Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[2-(Piperidin-1-yl)ethylamine]dithiocyanatozinc(II)

Chen-Yi Wang,* Ai-Fei Ke and Xiang Wu

Department of Chemistry, Huzhou University, Huzhou 313000, People's Republic of China

Correspondence e-mail: chenyi_wang@163.com

Received 25 February 2010; accepted 25 February 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.035; wR factor = 0.095; data-to-parameter ratio = 20.9.

In the mononuclear title compound, $[Zn(NCS)_2(C_7H_{16}N_2)]$, the Zn^{II} atom is four-coordinated by two N atoms of the chelating 2-(piperidin-1-yl)ethylamine ligand and two N atoms from two thiocvanate ligands in a distorted tetrahedral geometry. In the crystal structure, molecules are linked through intermolecular N-H···S hydrogen bonds, forming chains along the b axis.

Related literature

For related structures, see: Wang et al. (2009a,b); Wang (2009). For bond-length and angle data, see: Cameron et al. (1998); Hong (2007).

Experimental

Crystal data

 $[Zn(NCS)_2(C_7H_{16}N_2)]$ $M_r = 309.75$ Monoclinic, $P2_1/c$ a = 9.561 (2) Åb = 10.310(2) Å c = 14.398 (3) Å $\beta = 97.367 \ (3)^{\circ}$

V = 1407.6 (5) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 2.02 \text{ mm}^{-1}$ T = 298 K $0.20 \times 0.20 \times 0.18 \; \mathrm{mm}$

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.688, \ T_{\max} = 0.712$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	145 parameters
$wR(F^2) = 0.095$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$
3029 reflections	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

7615 measured reflections

 $R_{\rm int} = 0.028$

3029 independent reflections 2196 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond	geometry	(A,	°)
---------------	----------	-----	----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1A \cdots S1^{i}$ $N1 - H1B \cdots S2^{ii}$	0.90 0.90	2.65 2.71	3.523 (3) 3.509 (3)	165 148
2	1 .	1. (2) 1.1	. 1	

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation of China (grant No. 30771696), the Natural Science Foundation of Zhejiang Province (grant No. Y407318) and the Science and Technology Plan of Huzhou (grant No. 2009 GG06).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5046).

References

- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cameron, E. M., Louch, W. E., Cameron, T. S. & Knop, O. (1998). Z. Anorg. Allg. Chem. 624, 1629-1641.
- Hong, Z. (2007). Acta Cryst. E63, m132-m134.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, C.-Y. (2009). J. Coord. Chem. 62, 2860-2868.
- Wang, C.-Y., Wu, X., Tu, S.-J. & Jiang, B. (2009a). Synth. React. Inorg. Met. Org. Nano Met. Chem. 39, 78-82
- Wang, C.-Y., Ye, J.-Y., Lv, C.-Y., Lan, W.-Z. & Zhou, J.-B. (2009b). J. Coord. Chem. 62, 2164-2171.

supporting information

Acta Cryst. (2010). E66, m350 [doi:10.1107/S1600536810007300]

[2-(Piperidin-1-yl)ethylamine]dithiocyanatozinc(II)

Chen-Yi Wang, Ai-Fei Ke and Xiang Wu

S1. Comment

As part of our investigations into novel urease inhibitors (Wang *et al.*, 2009a,b; Wang, 2009), we have synthesized the title compound, a new Zn^{II} complex, and its crystal structure is reported here.

The Zn^{II} atom in the complex is chelated by the two N atoms of 2-piperidin-1-ylethylamine ligand and two N atoms from two thiocyanate ligands, giving a distorted tetrahedral geometry (Fig. 1). The coordinate bond lengths and angles are typical and are comparable with those observed in other related zinc(II) complexes (Cameron *et al.*, 1998; Hong, 2007).

In the crystal structure, molecules are linked through intermolecular N—H \cdots S hydrogen bonds (Table 1), forming chains running along the *b* axis (Fig. 2).

S2. Experimental

2-Piperidin-1-ylethylamine (1.0 mmol, 128 mg), ammonium thiocyanate (1.0 mmol, 76 mg), and $Zn(NO_3)_2.6H_2O$ (1.0 mmol, 290 mg) were dissolved in MeOH (30 ml). The mixture was stirred at room temperature for 10 min to give a clear colourless solution. After keeping the solution in air for a week, colourless block-shaped crystals were formed at the bottom of the vessel.

S3. Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances of 0.97 Å, N–H distances of 0.90 Å, and with $U_{iso}(H)$ set at $1.2U_{eq}(C,N)$.

Figure 1

The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The molecular packing of the title compound, viewed along the a axis. Intermolecular N—H···S hydrogen bonds are shown as dashed lines.

[2-(Piperidin-1-yl)ethylamine]dithiocyanatozinc(II)

Crystal data	
$[Zn(NCS)_2(C_7H_{16}N_2)]$	V = 1407.6 (5) Å ³
$M_r = 309.75$	Z = 4
Monoclinic, $P2_1/c$	F(000) = 640
Hall symbol: -P 2ybc	$D_{\rm x} = 1.462 {\rm ~Mg} {\rm ~m}^{-3}$
a = 9.561 (2) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 10.310 (2) Å	Cell parameters from 2403 reflections
c = 14.398 (3) Å	$\theta = 2.4 - 25.0^{\circ}$
$\beta = 97.367 \ (3)^{\circ}$	$\mu = 2.02 \text{ mm}^{-1}$

T = 298 KBlock, colourless

Data collection

Bruker SMART CCD area-detector	7615 measured reflections
diffractometer	3029 independent reflections
Radiation source: fine-focus sealed tube	2196 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.028$
ω scan	$\theta_{\rm max} = 27.0^\circ, \ \theta_{\rm min} = 2.4^\circ$
Absorption correction: multi-scan	$h = -12 \rightarrow 11$
(SADABS; Sheldrick, 1996)	$k = -13 \rightarrow 13$
$T_{\min} = 0.688, \ T_{\max} = 0.712$	$l = -9 \rightarrow 18$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: inferred from
$wR(F^2) = 0.095$	neighbouring sites
S = 1.04	H-atom parameters constrained

 $0.20 \times 0.20 \times 0.18 \text{ mm}$

3029 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0475P)^2 + 0.1775P]$
145 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.39 \text{ e} \text{ Å}^{-3}$
	•

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	X	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1	0.10783 (3)	0.24465 (3)	0.24635 (2)	0.05057 (13)	
S1	0.28910 (10)	0.60126 (8)	0.42530 (6)	0.0791 (3)	
S2	-0.19929 (8)	0.06124 (9)	0.43790 (6)	0.0750 (3)	
N1	0.0345 (3)	0.2689 (2)	0.10961 (16)	0.0620 (6)	
H1A	-0.0556	0.2418	0.0979	0.074*	
H1B	0.0382	0.3530	0.0936	0.074*	
N2	0.2756 (2)	0.1410 (2)	0.20451 (14)	0.0495 (5)	
N3	0.1803 (3)	0.4000 (2)	0.31175 (18)	0.0706 (7)	
N4	-0.0197 (3)	0.1600 (3)	0.32020 (17)	0.0676 (6)	
C1	0.1265 (4)	0.1900 (4)	0.0560 (2)	0.0756 (9)	
H1C	0.1262	0.2262	-0.0062	0.091*	
H1D	0.0907	0.1020	0.0495	0.091*	
C2	0.2741 (3)	0.1887 (3)	0.1060 (2)	0.0671 (8)	
H2A	0.3131	0.2756	0.1068	0.081*	

H2B	0.3325	0.1328	0.0728	0.081*
C3	0.2624 (3)	-0.0025 (3)	0.2047 (2)	0.0678 (8)
H3A	0.3371	-0.0402	0.1738	0.081*
H3B	0.1729	-0.0272	0.1695	0.081*
C4	0.2706 (4)	-0.0557 (3)	0.3028 (2)	0.0791 (9)
H4A	0.2666	-0.1497	0.3001	0.095*
H4B	0.1900	-0.0255	0.3313	0.095*
C5	0.4045 (4)	-0.0145 (4)	0.3625 (2)	0.0883 (11)
H5A	0.4031	-0.0439	0.4264	0.106*
H5B	0.4853	-0.0533	0.3388	0.106*
C6	0.4168 (3)	0.1305 (4)	0.3608 (2)	0.0826 (10)
H6A	0.5048	0.1568	0.3970	0.099*
H6B	0.3400	0.1689	0.3892	0.099*
C7	0.4124 (3)	0.1786 (3)	0.2614 (2)	0.0691 (8)
H7A	0.4222	0.2723	0.2615	0.083*
H7B	0.4905	0.1418	0.2334	0.083*
C8	0.2262 (3)	0.4841 (3)	0.35825 (19)	0.0552 (7)
C9	-0.0958 (3)	0.1204 (3)	0.36869 (18)	0.0499 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0569 (2)	0.0542 (2)	0.04129 (19)	0.00372 (13)	0.00884 (14)	-0.00022 (13)
S1	0.0986 (6)	0.0605 (5)	0.0736 (5)	-0.0117 (4)	-0.0061 (5)	-0.0036 (4)
S2	0.0604 (4)	0.0944 (6)	0.0750 (5)	-0.0167 (4)	0.0277 (4)	-0.0161 (4)
N1	0.0697 (15)	0.0669 (16)	0.0479 (13)	0.0098 (11)	0.0013 (12)	0.0075 (11)
N2	0.0570 (12)	0.0496 (12)	0.0432 (11)	0.0032 (10)	0.0111 (10)	0.0058 (9)
N3	0.101 (2)	0.0521 (15)	0.0585 (15)	-0.0003 (13)	0.0080 (13)	-0.0040 (12)
N4	0.0633 (14)	0.0833 (18)	0.0583 (14)	-0.0052 (13)	0.0162 (12)	0.0001 (13)
C1	0.107 (3)	0.080 (2)	0.0385 (15)	0.022 (2)	0.0079 (16)	0.0045 (15)
C2	0.080 (2)	0.075 (2)	0.0511 (17)	0.0150 (17)	0.0243 (15)	0.0135 (15)
C3	0.082 (2)	0.0526 (17)	0.0687 (19)	0.0049 (15)	0.0069 (16)	0.0014 (14)
C4	0.091 (2)	0.063 (2)	0.087 (2)	0.0138 (17)	0.0214 (19)	0.0278 (18)
C5	0.087 (2)	0.113 (3)	0.066 (2)	0.039 (2)	0.0130 (19)	0.028 (2)
C6	0.0624 (18)	0.118 (3)	0.063 (2)	0.0176 (19)	-0.0094 (15)	-0.003 (2)
C7	0.0511 (16)	0.073 (2)	0.084 (2)	-0.0015 (14)	0.0122 (16)	0.0011 (17)
C8	0.0658 (17)	0.0499 (16)	0.0513 (16)	0.0069 (13)	0.0126 (13)	0.0116 (13)
C9	0.0413 (13)	0.0584 (16)	0.0494 (15)	0.0024 (11)	0.0031 (11)	-0.0129 (12)

Geometric parameters (Å, °)

Zn1—N4	1.927 (3)	C2—H2A	0.97	
Zn1—N3	1.940 (3)	C2—H2B	0.97	
Zn1—N1	2.019 (2)	C3—C4	1.508 (4)	
Zn1—N2	2.080 (2)	С3—НЗА	0.97	
S1—C8	1.614 (3)	C3—H3B	0.97	
S2—C9	1.611 (3)	C4—C5	1.509 (5)	
N1-C1	1.485 (4)	C4—H4A	0.97	

N1—H1A	0.90	C4—H4B	0.97
N1—H1B	0.90	C5—C6	1.500 (5)
N2—C3	1.485 (3)	C5—H5A	0.97
N2—C2	1.500 (3)	C5—H5B	0.97
N2—C7	1.503 (3)	C6—C7	1.510 (5)
N3—C8	1.148 (3)	C6—H6A	0.97
N4—C9	1.146 (3)	C6—H6B	0.97
C1—C2	1.500 (4)	С7—Н7А	0.97
C1—H1C	0.97	C7—H7B	0.97
C1—H1D	0.97		
N4—Zn1—N3	108.54 (11)	N2—C3—C4	111.7 (3)
N4—Zn1—N1	115.39 (10)	N2—C3—H3A	109.3
N3—Zn1—N1	115.40 (10)	C4—C3—H3A	109.3
N4—Zn1—N2	119.57 (10)	N2—C3—H3B	109.3
N3—Zn1—N2	108.90 (10)	C4—C3—H3B	109.3
N1—Zn1—N2	88.02 (9)	НЗА—СЗ—НЗВ	107.9
C1—N1—Zn1	106.51 (17)	C3—C4—C5	111.7 (3)
C1—N1—H1A	110.4	C3—C4—H4A	109.3
Zn1—N1—H1A	110.4	C5—C4—H4A	109.3
C1—N1—H1B	110.4	C3—C4—H4B	109.3
Zn1—N1—H1B	110.4	C5—C4—H4B	109.3
H1A—N1—H1B	108.6	H4A—C4—H4B	107.9
C3—N2—C2	109.8 (2)	C6—C5—C4	109.5 (3)
C3—N2—C7	108.9 (2)	C6—C5—H5A	109.8
C2—N2—C7	109.4 (2)	C4—C5—H5A	109.8
C3—N2—Zn1	116.27 (17)	C6—C5—H5B	109.8
C2—N2—Zn1	101.04 (16)	C4—C5—H5B	109.8
C7—N2—Zn1	111.06 (17)	H5A—C5—H5B	108.2
C8—N3—Zn1	173.1 (2)	C5—C6—C7	110.5 (3)
C9—N4—Zn1	173.6 (3)	С5—С6—Н6А	109.5
N1—C1—C2	109.8 (3)	С7—С6—Н6А	109.5
N1—C1—H1C	109.7	С5—С6—Н6В	109.5
C2—C1—H1C	109.7	С7—С6—Н6В	109.5
N1—C1—H1D	109.7	H6A—C6—H6B	108.1
C2—C1—H1D	109.7	N2—C7—C6	110.4 (2)
H1C—C1—H1D	108.2	N2—C7—H7A	109.6
C1—C2—N2	110.5 (2)	С6—С7—Н7А	109.6
C1—C2—H2A	109.5	N2—C7—H7B	109.6
N2—C2—H2A	109.5	С6—С7—Н7В	109.6
C1—C2—H2B	109.5	H7A—C7—H7B	108.1
N2—C2—H2B	109.5	N3—C8—S1	178.9 (3)
H2A—C2—H2B	108.1	N4—C9—S2	178.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1A····S1 ⁱ	0.90	2.65	3.523 (3)	165

			supportin	supporting information		
N1—H1B····S2 ⁱⁱ	0.90	2.71	3.509 (3)	148		
Symmetry codes: (i) $-x$, $y-1/2$, $-z+1/2$;	(ii) $-x$, $y+1/2$, $-z+1/2$.					