inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

A new crystal modification of diammonium hydrogen phosphate, (NH₄)₂(HPO₄)

Peter C. Kunz,^a* Corinna Wetzel^a and Bernhard Spingler^b

^aHeirich-Heine-Universität Düsseldorf, Institut für Anorganische Chemie und Strukturchemie I, Universitätsstrasse 1, D-40225 Düsseldorf, Germany, and ^bAnorganisch-Chemisches Institut, Universität Zürich-Irchel, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

Correspondence e-mail: peter.kunz@uni-duesseldorf.de

Received 8 February 2010; accepted 16 March 2010

Key indicators: single-crystal X-ray study; T = 183 K; mean σ (P–O) = 0.002 Å; R factor = 0.048; wR factor = 0.158; data-to-parameter ratio = 29.7.

The addition of hexafluoridophosphate salts (ammonium, silver, thallium or potassium) is usually used to precipitate complex cations from aqueous solutions. It has long been known that PF_6^- is sensitive towards hydrolysis under acidic conditions [Gebala & Jones (1969). J. Inorg. Nucl. Chem. 31, 771-776; Plakhotnyk et al. (2005). J. Fluorine Chem. 126, 27-31]. During the course of our investigation into coinage metal complexes of diphosphine ligands, we used ammonium hexafluoridophosphate in order to crystallize [Ag(diphosphine)₂]PF₆ complexes. From these solutions we always obtained needle-like crystals which turned out to be the title compound, $2NH_4^+ \cdot HPO_4^{2-}$. It was received as the hydrolysis product of NH₄PF₆. The crystals are a new modification of diammonium hydrogen phosphate. In contrast to the previously published polymorph [Khan et al. (1972). Acta Cryst. B28, 2065–2069], Z' of the title compound is 2. In the new modification of the title compound, there are eight molecules of $(NH_4)_2(HPO_4)$ in the unit cell. The structure consists of PO₃OH and NH₄ tetrahedra, held together by O- $H \cdots O$ and $N - H \cdots O$ hydrogen bonds.

Related literature

For the study of another crystal modification of the title compound, see: Khan *et al.* (1972). For the hydrolysis of hexafluoridophosphates, see: Akbayeva *et al.* (2006); Deifel *et al.* (2008); Fernandez-Galan *et al.* (1994); Gebala & Jones (1969); Nikitenko *et al.* (2007); Plakhotnyk *et al.* (2005).

Experimental

 Crystal data

 $2NH_4^+$ ·HPO₄²⁻
 a = 11.2868 (3) Å

 $M_r = 132.06$ b = 15.3466 (4) Å

 Monoclinic, $P2_1/c$ c = 6.41894 (19) Å

Data collection

Oxford Xcalibur Ruby CCD
diffractometer
Absorption correction: multi-scan
CrysAlis PRO (Oxford
Diffraction, 2009)
$T_{\min} = 0.891, \ T_{\max} = 0.955$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.158$ S = 1.215384 reflections 181 parameters 16 restraints

Table 1Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1\cdots O7^{i}$	0.78 (4)	1.80 (4)	2.570 (2)	168 (4)
$O5-H5\cdots O8^{ii}$	0.85 (4)	1.79 (4)	2.632 (2)	170 (4)
$N11 - H11A \cdots O4^{iii}$	0.86 (2)	1.89 (2)	2.747 (2)	175 (4)
$N11 - H11B \cdot \cdot \cdot O8^{i}$	0.86(2)	2.10(2)	2.951 (2)	171 (3)
$N11 - H11C \cdot \cdot \cdot O3^{iv}$	0.88(2)	1.99 (2)	2.852 (3)	169 (3)
$N11 - H11D \cdots O4^{i}$	0.88 (2)	2.01 (2)	2.870 (2)	167 (3)
$N12 - H12A \cdots O6^{v}$	0.87 (2)	1.91 (2)	2.755 (2)	165 (3)
$N12-H12B\cdots O5^{vi}$	0.88 (2)	2.16 (2)	3.008 (3)	161 (3)
$N12-H12C\cdots O6^{i}$	0.87 (2)	1.99 (2)	2.827 (2)	161 (3)
$N12 - H12D \cdots O2$	0.88 (2)	1.88 (2)	2.754 (2)	175 (3)
N13−H13A···O3	0.86 (2)	1.92 (2)	2.773 (2)	172 (3)
$N13 - H13B \cdot \cdot \cdot O2^{vii}$	0.86 (2)	1.96 (2)	2.822 (2)	175 (3)
$N13 - H13C \cdots O6^{v}$	0.89 (2)	1.95 (2)	2.830 (2)	168 (3)
$N13 - H13D \cdots O2^{ii}$	0.86(2)	1.96 (2)	2.820 (2)	176 (3)
$N14 - H14A \cdots O7$	0.87 (2)	1.90 (2)	2.771 (2)	174 (3)
$N14 - H14B \cdot \cdot \cdot O8^{vii}$	0.86(2)	2.01 (2)	2.859 (2)	171 (3)
$N14-H14C\cdots O3^{iv}$	0.86 (2)	1.92 (2)	2.784 (2)	178 (3)
$N14 - H14D \cdots O4$	0.89 (2)	1.89 (2)	2.771 (2)	171 (3)

 $\mu = 0.42 \text{ mm}^{-1}$

 $0.44 \times 0.17 \times 0.11 \ \mathrm{mm}$

22537 measured reflections

5384 independent reflections 4400 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

T = 183 K

 $R_{\rm int} = 0.033$

refinement $\Delta \rho_{\rm max} = 0.82 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.69 \ {\rm e} \ {\rm \AA}^{-3}$

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) $-x, y + \frac{1}{2}, -z + \frac{3}{2}$; (iv) -x, -y + 1, -z + 2; (v) x + 1, y, z + 1; (vi) x + 1, y, z; (vii) x, y, z + 1.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2009); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

BS thanks the University of Zürich for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2137).

References

- Akbayeva, D., Vaira, M., Costantini, S., Peruzzini, M. & Stoppioni, P. (2006). Dalton Trans. pp. 389–395.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Deifel, N. P., Holman, K. T. & Cahil, C. (2008). Chem. Commun. pp. 6037– 6038.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Fernandez-Galan, R., Manzano, B., Otero, A., Lanfranchi, M. & Pellinghelli, M. (1994). Inorg. Chem. 33, 2309-2312.
- Gebala, A. & Jones, M. (1969). *J. Inorg. Nucl. Chem.* **31**, 771–776. Khan, A. A., Roux, J. P. & James, W. J. (1972). *Acta Cryst.* B**28**, 2065–2069.
- Nikitenko, S., Berthon, C. & Moisy, P. (2007). C. R. Chim. 10, 1122-1127.

Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction, Yarnton, England.

- Plakhotnyk, A., Ernst, L. & Schmutzler, R. (2005). J. Fluorine Chem. 126, 27-31.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2010). E66, i26-i27 [doi:10.1107/S1600536810009839]

A new crystal modification of diammonium hydrogen phosphate, (NH₄)₂(HPO₄)

Peter C. Kunz, Corinna Wetzel and Bernhard Spingler

S1. Comment

The addition of hexafluorophosphate salts (ammonium, silver, thallium or potassium) is usually used to precipitate complex cations from aqueous solutions. It is long known, that PF_6^- is sensitive towards hydrolysis under acidic conditions (Gebala and Jones 1969; Plakhotnyk, Ernst *et al.* 2005). In organic solvents the spatial hydrolysis to intermediate species as HF, POF₃ and PO₂F₂⁻ is observed (Fernandez-Galan, Manzano *et al.* 1994; Akbayeva, Vaira *et al.* 2006; Nikitenko, Berthon *et al.* 2007) and under hydrothermal conditions this reaction is used for the formation of phosphate materials (Deifel, Holman *et al.* 2008).

During the course of our investigation into coinage metal complexes of diphosphine ligands we used ammonium hexafluorophosphate in order to crystallise $[Ag(diphosphine)_2]PF_6$ complexes. From these solutions we always obtained needle-like crystals which turned out to be the title compound $(NH_4)_2(HPO_4)$ as the product of hydrolysis of NH_4PF_6 .

A modification of diammonium hydrogen phosphate is known with the cell parameters a = 11.043 (6), b = 6.700 (3), c =8.031 (4), $\beta = 113.42$ (3)° and Z = 4.(Khan, Roux *et al.* 1972) In the new modification of the title compound reported here, there are eight molecules of (NH₄)₂(HPO₄) in the unit cell. The structure consists of PO₄ and NH₄ tetrahedra, held together by O—H···O and N—H···O hydrogen bonds. These hydrogen bonds are more or less linear ($169 \circ < <$ (DHA) < 178 °). Of the four P-O bonds in both PO₄ tetrahedra, one is longer than the remaining three, typical of a $O_3P(OH)$ group. The two different HPO₄⁻ molecules (P1O₄ and P2O₄) are hydrogen bonded to ten and seven ammonium ions, respectively. In hydrogen phosphate P2, one NH_4^+ molecule is bound to O5 and O7, two to O8 and three to O6. In the other hydrogen phosphate, the three non-protonated O-atoms O2, O3 and O4 are bound to three NH₄⁺ molecules each, whereas the protonated O1 is only bound to one NH_4^+ molecule. In the hydrogen phosphate P1 the hydroxyl group O1H1 forms a hydrogen bridge to O7 (d = 1.80 (4) Å) and in the hydrogen phosphate P2 the hydroxyl group O5H5 forms a hydrogen bridge to O8 (d = 1.79 (4) Å). The N—O distances around the four-coordinated ammonium ions N13 and N14 are within the range of $2.77 \le d \le 2.86$ Å; The N···O distances around N12 fall within this range with the exception of N12···O5 which is significantly longer ($d_{N1205} = 3.007$ Å). A very different picture is found around N11. Here, five neighbouring Oatoms are found, three of which are in a shorter distance (2. 74 < d < 2.87 Å) and two in a longer distance ($d_{NUOS} = 2.951$ Å and $d_{N1101} = 3.048$ Å). The fifth N···O contact may be a result of dynamic or static disorder of the ammonium ion or that each N atom in addition to three normal N-H···O bonds also formed one bifurcated bond. This is in contrast to the other modification, in which each ammonium ion has five N···O contacts smaller than 3.4 Å. Since Khan and Roux (Khan, Roux et al. 1972) only reported that they used "a commercially supplied crystalline sample", we cannot compare the crystallization conditions that lead to the two different crystal forms.

S2. Experimental

A suitable crystal was covered with oil (Infineum V8512, formerly known as Paratone N), mounted on top of a glass fibre and immediately transferred to the diffractometer. The final model was checked for higher symmetry with help of the

program PLATON (Spek, 2009).

S3. Refinement

All hydrogen atoms were located by difference Fourier synthesis and refined with fixed individual displacement parameters [U(H) = 1.5Ueq(O)] at an O-H distance of 0.87 Å.

Figure 1

H-bonded network in the solid-state of the title compound. Displacement ellipsoids are drawn at a 50 % level, H-atoms are represented as capped sticks.

diammonium hydrogen phosphate

Crystal data	
$2NH_4^+ \cdot HPO_4^{2-}$	F(000) = 560
$M_r = 132.06$	$D_{\rm x} = 1.578 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation, $\lambda = 0.7107$ Å
Hall symbol: -P 2ybc	Cell parameters from 11185 reflections
a = 11.2868 (3) Å	$\theta = 2.7 - 37.6^{\circ}$
b = 15.3466 (4) Å	$\mu = 0.42 \mathrm{~mm^{-1}}$
c = 6.41894 (19) Å	T = 183 K
$\beta = 90.795 (3)^{\circ}$	Needle, colourless
V = 1111.74 (5) Å ³	$0.44 \times 0.17 \times 0.11 \text{ mm}$
Z = 8	
Data collection	
Oxford Xcalibur Ruby CCD	Absorption correction: multi-scan
diffractometer	CrysAlis PRO (Oxford Diffraction, 2009)
Radiation source: Enhance (Mo) X-ray Source	$T_{\min} = 0.891, T_{\max} = 0.955$
Graphite monochromator	22537 measured reflections
Detector resolution: 10.4498 pixels mm ⁻¹	5384 independent reflections
ω oscillation scan	4400 reflections with $I > 2\sigma(I)$
	$R_{int} = 0.033$

$\theta_{\rm max} = 36.3^\circ, \theta_{\rm min} = 2.7^\circ$	$k = -25 \rightarrow 25$
$h = -18 \rightarrow 18$	$l = -9 \rightarrow 10$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from
$wR(F^2) = 0.158$	neighbouring sites
S = 1.21	H atoms treated by a mixture of independent
5384 reflections	and constrained refinement
181 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0508P)^2 + 1.9491P]$
16 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.82$ e Å ⁻³
	$\Delta \rho_{\rm min} = -0.69 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.12341 (16)	0.48227 (11)	0.6812 (3)	0.0260 (4)	
H1	0.181 (4)	0.502 (3)	0.635 (6)	0.039*	
O2	0.25104 (13)	0.34866 (10)	0.7264 (2)	0.0180 (3)	
03	0.13920 (15)	0.40992 (11)	1.0319 (2)	0.0198 (3)	
O4	0.02645 (13)	0.34042 (10)	0.7334 (3)	0.0190 (3)	
05	-0.41866 (14)	0.29289 (11)	0.4731 (3)	0.0209 (3)	
Н5	-0.368 (3)	0.259 (3)	0.529 (6)	0.031*	
06	-0.47633 (13)	0.40326 (10)	0.2142 (2)	0.0174 (3)	
O7	-0.30247 (15)	0.43252 (11)	0.4549 (2)	0.0209 (3)	
08	-0.28270 (13)	0.32102 (10)	0.1683 (2)	0.0182 (3)	
P1	0.13662 (4)	0.39195 (3)	0.79806 (7)	0.01228 (10)	
P2	-0.36645 (4)	0.36515 (3)	0.32105 (7)	0.01211 (10)	
N11	0.03108 (16)	0.66864 (12)	0.7030 (3)	0.0185 (3)	
H11A	0.009 (3)	0.7219 (13)	0.720 (5)	0.028*	
H11B	0.1058 (17)	0.667 (2)	0.730 (5)	0.028*	
H11C	-0.017 (3)	0.638 (2)	0.780 (5)	0.028*	
H11D	0.018 (3)	0.658 (2)	0.570 (3)	0.028*	
N12	0.47645 (17)	0.41255 (13)	0.7925 (3)	0.0188 (3)	
H12A	0.500 (3)	0.402 (2)	0.920 (3)	0.028*	
H12B	0.523 (3)	0.382 (2)	0.711 (5)	0.028*	
H12C	0.479 (3)	0.4675 (13)	0.760 (5)	0.028*	
H12D	0.4031 (19)	0.395 (2)	0.770 (5)	0.028*	

N13	0.29995 (16)	0.32905 (12)	1.2991 (3)	0.0182 (3)	
H13A	0.252 (3)	0.351 (2)	1.207 (4)	0.027*	
H13B	0.285 (3)	0.339 (2)	1.428 (3)	0.027*	
H13C	0.3748 (18)	0.345 (2)	1.278 (5)	0.027*	
H13D	0.288 (3)	0.2742 (12)	1.282 (5)	0.027*	
N14	-0.18493 (17)	0.42049 (12)	0.8356 (3)	0.0178 (3)	
H14A	-0.227 (3)	0.425 (2)	0.720 (4)	0.027*	
H14B	-0.221 (3)	0.394 (2)	0.933 (4)	0.027*	
H14C	-0.169 (3)	0.4726 (14)	0.877 (5)	0.027*	
H14D	-0.1132 (19)	0.398 (2)	0.814 (5)	0.027*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0185 (7)	0.0193 (7)	0.0403 (10)	0.0021 (6)	0.0007 (6)	0.0145 (7)
O2	0.0140 (6)	0.0182 (6)	0.0220 (7)	0.0022 (5)	0.0025 (5)	-0.0015 (5)
O3	0.0225 (7)	0.0215 (7)	0.0153 (6)	0.0000 (5)	-0.0005 (5)	-0.0035 (5)
O4	0.0142 (6)	0.0179 (6)	0.0249 (7)	-0.0037 (5)	-0.0022 (5)	-0.0034 (5)
05	0.0183 (6)	0.0207 (7)	0.0237 (7)	0.0025 (5)	0.0055 (5)	0.0099 (5)
O6	0.0145 (6)	0.0189 (6)	0.0188 (6)	0.0015 (5)	-0.0032 (5)	0.0032 (5)
O7	0.0221 (7)	0.0242 (7)	0.0165 (6)	-0.0048 (6)	-0.0035 (5)	-0.0031 (5)
08	0.0150 (6)	0.0206 (7)	0.0192 (6)	-0.0010 (5)	0.0046 (5)	-0.0033 (5)
P1	0.01141 (19)	0.01162 (19)	0.01380 (19)	-0.00003 (14)	-0.00053 (14)	-0.00007 (14)
P2	0.01113 (18)	0.0140 (2)	0.01122 (18)	-0.00061 (14)	0.00038 (13)	0.00073 (14)
N11	0.0167 (7)	0.0184 (7)	0.0205 (8)	0.0015 (6)	-0.0007 (6)	-0.0001 (6)
N12	0.0170 (7)	0.0226 (8)	0.0169 (7)	0.0013 (6)	-0.0008 (6)	-0.0018 (6)
N13	0.0160 (7)	0.0199 (7)	0.0187 (7)	-0.0015 (6)	-0.0001 (5)	0.0002 (6)
N14	0.0178 (7)	0.0197 (7)	0.0159 (7)	-0.0006 (6)	0.0001 (5)	-0.0016 (6)

Geometric parameters (Å, °)

O1—P1	1.5821 (17)	N11—H11D	0.877 (18)
O1—H1	0.78 (4)	N12—H12A	0.869 (18)
O2—P1	1.5287 (15)	N12—H12B	0.878 (18)
O3—P1	1.5257 (16)	N12—H12C	0.868 (18)
O4—P1	1.5262 (15)	N12—H12D	0.879 (18)
O5—P2	1.5955 (16)	N13—H13A	0.863 (18)
O5—H5	0.85 (4)	N13—H13B	0.862 (18)
O6—P2	1.5254 (15)	N13—H13C	0.892 (18)
O7—P2	1.5201 (16)	N13—H13D	0.859 (18)
O8—P2	1.5295 (15)	N14—H14A	0.874 (18)
N11—H11A	0.862 (18)	N14—H14B	0.856 (18)
N11—H11B	0.859 (18)	N14—H14C	0.861 (18)
N11—H11C	0.876 (18)	N14—H14D	0.890 (18)
P1 01 H1	116 (3)	HIIC NII HIID	110 (3)
P2 05 H5	110(3) 115(3)	H124 N12 H12B	10(3)
03—P1—O4	111.44 (9)	H12A—N12—H12B	113 (3)

O3—P1—O2	111.70 (9)	H12B—N12—H12C	111 (3)
O4—P1—O2	112.43 (9)	H12A—N12—H12D	112 (3)
O3—P1—O1	107.95 (10)	H12B—N12—H12D	108 (3)
O4—P1—O1	104.71 (10)	H12C—N12—H12D	106 (3)
O2—P1—O1	108.21 (9)	H13A—N13—H13B	118 (3)
O7—P2—O6	111.73 (9)	H13A—N13—H13C	112 (3)
O7—P2—O8	111.74 (9)	H13B—N13—H13C	107 (3)
O6—P2—O8	112.79 (9)	H13A—N13—H13D	101 (3)
O7—P2—O5	107.68 (9)	H13B—N13—H13D	105 (3)
O6—P2—O5	103.69 (9)	H13C—N13—H13D	113 (3)
O8—P2—O5	108.73 (9)	H14A—N14—H14B	114 (3)
H11A—N11—H11B	107 (3)	H14A—N14—H14C	107 (3)
H11A—N11—H11C	105 (3)	H14B—N14—H14C	109 (3)
H11B—N11—H11C	119 (3)	H14A—N14—H14D	112 (3)
H11A—N11—H11D	105 (3)	H14B—N14—H14D	112 (3)
H11B—N11—H11D	110 (3)	H14C—N14—H14D	102 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
01—H1…O7 ⁱ	0.78 (4)	1.80 (4)	2.570 (2)	168 (4)
O5—H5…O8 ⁱⁱ	0.85 (4)	1.79 (4)	2.632 (2)	170 (4)
N11—H11A····O4 ⁱⁱⁱ	0.86 (2)	1.89 (2)	2.747 (2)	175 (4)
N11—H11 <i>B</i> ···O8 ⁱ	0.86 (2)	2.10 (2)	2.951 (2)	171 (3)
N11—H11 <i>C</i> ···O3 ^{iv}	0.88 (2)	1.99 (2)	2.852 (3)	169 (3)
N11—H11D····O4 ⁱ	0.88 (2)	2.01 (2)	2.870 (2)	167 (3)
N12—H12A····O6 ^v	0.87 (2)	1.91 (2)	2.755 (2)	165 (3)
N12—H12 <i>B</i> ····O5 ^{vi}	0.88 (2)	2.16 (2)	3.008 (3)	161 (3)
N12—H12C···O6 ⁱ	0.87 (2)	1.99 (2)	2.827 (2)	161 (3)
N12—H12D···O2	0.88 (2)	1.88 (2)	2.754 (2)	175 (3)
N13—H13A····O3	0.86 (2)	1.92 (2)	2.773 (2)	172 (3)
N13—H13 <i>B</i> ····O2 ^{vii}	0.86 (2)	1.96 (2)	2.822 (2)	175 (3)
N13—H13 <i>C</i> ···O6 ^v	0.89 (2)	1.95 (2)	2.830 (2)	168 (3)
N13—H13 <i>D</i> ···O2 ⁱⁱ	0.86 (2)	1.96 (2)	2.820 (2)	176 (3)
N14—H14A…O7	0.87 (2)	1.90 (2)	2.771 (2)	174 (3)
N14—H14 <i>B</i> ····O8 ^{vii}	0.86 (2)	2.01 (2)	2.859 (2)	171 (3)
N14—H14 <i>C</i> ···O3 ^{iv}	0.86 (2)	1.92 (2)	2.784 (2)	178 (3)
N14—H14 <i>D</i> …O4	0.89 (2)	1.89 (2)	2.771 (2)	171 (3)

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) *x*, -*y*+1/2, *z*+1/2; (iii) -*x*, *y*+1/2, -*z*+3/2; (iv) -*x*, -*y*+1, -*z*+2; (v) *x*+1, *y*, *z*+1; (vi) *x*+1, *y*, *z*; (vii) *x*, *y*, *z*+1.