

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(*N*-ethyl-*N*-methyldithiocarbamato- $\kappa^2 S, S'$)diphenyltin(IV)

Amirah Faizah Muthalib,^a Ibrahim Baba^a and Seik Weng Ng^b*

^aSchool of Chemical Sciences, Universiti Kebangbaan Malaysia, 43600 Bangi, Malaysia, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 21 February 2010; accepted 26 February 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.022; wR factor = 0.058; data-to-parameter ratio = 22.3.

The dithiocarbamate anions in the title compound, $[Sn(C_6H_5)_2(C_4H_8NS_2)_2]$, chelate to the Sn^{IV} atom, which is six-coordinated in a skew-trapezoidal-bipyramidal geometry. The molecule lies across a twofold rotation axis.

Related literature

For other diphenyltin bis(dithiocarbamate) compounds, see: Alcock *et al.* (1992); Farina *et al.* (2001*a,b*); Hook *et al.* (1994). For a discussion of the geometry of tin in diorganotin bischelates, see: Ng *et al.* (1987).

Experimental

Crystal data $[Sn(C_6H_5)_2(C_4H_8NS_2)_2]$ $M_r = 541.36$ Monoclinic, C2/c

a = 17.7925 (11) A	Å
b = 7.0928 (5) Å	
c = 18.8889 (12) A	Á

$\beta = 91.2716 \ (9)^{\circ}$
V = 2383.2 (3) Å ³
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.634, T_{\rm max} = 0.814$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.022$ 123 parameters $wR(F^2) = 0.058$ H-atom parameters constrainedS = 1.04 $\Delta \rho_{max} = 0.42$ e Å $^{-3}$ 2739 reflections $\Delta \rho_{min} = -0.38$ e Å $^{-3}$

Table 1

Selected geometric parameters (Å, °).

Sn1-S1 2.5043 (5)	3.0167 (5)	Sn1-S2	2.1239 (19)	Sn1-C1
$C_1 = C_{-1} = C_1^{1} =$			2.5043 (5)	Sn1-S1
C1 - Sn1 - C1 128.41 (11)			128.41 (11)	$C1-Sn1-C1^i$

Symmetry code: (i) $-x + 1, y, -z + \frac{3}{2}$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The authors thank Universiti Kebangsaan Malaysia (UKM-GUP-NBT-08-27-111 and 06-01-02-SF0539) and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5040).

References

- Alcock, N. W., Culver, J. & Roe, S. M. (1992). J. Chem. Soc. Dalton Trans. pp. 1477–1484.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farina, Y., Baba, I., Othman, A. H., Razak, I. A., Fun, H.-K. & Ng, S. W. (2001a). Acta Cryst. E57, m41–m42.
- Farina, Y., Othman, A. H., Razak, I. A., Fun, H.-K., Ng, S. W. & Baba, I. (2001b). Acta Cryst. E57, m46–m47.
- Hook, J. M., Linahan, B. M., Taylor, R. L., Tiekink, E. R. T., van Gorkom, L. & Webster, L. K. (1994). *Main Group Met. Chem.* 17, 293–311.
- Ng, S. W., Chen, W., Kumar Das, V. G. & Mak, T. C. W. (1987). J. Organomet. Chem. 334, 295–305.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). publCIF. In preparation.

 $\mu = 1.43 \text{ mm}^{-1}$ T = 293 K

 $R_{\rm int} = 0.023$

 $0.35 \times 0.25 \times 0.15 \ \mathrm{mm}$

9577 measured reflections

2739 independent reflections

2493 reflections with $I > 2\sigma(I)$

supporting information

Acta Cryst. (2010). E66, m355 [doi:10.1107/S1600536810007427]

Bis(*N*-ethyl-*N*-methyldithiocarbamato- $\kappa^2 S, S'$)diphenyltin(IV)

Amirah Faizah Muthalib, Ibrahim Baba and Seik Weng Ng

S1. Experimental

Diphenyltin dichloride (10 mmol), ethylmethylamine (10 mmol) and carbon disulfide (10 mmol) were reacted in ethanol (50 ml) at 277 K to produce a white solid. The mixture was stirred for 1 h. The solid was collected and recrystallized from ethanol.

S2. Refinement

H atoms were placed in calculated positions (C–H = 0.93 to 0.96 Å) and were included in the refinement in the riding model approximation, with U_{iso} (H) set to 1.2–1.5 U_{eq} (C).

Figure 1

Displacement ellipsoid plot (Barbour, 2001) of $[Sn(C_6H_5)_2(C_4H_8NS_2)_2]$ at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. Unlabelled atoms are related to labelled atoms by the symmetry operation (1 - x, y, 3/2 - z).

Bis(*N*-ethyl-*N*-methyldithiocarbamato- $\kappa^2 S, S'$)diphenyltin(IV)

Crystal data	
$[Sn(C_6H_5)_2(C_4H_8NS_2)_2]$	$\beta = 91.2716 \ (9)^{\circ}$
$M_r = 541.36$	V = 2383.2 (3) Å ³
Monoclinic, $C2/c$	Z = 4
Hall symbol: -C 2yc	F(000) = 1096
a = 17.7925 (11) Å	$D_{\rm x} = 1.509 {\rm ~Mg} {\rm ~m}^{-3}$
b = 7.0928 (5) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 18.8889 (12) Å	Cell parameters from 5306 reflections

 $\theta = 2.2-28.2^{\circ}$ $\mu = 1.43 \text{ mm}^{-1}$ T = 293 K

Data collection

Bruker SMART APEX diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.634, T_{\max} = 0.814$

Refinement

Кејтетет	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.022$	Hydrogen site location: inferred from
$wR(F^2) = 0.058$	neighbouring sites
S = 1.04	H-atom parameters constrained
2739 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0314P)^2 + 0.7977P]$
123 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.42 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta ho_{\min} = -0.38 \text{ e} \text{ Å}^{-3}$

Block, colourless

 $R_{\rm int} = 0.023$

 $k = -9 \rightarrow 9$

 $l = -24 \rightarrow 24$

 $0.35 \times 0.25 \times 0.15 \text{ mm}$

9577 measured reflections

 $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$ $h = -20 \rightarrow 22$

2739 independent reflections

2493 reflections with $I > 2\sigma(I)$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Sn1	0.5000	0.38413 (2)	0.7500	0.04035 (7)
S1	0.45891 (3)	0.65032 (7)	0.67111 (3)	0.04919 (13)
S2	0.42774 (4)	0.27299 (7)	0.61016 (3)	0.05418 (14)
N1	0.41100 (11)	0.5964 (2)	0.53945 (9)	0.0507 (4)
C1	0.40305 (11)	0.2538 (3)	0.79172 (9)	0.0443 (4)
C2	0.40685 (16)	0.0719 (4)	0.81763 (14)	0.0662 (6)
H2	0.4526	0.0086	0.8191	0.079*
C3	0.3429 (2)	-0.0169 (5)	0.84136 (16)	0.0955 (11)
Н3	0.3455	-0.1399	0.8583	0.115*
C4	0.2756 (2)	0.0781 (7)	0.83971 (16)	0.1033 (14)
H4	0.2327	0.0193	0.8563	0.124*
C5	0.27101 (15)	0.2563 (6)	0.81423 (15)	0.0919 (11)
Н5	0.2250	0.3185	0.8127	0.110*
C6	0.33506 (13)	0.3464 (4)	0.79027 (13)	0.0645 (6)
H6	0.3319	0.4693	0.7733	0.077*
C7	0.43002 (10)	0.5087 (3)	0.59980 (10)	0.0414 (4)
C8	0.38489 (14)	0.4917 (4)	0.47687 (11)	0.0607 (6)
H8A	0.4069	0.3666	0.4777	0.073*
H8B	0.4016	0.5554	0.4346	0.073*
С9	0.30029 (16)	0.4746 (5)	0.47381 (15)	0.0858 (9)
H9A	0.2852	0.4060	0.4321	0.129*
H9B	0.2783	0.5982	0.4724	0.129*

supporting information

H9C	0.2836	0.4088	0.5150	0.129*
C10	0.41159 (17)	0.8023 (3)	0.53227 (13)	0.0695 (7)
H10A	0.3976	0.8361	0.4846	0.104*
H10B	0.4611	0.8492	0.5432	0.104*
H10C	0.3764	0.8564	0.5643	0.104*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.03637 (11)	0.03690 (11)	0.04792 (12)	0.000	0.00416 (7)	0.000
S1	0.0589 (3)	0.0391 (2)	0.0490 (3)	-0.0011 (2)	-0.0102 (2)	-0.0020 (2)
S2	0.0672 (4)	0.0414 (3)	0.0535 (3)	0.0006 (2)	-0.0079 (2)	-0.0050 (2)
N1	0.0552 (11)	0.0531 (10)	0.0437 (9)	0.0031 (8)	-0.0019 (8)	0.0021 (7)
C1	0.0397 (10)	0.0543 (11)	0.0390 (9)	-0.0084 (9)	0.0005 (7)	-0.0025 (8)
C2	0.0691 (16)	0.0583 (14)	0.0713 (15)	-0.0173 (12)	0.0015 (12)	0.0073 (11)
C3	0.112 (3)	0.097 (2)	0.0778 (19)	-0.060 (2)	-0.0050 (18)	0.0196 (17)
C4	0.072 (2)	0.182 (4)	0.0552 (15)	-0.066 (2)	0.0015 (14)	0.0113 (19)
C5	0.0418 (14)	0.171 (4)	0.0633 (16)	-0.0129 (19)	0.0031 (11)	-0.001 (2)
C6	0.0431 (12)	0.0930 (18)	0.0575 (13)	0.0025 (12)	0.0011 (10)	0.0039 (12)
C7	0.0349 (10)	0.0461 (10)	0.0431 (9)	0.0031 (8)	0.0006 (7)	-0.0019 (8)
C8	0.0657 (15)	0.0760 (16)	0.0402 (10)	0.0081 (12)	-0.0037 (10)	-0.0055 (11)
C9	0.076 (2)	0.108 (2)	0.0727 (17)	-0.0121 (18)	-0.0087 (14)	-0.0172 (17)
C10	0.089 (2)	0.0547 (13)	0.0646 (14)	0.0013 (13)	-0.0086 (13)	0.0156 (11)

Geometric parameters (Å, °)

Sn1—C1	2.1239 (19)	С3—Н3	0.93
Sn1—C1 ⁱ	2.1239 (19)	C4—C5	1.354 (5)
$Sn1-S1^{i}$	2.5043 (5)	C4—H4	0.93
Sn1—S1	2.5043 (5)	C5—C6	1.391 (4)
Sn1—S2	3.0167 (5)	С5—Н5	0.93
S1—C7	1.7485 (19)	С6—Н6	0.93
S2—C7	1.684 (2)	C8—C9	1.510 (4)
N1—C7	1.336 (2)	C8—H8A	0.97
N1-C10	1.467 (3)	C8—H8B	0.97
N1—C8	1.463 (3)	С9—Н9А	0.96
C1—C6	1.376 (3)	С9—Н9В	0.96
C1—C2	1.382 (3)	С9—Н9С	0.96
С2—С3	1.383 (4)	C10—H10A	0.96
С2—Н2	0.93	C10—H10B	0.96
C3—C4	1.374 (5)	C10—H10C	0.96
C1—Sn1—C1 ⁱ	128.41 (11)	C4—C5—C6	120.1 (3)
$C1$ — $Sn1$ — $S1^i$	109.64 (5)	C4—C5—H5	119.9
$C1^{i}$ — $Sn1$ — $S1^{i}$	108.67 (6)	С6—С5—Н5	119.9
C1—Sn1—S1	108.67 (6)	C1—C6—C5	120.0 (3)
C1 ⁱ —Sn1—S1	109.64 (5)	C1—C6—H6	120.0
S1 ⁱ —Sn1—S1	82.14 (2)	С5—С6—Н6	120.0

C1—Sn1—S2	82.95 (5)	N1—C7—S2	123.74 (15)
C1 ⁱ —Sn1—S2	83.99 (5)	N1—C7—S1	117.02 (15)
S1 ⁱ —Sn1—S2	146.217 (16)	S2—C7—S1	119.24 (11)
S1—Sn1—S2	64.079 (15)	N1—C8—C9	111.7 (2)
C7—S1—Sn1	95.86 (7)	N1—C8—H8A	109.3
C7—S2—Sn1	80.30 (6)	С9—С8—Н8А	109.3
C7—N1—C10	122.72 (18)	N1—C8—H8B	109.3
C7—N1—C8	121.53 (19)	С9—С8—Н8В	109.3
C10—N1—C8	115.70 (18)	H8A—C8—H8B	107.9
C6—C1—C2	119.3 (2)	С8—С9—Н9А	109.5
C6-C1-Sn1	120.37 (17)	С8—С9—Н9В	109.5
C2—C1—Sn1	120.29 (17)	H9A—C9—H9B	109.5
C1—C2—C3	120.4 (3)	С8—С9—Н9С	109.5
C1—C2—H2	119.8	H9A—C9—H9C	109.5
С3—С2—Н2	119.8	H9B—C9—H9C	109.5
C4—C3—C2	119.5 (3)	N1-C10-H10A	109.5
С4—С3—Н3	120.2	N1-C10-H10B	109.5
С2—С3—Н3	120.2	H10A—C10—H10B	109.5
C5—C4—C3	120.7 (3)	N1—C10—H10C	109.5
С5—С4—Н4	119.6	H10A—C10—H10C	109.5
C3—C4—H4	119.6	H10B—C10—H10C	109.5
C1—Sn1—S1—C7	-76.24 (8)	Sn1—C1—C2—C3	-176.6 (2)
$C1^{i}$ — $Sn1$ — $S1$ — $C7$	68.53 (9)	C1—C2—C3—C4	-0.7 (4)
$S1^{i}$ — $Sn1$ — $S1$ — $C7$	175.62 (7)	C2—C3—C4—C5	0.9 (5)
S2—Sn1—S1—C7	-4.19 (6)	C3—C4—C5—C6	-0.9(5)
C1—Sn1—S2—C7	119.15 (9)	C2-C1-C6-C5	-0.5 (3)
$C1^{i}$ — $Sn1$ — $S2$ — $C7$	-110.88 (9)	Sn1—C1—C6—C5	176.56 (19)
$S1^{i}$ — $Sn1$ — $S2$ — $C7$	4.05 (8)	C4—C5—C6—C1	0.7 (4)
S1—Sn1—S2—C7	4.39 (7)	C10—N1—C7—S2	178.37 (19)
C1 ⁱ —Sn1—C1—C6	-153.86 (19)	C8—N1—C7—S2	1.1 (3)
S1 ⁱ —Sn1—C1—C6	70.36 (18)	C10—N1—C7—S1	-1.8 (3)
S1—Sn1—C1—C6	-17.76 (18)	C8—N1—C7—S1	-179.01 (16)
S2—Sn1—C1—C6	-77.32 (17)	Sn1—S2—C7—N1	173.36 (18)
$C1^{i}$ — $Sn1$ — $C1$ — $C2$	23.16 (16)	Sn1—S2—C7—S1	-6.49 (10)
$S1^{i}$ — $Sn1$ — $C1$ — $C2$	-112.61 (17)	Sn1—S1—C7—N1	-172.10 (15)
S1—Sn1—C1—C2	159.26 (16)	Sn1—S1—C7—S2	7.75 (12)
S2—Sn1—C1—C2	99.71 (17)	C7—N1—C8—C9	92.6 (3)
C6—C1—C2—C3	0.5 (4)	C10—N1—C8—C9	-84.8 (3)

Symmetry code: (i) -x+1, *y*, -z+3/2.