)cobalt(II) dihydrate

Zi-Fa Shi,^a Zhu-Qing Gao^b and Jin-Zhong Gu^a*

^aState Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China, and ^bSchool of Chemistry and Biology Engineering, Taiyuan University of Science and, Technology, Taiyuan 030021, People's Republic of China Correspondence e-mail: gujzh@lzu.edu.cn

Received 27 January 2010; accepted 27 February 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.098; data-to-parameter ratio = 14.2.

The title compound, $[Co(C_{14}H_6N_2O_4)(H_2O)_3]$ ·2H₂O, has twofold crystallographic symmetry. The Co^{II} atom is in a distorted pentagonal-bipyramidal coordination environment with two N atoms and two O atoms from a tetradentate 1,10-phenanthroline-2,9-dicarboxylate ligand and one O atom from a water molecule forming the pentagonal plane, and two O atoms from two water molecules occupying axial positions. In the crystal, adjacent molecules are linked by O-H···O hydrogen bonds, forming a three-dimensional network.

Related literature

For the structures and properties of coordination compounds, see: Zhao *et al.* (2008); Poulsen *et al.* (2005). For the use of multi-carboxylate and heterocyclic carboxylic acids in coordination chemistry, see: Luo *et al.* (2009); Han *et al.* (2009) and for the dicarboxylate ligand H₂PDA (H₂PDA is 1,10-phenanthroline-2,9-dicarboxylic acid), see: Xie *et al.* (2005). For the isotypic structure [Mg(PDA)(H₂O)₃]·2H₂O, see: Park *et al.* (2001). For the high affinity of the Co^{II} ion to water molecules, see: (Zhang & Chen (2009). For bond distances and angles in other seven-coordinated Co^{II} complexes, see: Newkome *et al.* (1984); Rajput & Biradha (2007). For the synthesis of 1,10-phenanthroline-2,9-dicarboxylic acid, see: De Cian *et al.* (2007).

Experimental

Crystal data

 $\begin{bmatrix} Co(C_{14}H_6N_2O_4)(H_2O)_3 \end{bmatrix} \cdot 2H_2O \\ M_r = 415.22 \\ Orthorhombic, Fddd \\ a = 7.4093 (5) Å \\ b = 18.9267 (17) Å \\ c = 46.609 (4) Å \\ \end{bmatrix}$

Data collection

Bruker SMART CCD diffractometer 9724 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	
$wR(F^2) = 0.098$	
S = 1.06	
1877 reflections	
132 parameters	
2 restraints	

T = 296 K $0.20 \times 0.19 \times 0.17 \text{ mm}$ 1877 independent reflections

V = 6536.1 (9) Å³

Mo $K\alpha$ radiation

 $\mu = 1.11 \text{ mm}^-$

Z = 16

1520 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.032$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.96 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.46 \text{ e } \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3−H3A···O1 ⁱ	0.837 (17)	1.957 (16)	2.778 (2)	167 (2)
$O5-H5A\cdots O2^{ii}$	0.91	1.95	2.837 (3)	164
$O5-H5B\cdots O5^{iii}$	0.91	1.93	2.803 (4)	161
$O5-H5B'\cdots O5^{ii}$	0.90	2.22	3.096 (6)	165
$O4-H4A\cdots O2^{iv}$	0.74(4)	2.02(4)	2.750 (3)	171 (4)
$O4-H4B\cdots O5$	0.79 (4)	2.04 (4)	2.818 (3)	169 (3)
			-	

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{7}{4}, -z + \frac{5}{4}$; (ii) $-x + \frac{5}{4}, y, -z + \frac{5}{4}$; (iii) $x, -y + \frac{5}{4}, -z + \frac{5}{4}$; (iv) x + 1, y, z.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The authors are grateful to the National Natural Science Foundation of China (grant No. 20872055).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2639).

References

- Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- De Cian, A., DeLemos, E., Mergny, J.-L., Teulade-Fichou, M.-P. & Monchaud, D. (2007). J. Am. Chem. Soc. 129, 1856–1857.
- Han, L., Zhou, Y., Zhao, W.-N., Li, X. & Liang, Y.-X. (2009). Cryst. Growth Des. 9, 660–662.
- Luo, F., Che, Y. X. & Zheng, J. M. (2009). Cryst. Growth Des. 9, 1066–1071.Newkome, G. R., Gupta, V. K., Fronczek, F. R. & Pappalardo, S. (1984). Inorg.Chem. 23, 2400–2408.
- Park, K.-M., Yoon, I., Seo, J., Lee, Y. H. & Lee, S. S. (2001). Acta Cryst. E57, m154–m156.

- Poulsen, R. D., Bentien, A., Chevalier, M. & Iversen, B. B. (2005). J. Am. Chem. Soc. 127, 9156–9166.
- Rajput, L. & Biradha, K. (2007). Cryst. Growth Des. 7, 2376-2379.
- Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122. Westrip, S. P. (2010). *publCIF.* In preparation.

- Xie, Y.-B., Li, J.-R. & Bu, X.-H. (2005). J. Mol. Struct. **741**, 249–253. Zhang, W. & Chen, Y.-T. (2009). Acta Cryst. E**65**, m1548.
- Zhao, X. Y., Liang, D. D., Liu, S. X., Sun, C. Y., Cao, R. G., Gao, C. Y., Ren, Y. H. & Su, Z. M. (2008). *Inorg. Chem.* 47, 7133–7138.

supporting information

Acta Cryst. (2010). E66, m372-m373 [doi:10.1107/S1600536810007567]

Triaqua(1,10-phenanthroline-2,9-dicarboxylato)cobalt(II) dihydrate

Zi-Fa Shi, Zhu-Qing Gao and Jin-Zhong Gu

S1. Comment

In recent years, the research of coordination compounds has been one of the most attractive fields due to their peculiar structures and properties (Zhao *et al.*, 2008; Poulsen *et al.*, 2005). Many multi-carboxylate or heterocyclic carboxylic acids are used for this purpose (Luo *et al.*, 2009; Han *et al.*, 2009). In the designed synthesis of the coordination compounds, H₂PDA is an excellent dicarboxylate ligand (Xie *et al.*, 2005). In order to extend the investigation, we have prepared the Co^{II} complex of H₂PDA, and report its crystal structure here.

The title compound (Fig. 1) is located on a twofold axis of symmetry which passes through the Co and O3 atoms, which is isomorphous with $[Mg(PDA)(H_2O)_3]$.2H₂O (Park *et al.*, 2001). The seven-coordinated Co atom is in a distorted pentagonal bipyramidal geometry. Two N and two O atoms from PDA and one O atom from a water molecule define the pentagonal plane, and the two axial positions are occupied by O atoms derived from two water molecules.

Important bond distances and angles are presented in Table 1. The bond distances between Co and the PDA donor atoms [Co—O1 2.3364 (16) Å and Co—N6 2.1936 (18) Å] are significantly longer than those to the coordinated water molecules [Co—O3 2.072 (2) Å and Co—O4 2.1254 (19) Å]. This is probably due to the high rigidity of PDA as well as the high affinity of the Co^{II} ion to water molecules (Zhang & Chen, 2009). The carboxylate groups of the PDA ligand are almost coplanar with the phenanthroline unit as indicated by the O1—C1—C2—N6 torsion angle of 2.6 (3)°. All bond distances and angles are similar to those observed in other seven-coordinated Co^{II} complexes (Newkome *et al.*, 1984; Rajput & Biradha, 2007). Adjacent molecules are linked by O—H…O hydrogen bonds, forming a three-dimensional network.

S2. Experimental

1,10-Phenanthroline-2,9-dicarboxylic acid was synthesized by using a literature method (De Cian *et al.*, 2007). To a solution of cobalt nitrate hexahydrate (0.145 g, 0.5 mmol) in water (5 ml) was added an aqueous solution (5 ml) of the ligand (0.135 g, 0.5 mmol) and sodium hydroxide (0.04 g, 1.0 mmol). The reactants were sealed in a 25-ml Teflon-lined, stainless-steel Parr bomb. The bomb was heated at 433 K for 3 days. The cool solution yielded single crystals in ca 50% yield. Anal. Calcd for $C_{14}H_{16}CoN_{20}9$: C, 40.50; H, 3.88; N, 6.75. Found: C, 40.01; H, 4.12; N, 6.45.

S3. Refinement

The coordinated water H atoms were located in a difference Fourier map and refined with distance constraints of O-H = 0.83 (3) Å. The free water H atoms attached to oxygen atoms were placed at calculated positions and refined with the riding model, considering the position of oxygen atoms and the quantity of H atoms. The carbon-bound H atoms were placed in geometrically idealized positions, with C-H = 0.93 Å, and constrained to ride on their respective parent atoms, with Uiso(H) = 1.2 Ueq(C).

Figure 1

The molecular structure of (I) showing 50% proability displacement ellipsoids and the atom-numbering scheme (Symmetry code A: -x+7/4, -y+7/4, z).

Triaqua(1,10-phenanthroline-2,9-dicarboxylato)cobalt(II) dihydrate

Crystal data	
$[Co(C_{14}H_6N_2O_4)(H_2O)_3] \cdot 2H_2O$ $M_r = 415.22$ Orthorhombic, <i>Fddd</i> Hall symbol: -F 2uv 2vw $a = 7.4093 (5) \text{ Å}$ $b = 18.9267 (17) \text{ Å}$ $c = 46.609 (4) \text{ Å}$ $V = 6536 1 (9) \text{ Å}^3$	F(000) = 3408 $D_x = 1.688 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2624 reflections $\theta = 3.0-25.2^{\circ}$ $\mu = 1.11 \text{ mm}^{-1}$ T = 296 K Block yellow
Z = 16	$0.20 \times 0.19 \times 0.17 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator	φ and ω scans 9724 measured reflections 1877 independent reflections 1520 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.032$	$k = -24 \rightarrow 23$
$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 1.8^{\circ}$	$l = -45 \rightarrow 60$
$h = -9 \rightarrow 9$	

Refinement

- J	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: inferred from
$wR(F^2) = 0.098$	neighbouring sites
S = 1.06	H atoms treated by a mixture of independent
1877 reflections	and constrained refinement
132 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0494P)^2 + 16.2882P]$
2 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.96 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Col	0.8750	0.8750	0.575281 (8)	0.02703 (15)	
C1	0.5006 (3)	0.79758 (12)	0.56914 (5)	0.0303 (5)	
C2	0.5619 (3)	0.81188 (11)	0.53888 (5)	0.0286 (5)	
C3	0.4668 (3)	0.79146 (13)	0.51428 (5)	0.0369 (5)	
H3	0.3573	0.7678	0.5160	0.044*	
C4	0.5356 (4)	0.80639 (13)	0.48763 (5)	0.0403 (6)	
H4	0.4723	0.7936	0.4712	0.048*	
C5	0.7025 (3)	0.84111 (12)	0.48536 (5)	0.0336 (5)	
C6	0.7884 (3)	0.85853 (11)	0.51113 (4)	0.0283 (5)	
C7	0.7938 (4)	0.85890 (13)	0.45911 (5)	0.0426 (6)	
H7	0.7394	0.8479	0.4417	0.051*	
H3A	0.953 (3)	0.8937 (8)	0.6302 (4)	0.063 (10)*	
H5A	0.8692	0.7242	0.6386	0.075*	
H5B	0.8592	0.6518	0.6227	0.075*	0.50
H5B′	0.7138	0.7061	0.6221	0.075*	0.50
H4A	1.088 (5)	0.7728 (17)	0.5770 (7)	0.049 (10)*	
H4B	0.955 (5)	0.7546 (18)	0.5909 (8)	0.060 (11)*	
N6	0.7184 (2)	0.84503 (10)	0.53724 (4)	0.0274 (4)	
01	0.6029 (2)	0.82142 (9)	0.58824 (4)	0.0380 (4)	
02	0.3589 (2)	0.76361 (11)	0.57280 (4)	0.0446 (5)	
03	0.8750	0.8750	0.61974 (5)	0.0459 (7)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

O4	0.9892 (3)	0.77204 (10)	0.57658 (4)	0.0359 (4)
05	0.8336 (4)	0.69890 (11)	0.62306 (5)	0.0670 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.0278 (3)	0.0337 (3)	0.0196 (2)	-0.00067 (18)	0.000	0.000
C1	0.0231 (11)	0.0333 (12)	0.0344 (12)	0.0020 (9)	0.0013 (9)	-0.0046 (9)
C2	0.0256 (11)	0.0298 (11)	0.0305 (11)	0.0043 (9)	-0.0041 (9)	-0.0060 (8)
C3	0.0325 (13)	0.0401 (13)	0.0382 (13)	-0.0006 (10)	-0.0095 (10)	-0.0084 (10)
C4	0.0463 (15)	0.0418 (14)	0.0328 (13)	0.0055 (11)	-0.0153 (11)	-0.0087 (10)
C5	0.0438 (14)	0.0321 (12)	0.0248 (11)	0.0101 (11)	-0.0069 (9)	-0.0048 (9)
C6	0.0313 (12)	0.0296 (11)	0.0239 (10)	0.0057 (9)	-0.0010 (9)	-0.0015 (8)
C7	0.0637 (17)	0.0412 (14)	0.0228 (11)	0.0069 (12)	-0.0065 (11)	-0.0037 (9)
N6	0.0261 (9)	0.0320 (9)	0.0241 (9)	0.0013 (8)	-0.0014 (7)	-0.0023 (7)
O1	0.0327 (9)	0.0544 (10)	0.0268 (8)	-0.0075 (8)	0.0024 (7)	-0.0060 (7)
O2	0.0304 (10)	0.0550 (11)	0.0483 (11)	-0.0086 (8)	0.0052 (8)	-0.0053 (8)
O3	0.0490 (16)	0.0680 (17)	0.0206 (11)	-0.0285 (14)	0.000	0.000
O4	0.0312 (11)	0.0403 (10)	0.0363 (10)	0.0012 (8)	-0.0012 (8)	0.0004 (8)
05	0.1009 (19)	0.0418 (11)	0.0582 (13)	-0.0027 (12)	0.0008 (13)	-0.0004 (10)

Geometric parameters (Å, °)

Co1—O3	2.072 (2)	C4—C5	1.404 (4)	_
Co1—O4	2.1254 (19)	C4—H4	0.9300	
Co1—O4 ⁱ	2.1254 (19)	C5—C6	1.399 (3)	
Co1—N6 ⁱ	2.1936 (18)	С5—С7	1.438 (3)	
Co1—N6	2.1936 (18)	C6—N6	1.348 (3)	
Co1-01	2.3364 (16)	C6—C6 ⁱ	1.426 (5)	
Co1-O1 ⁱ	2.3364 (16)	$C7$ — $C7^{i}$	1.349 (6)	
C1—O2	1.243 (3)	С7—Н7	0.9300	
C101	1.253 (3)	O3—H3A	0.837 (17)	
C1—C2	1.506 (3)	O4—H4A	0.74 (4)	
C2—N6	1.320 (3)	O4—H4B	0.79 (4)	
С2—С3	1.400 (3)	O5—H5A	0.9066	
C3—C4	1.372 (4)	O5—H5B	0.9119	
С3—Н3	0.9300	O5—H5B′	0.8988	
O3—Co1—O4	88.37 (5)	C4—C3—C2	119.8 (2)	
O3—Co1—O4 ⁱ	88.37 (5)	C4—C3—H3	120.1	
O4—Co1—O4 ⁱ	176.75 (11)	С2—С3—Н3	120.1	
O3—Co1—N6 ⁱ	143.92 (5)	C3—C4—C5	119.5 (2)	
O4—Co1—N6 ⁱ	92.83 (8)	C3—C4—H4	120.3	
O4 ⁱ —Co1—N6 ⁱ	89.80 (7)	C5—C4—H4	120.3	
O3—Co1—N6	143.92 (5)	C6—C5—C4	116.5 (2)	
O4—Co1—N6	89.80 (7)	C6—C5—C7	117.5 (2)	
O4 ⁱ —Co1—N6	92.83 (8)	C4—C5—C7	126.0 (2)	
N6 ⁱ —Co1—N6	72.16 (10)	N6—C6—C5	123.7 (2)	

O3—Co1—O1	75.02 (4)	N6C6C6 ⁱ	115.43 (12)
O4—Co1—O1	86.46 (8)	C5-C6-C6 ⁱ	120.83 (14)
O4 ⁱ —Co1—O1	92.69 (7)	C7 ⁱ —C7—C5	121.69 (15)
N6 ⁱ —Co1—O1	141.06 (6)	C7 ⁱ —C7—H7	119.2
N6—Co1—O1	68.91 (6)	С5—С7—Н7	119.2
O3—Co1—O1 ⁱ	75.02 (4)	C2—N6—C6	118.72 (18)
O4Co1O1 ⁱ	92.69 (7)	C2—N6—Co1	122.73 (14)
$O4^{i}$ —Co1—O1 ⁱ	86.46 (8)	C6—N6—Co1	118.50 (15)
N6 ⁱ —Co1—O1 ⁱ	68.91 (6)	C1	119.62 (15)
N6-C01-01 ⁱ	141.06 (6)	Co1—O3—H3A	125.6 (15)
01-Co1-01 ⁱ	150.03 (8)	Co1—O4—H4A	112 (3)
O2—C1—O1	126.8 (2)	Co1—O4—H4B	106 (2)
O2—C1—C2	118.4 (2)	H4A—O4—H4B	108 (3)
O1—C1—C2	114.7 (2)	H5A—O5—H5B	118.1
N6-C2-C3	121.7 (2)	H5A—O5—H5B′	104.2
N6-C2-C1	113.83 (18)	H5B—O5—H5B'	110.7
C3—C2—C1	124.5 (2)		
O2-C1-C2-N6	-176.6 (2)	C6 ⁱ —C6—N6—Co1	0.2 (3)
O1-C1-C2-N6	2.6 (3)	O3—Co1—N6—C2	-2.8 (2)
O2—C1—C2—C3	2.2 (3)	O4—Co1—N6—C2	84.14 (17)
O1—C1—C2—C3	-178.6 (2)	O4 ⁱ —Co1—N6—C2	-93.94 (17)
N6-C2-C3-C4	-0.5 (4)	N6 ⁱ —Co1—N6—C2	177.2 (2)
C1—C2—C3—C4	-179.2 (2)	O1—Co1—N6—C2	-2.14 (16)
C2—C3—C4—C5	1.0 (4)	Ol ⁱ —Col—N6—C2	178.19 (14)
C3—C4—C5—C6	-0.1 (3)	O3—Co1—N6—C6	179.93 (11)
C3—C4—C5—C7	178.5 (2)	O4—Co1—N6—C6	-93.11 (16)
C4—C5—C6—N6	-1.3 (3)	O4 ⁱ —Co1—N6—C6	88.81 (16)
C7—C5—C6—N6	179.9 (2)	N6 ⁱ —Co1—N6—C6	-0.07 (11)
C4—C5—C6—C6 ⁱ	177.6 (2)	O1—Co1—N6—C6	-179.40 (17)
C7—C5—C6—C6 ⁱ	-1.2 (4)	Ol ⁱ —Col—N6—C6	0.9 (2)
C6C5C7C7 ⁱ	0.1 (4)	O2-C1-O1-Co1	174.59 (19)
C4—C5—C7—C7 ⁱ	-178.6 (3)	C2-C1-O1-Co1	-4.5 (3)
C3—C2—N6—C6	-0.9 (3)	O3—Co1—O1—C1	-176.70 (18)
C1-C2-N6-C6	178.00 (18)	O4—Co1—O1—C1	-87.44 (18)
C3-C2-N6-Co1	-178.11 (16)	O4 ⁱ —Co1—O1—C1	95.71 (18)
C1-C2-N6-Co1	0.7 (3)	N6 ⁱ —Co1—O1—C1	2.7 (2)
C5-C6-N6-C2	1.8 (3)	N6-Co1-O1-C1	3.71 (16)
C6 ⁱ —C6—N6—C2	-177.2 (2)	Ol ⁱ —Col—Ol—Cl	-176.70 (18)
C5-C6-N6-Co1	179.17 (16)		

Symmetry code: (i) -x+7/4, -y+7/4, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O3—H3A…O1 ⁱⁱ	0.837 (17)	1.957 (16)	2.778 (2)	167 (2)
O5—H5A···O2 ⁱⁱⁱ	0.91	1.95	2.837 (3)	164

supporting information

O5—H5 <i>B</i> ····O5 ^{iv}	0.91	1.93	2.803 (4)	161
O5—H5 <i>B</i> ′····O5 ⁱⁱⁱ	0.90	2.22	3.096 (6)	165
O4— $H4A$ ···O2 ^v	0.74 (4)	2.02 (4)	2.750 (3)	171 (4)
O4—H4 <i>B</i> ···O5	0.79 (4)	2.04 (4)	2.818 (3)	169 (3)

Symmetry codes: (ii) x+1/2, -y+7/4, -z+5/4; (iii) -x+5/4, y, -z+5/4; (iv) x, -y+5/4, -z+5/4; (v) x+1, y, z.