Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[diaqua(μ_4 -L-tartrato)(μ_2 -L-tartrato)dizinc(II)] tetrahydrate]

Hou-Ting Liu,* Jing Lu and Da-Qi Wang

School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China Correspondence e-mail: liuhouting@lcu.edu.cn

Received 9 February 2010; accepted 27 February 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.025; wR factor = 0.071; data-to-parameter ratio = 8.8.

In the title compound, $\{[Zn(C_4H_4O_6)(H_2O)]\cdot 2H_2O\}_n$, the Ltartrate ligands adopt μ_4 - and μ_2 -coordination modes. The Zn^{II} atom adopts an octahedral geometry and is chelated by two kinds of L-tartrate ligands through the hydroxy and carboxylate groups and coordinated by one unchelating carboxylate O atom and one water molecule. In the crystal, the L-tartrate ligands link the Zn^{II} atoms, forming a twodimensional coordination layer; these layers are futher linked into a three-dimensional supramolecular network by O– H···O hydrogen bonds between the two-dimensional coordination layers and the uncoordinated water molecules. The latter are equally disordered over two positions.

Related literature

For the potential applications and varied architectures and topologies of chiral inorganic–organic materials, see: Ma *et al.* (2007); Kitagawa *et al.* (2004); Lee *et al.* (2002). For chiral multifunctional materials constructed from tartrate, see: Liu *et al.* (2008) Gelbrich *et al.* (2006). For magnetic properties of transition metal tartrates, see: Coronado *et al.* (2006).

Experimental

Crystal data [Zn(C₄H₄O₆)(H₂O)]·2H₂O

 $M_r = 267.49$

Monoclinic, C2	
a = 12.8652 (16) Å	
b = 8.7884 (14) Å	
c = 8.3816 (12) Å	
$\beta = 114.130 \ (1)^{\circ}$	
$V = 864.9 (2) \text{ Å}^3$	

Data collection

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.025$	H-atom parameters constrained
$vR(F^2) = 0.071$	$\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$
S = 1.10	$\Delta \rho_{\rm min} = -0.42 \ {\rm e} \ {\rm \AA}^{-3}$
296 reflections	Absolute structure: Flack (1983),
47 parameters	481 Friedel pairs
restraint	Flack parameter: 0.01 (2)

Z = 4

Mo $K\alpha$ radiation

 $0.50 \times 0.48 \times 0.45 \text{ mm}$

2182 measured reflections

1296 independent reflections 1262 reflections with $I > 2\sigma(I)$

 $\mu = 2.87 \text{ mm}^{-1}$

T = 2.96 K

 $R_{\rm int} = 0.017$

Table 1		
Hydrogen-bond geometry	(Å	°).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O8-H8D\cdots O2^{i}$	0.85	2.23	3.074 (10)	174
$O9-H9A\cdotsO1^{i}$	0.85	2.41	2.849 (7)	113
$O9-H9A\cdots O7^{i}$	0.85	2.38	3.094 (8)	142
$O9-H9C\cdots O9^{ii}$	0.85	1.95	2.421 (14)	113
$O8-H8A\cdots O8'^{ii}$	0.85	2.16	2.791 (12)	131
$O9-H9C\cdots O9'^{ii}$	0.85	2.00	2.761 (10)	149
$O9' - H9'C \cdots O1^i$	0.85	1.92	2.765 (7)	177
$O9' - H9'C \cdots O2^i$	0.85	2.66	3.225 (8)	125

Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, -z + 1; (ii) -x, y, -z + 1.

Data collection: *SMART* (Sheldrick, 2008); cell refinement: *SAINT* (Sheldrick, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Foundation of Liaocheng University (No. X071008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2195).

References

Coronado, E., Galln-Mascaros, J.-R., Gomez-Garcia, C.-J. & Murcia-Martinez, A. (2006). *Chem. Eur. J.* **12**, 3484–3492.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Gelbrich, T., Threlfall, T. L., Huth, S. & Seeger, E. (2006). Polyhedron, 25, 937–944.

Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.

Lee, S.-J., Hu, A.-G. & Lin, W.-B. (2002). J. Am. Chem. Soc. 124, 12948–12949.Liu, J.-Q., Wang, Y.-Y., Maa, L.-F., Zhang, W.-H., Zeng, X.-R., Shi, Q.-Z. & Peng, S.-M. (2008). Inorg. Chim. Acta, 361, 2327–2334.

Ma, Y., Han, Z.-B., He, Y.-K. & Yang, L.-G. (2007). *Chem. Commun.* pp. 4107–4109.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2010). E66, m374 [doi:10.1107/S1600536810007543]

Poly[[diaqua(µ₄-L-tartrato)(µ₂-L-tartrato)dizinc(II)] tetrahydrate]

Hou-Ting Liu, Jing Lu and Da-Qi Wang

S1. Comment

Chiral inorganic-organic materials have received much attention, not only because of their numerous potential applications in nonlinear optics, enantioselective catalysis and medicine, but also owing to their intriguing variety of architectures and topologies (Ma *et al.*, 2007; Kitagawa *et al.*, 2004; Lee *et al.*, 2002). L-tartaric acid, a simple and inexpensive chiral ligand source, was often used to construct novel chiral multifunctional materials (Liu *et al.*, 2008; Gelbrich *et al.*, 2006). Firstly, tartaric acid is flexible dicarboxylate ligands with two hydroxyl groups, and can offer more coordination sites and allow the formation of five- or six-membered ring, which can stabilize the solid network. Secondly, the deprotonated carboxylate group possesses polarizable system, it can transfer electrons easily. So, tartrate ligand is a good candidate of constructing chiral magnetic and chiral optical materials. In this paper, we reported the structure of the title compound, which is constructed by the chiral L-tartrate ligand.

X-ray single crystal diffraction studies reveal that the crystallographic unique unit of (I) is composed of one Zn^{II} ion, two halves of L-tartrate ligand, one coordination water and two disordered lattice water molecules with occupancies both in the 0.5:0.5 ratio. As shown in Fig. 1, two kinds of L-tart ligands chelate two Zn centers through the hydroxyl and carboxylate groups in cis confirmation to form [Zn₂(L-tart)₂] dimmer, which is similar to the reported tartrate salts (Coronado *et al.*, 2006). And, the octahedral geometry of Zn^{II} is completed by one unchelating carboxylate oxygen atom and one water molecule. For compound (I), L-tartrate ligands adopt μ_4 - and μ_2 - two coordination modes, which link the [Zn₂(L-tart)₂] dimmers to form two-dimensional coordination layer. The coordination and lattice water molecules hydrogen bond to the hydroxy and carboxylate groups, so the two-dimensional coordination layers are further linked together to form three-dimensional supramolecular network (shown in Fig. 2). The parameters of hydrogen bonds are listed in Table 1.

S2. Experimental

Compound (I) was obtained at room temperature. An aqueous solution (5 ml) of L-tartaric acid (0.51 g, 3.4 mmol) was added dropwise into an aqueous solution (10 ml) of $Zn(OAc)_2$ ²H₂O (0.37 g, 1.7 mmol). White crystals were obtained in yield about 60% (based on Zn) after the solution was allowed to stand for several days. Elemental analysis, Found: C 17.36, H 3.23%. Calc. for C₄H₁₀O₉Zn : calcd. C 17.94, H 3.74%.

S3. Refinement

All H atoms were positioned geometrically and treated as riding on their parent atoms, with C–H 0.980, O(aqua)–H 0.850, O(hydroxyl)–H 0.970 and with $U_{iso}(\text{H}) = 1.2U_{eq}(\text{C})$. The O8 and O9 atom is resolved into two positions by PART instructions. The geometries and anisotropic displacement parameters of disordered atoms were refined with soft restraints using the SHELXL commands damp.

Figure 1

The molecular structure of (I) with 30% probability displacement elliposolids (hydrogen atoms are omitted for clarity). Symmetry codes: (A) 0.5-x, -0.5+y, -z; (B) -x, -2+y, -z.

Figure 2

The two-dimensional structure of the title compound, with atom labels.

Figure 3

The three-dimensional supramolecular layer constructed by hydrogen bonds.

Poly[[diaqua(μ_4 -L-tartrato)(μ_2 -L-tartrato)dizinc(II)] tetrahydrate]

Crystal data

 $[Zn(C_4H_4O_6)(H_2O)] \cdot 2H_2O$ $M_r = 267.49$ Monoclinic, C2 Hall symbol: C 2y a = 12.8652 (16) Å b = 8.7884 (14) Å c = 8.3816 (12) Å $\beta = 114.130 (1)^\circ$ $V = 864.9 (2) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.328, T_{\max} = 0.358$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.071$ S = 1.10 F(000) = 544 $D_x = 2.054 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1296 reflections $\theta = 2.7-25.0^{\circ}$ $\mu = 2.87 \text{ mm}^{-1}$ T = 296 KBlock, white $0.50 \times 0.48 \times 0.45 \text{ mm}$

2182 measured reflections 1296 independent reflections 1262 reflections with $I > 2\sigma(I)$ $R_{int} = 0.017$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.7^{\circ}$ $h = -15 \rightarrow 14$ $k = -8 \rightarrow 10$ $l = -9 \rightarrow 9$

1296 reflections147 parameters1 restraintPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$(\Delta/\sigma)_{\rm max} = 0.001$
map	$\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$
Hydrogen site location: inferred from	$\Delta \rho_{\rm min} = -0.42 \text{ e} \text{ Å}^{-3}$
neighbouring sites	Absolute structure: Flack (1983), 481 Friedel
H-atom parameters constrained	pairs
$w = 1/[\sigma^2(F_o^2) + (0.0392P)^2 + 0.821P]$	Absolute structure parameter: 0.01 (2)
where $P = (F_o^2 + 2F_c^2)/3$	- · · · · ·

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Zn1	0.23251 (3)	0.52758 (7)	0.15818 (5)	0.02164 (15)	
01	0.2031 (2)	0.3568 (4)	0.2954 (4)	0.0271 (7)	
02	0.1296 (3)	0.1272 (4)	0.2844 (4)	0.0418 (9)	
O3	0.2105 (2)	0.7016 (4)	-0.0093 (4)	0.0289 (7)	
O4	0.1403 (2)	0.9327 (3)	-0.1022 (4)	0.0307 (7)	
05	0.0911 (2)	0.4067 (3)	-0.0441 (4)	0.0270 (7)	
H5	0.0531	0.4421	-0.1579	0.032*	
O6	0.0846 (2)	0.6635 (4)	0.1705 (4)	0.0265 (7)	
H6	0.0438	0.6340	0.2349	0.032*	
O7	0.3436 (3)	0.6376 (5)	0.3781 (4)	0.0447 (9)	
H7B	0.3339	0.6097	0.4681	0.054*	
H7C	0.3352	0.7335	0.3666	0.054*	
08	0.1503 (7)	0.4516 (9)	0.6526 (9)	0.042 (3)	0.499 (12)
H8A	0.0955	0.4991	0.5745	0.050*	0.499 (12)
H8D	0.2121	0.5007	0.6784	0.050*	0.499 (12)
09	0.0715 (6)	0.8274 (9)	0.4409 (8)	0.038 (2)	0.495 (11)
H9A	0.0955	0.8838	0.5312	0.057*	0.495 (11)
H9C	0.0299	0.7572	0.4531	0.057*	0.495 (11)
O8′	0.0611 (7)	0.4189 (9)	0.6283 (8)	0.042 (3)	0.501 (12)
H8′A	-0.0075	0.3939	0.5660	0.050*	0.501 (12)
H8′D	0.0751	0.5059	0.5974	0.050*	0.501 (12)
O9′	0.1034 (6)	0.6981 (9)	0.4957 (8)	0.038 (2)	0.505 (11)
H9'A	0.0453	0.7453	0.4937	0.045*	0.505 (11)
H9′C	0.1636	0.7473	0.5563	0.045*	0.505 (11)
C1	0.1372 (3)	0.2489 (5)	0.2135 (6)	0.0242 (9)	
C2	0.0635 (4)	0.2672 (5)	0.0178 (6)	0.0213 (10)	
H2	0.0786	0.1821	-0.0453	0.026*	
C3	0.0619 (4)	0.8000 (5)	0.0673 (6)	0.0240 (11)	
H3	0.0737	0.8879	0.1447	0.029*	

supporting information

<u>C4</u>	0.1442 (3)	0.8113	(5) -	-0.0218 (6)	0.0233 (9)		
Atomic	Atomic displacement parameters ($Å^2$)						
	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}	
Zn1	0.0224 (2)	0.0192 (2)	0.0234 (2)	-0.0043 (2)	0.00947 (16)	0.0007 (2)	
01	0.0278 (14)	0.0253 (17)	0.0275 (16)	-0.0077 (13)	0.0104 (12)	0.0035 (14)	
O2	0.070 (2)	0.026 (2)	0.0321 (18)	-0.0124 (17)	0.0231 (17)	0.0034 (15)	
O3	0.0307 (15)	0.0190 (16)	0.0466 (19)	0.0052 (13)	0.0257 (14)	0.0091 (14)	
O4	0.0287 (14)	0.0182 (18)	0.0502 (19)	0.0017 (13)	0.0212 (14)	0.0064 (15)	
05	0.0375 (15)	0.0179 (17)	0.0333 (17)	-0.0090 (13)	0.0224 (13)	-0.0027 (13)	
O6	0.0287 (14)	0.0259 (17)	0.0260 (15)	0.0033 (12)	0.0124 (12)	-0.0001 (12)	
O 7	0.051 (2)	0.048 (2)	0.0279 (16)	-0.0214 (18)	0.0087 (15)	-0.0063 (17)	
08	0.050 (6)	0.041 (5)	0.030 (4)	-0.001 (3)	0.012 (3)	0.002 (3)	
09	0.043 (4)	0.044 (6)	0.023 (4)	-0.007 (3)	0.010 (3)	-0.007 (3)	
O8′	0.050 (5)	0.041 (4)	0.029 (4)	-0.001 (4)	0.012 (3)	0.002 (3)	
O9′	0.043 (4)	0.044 (5)	0.023 (4)	-0.007 (3)	0.010 (3)	-0.008 (3)	
C1	0.0273 (19)	0.023 (2)	0.027 (2)	0.0014 (18)	0.0157 (17)	0.0015 (18)	
C2	0.028 (2)	0.014 (2)	0.026 (2)	-0.0046 (17)	0.0149 (18)	0.0000 (18)	
C3	0.028 (2)	0.012 (2)	0.036 (3)	-0.0012 (18)	0.017 (2)	-0.0045 (19)	
C4	0.0201 (18)	0.017 (2)	0.034 (2)	-0.0032 (15)	0.0125 (17)	-0.0028 (18)	

Geometric parameters (Å, °)

Zn1—O3	2.016 (3)	O8—H8A	0.8501	
Zn1—O1	2.019 (3)	O8—H8D	0.8500	
Zn1—O4 ⁱ	2.054 (3)	O8—H8′D	1.0056	
Zn1—O7	2.054 (3)	O9—H9A	0.8500	
Zn1—O5	2.189 (3)	О9—Н9С	0.8500	
Zn1—06	2.285 (3)	O9—H9'A	0.9764	
01—C1	1.270 (6)	08′—H8A	1.0296	
O2—C1	1.247 (6)	08′—H8′A	0.8500	
O3—C4	1.264 (5)	08′—H8′D	0.8500	
O4—C4	1.252 (5)	O9'—H9'A	0.8500	
O4—Zn1 ⁱⁱ	2.054 (3)	О9′—H9′С	0.8500	
O5—C2	1.431 (5)	C1—C2	1.531 (6)	
O5—H5	0.9300	C2—C2 ⁱⁱⁱ	1.537 (9)	
O6—C3	1.437 (6)	C2—H2	0.9800	
O6—H6	0.9300	C3—C4	1.529 (6)	
O7—H7B	0.8500	C3—C3 ⁱⁱⁱ	1.529 (10)	
O7—H7C	0.8500	С3—Н3	0.9800	
O3—Zn1—O1	162.78 (11)	H8D—O8—H8′D	120.0	
$O3$ — $Zn1$ — $O4^{i}$	92.67 (13)	H9A—O9—H9C	109.5	
O1—Zn1—O4 ⁱ	100.41 (13)	H9A—O9—H9'A	95.4	
O3—Zn1—O7	96.64 (15)	Н9А—О9—Н9′С	77.2	
01—Zn1—07	93.60 (14)	Н9С—О9—Н9′С	87.0	
O4 ⁱ —Zn1—O7	93.97 (14)	Н9'А—О9—Н9'С	70.2	

O3—Zn1—O5	89.61 (13)	H8A—O8'—H8'A	115.6
O1—Zn1—O5	77.90 (12)	H8'A—O8'—H8'D	110.0
O4 ⁱ —Zn1—O5	96.51 (12)	Н9С—О9′—Н9′С	116.2
O7—Zn1—O5	167.53 (13)	Н9'А—О9'—Н9'С	110.0
O3—Zn1—O6	75.68 (11)	O2-C1-O1	123.2 (4)
O1—Zn1—O6	90.55 (12)	O2—C1—C2	117.8 (4)
O4 ⁱ —Zn1—O6	168.07 (12)	O1—C1—C2	119.0 (4)
O7—Zn1—O6	90.00 (14)	O5—C2—C1	110.0 (4)
O5—Zn1—O6	81.09 (11)	O5—C2—C2 ⁱⁱⁱ	109.4 (3)
C1—O1—Zn1	119.1 (3)	C1—C2—C2 ⁱⁱⁱ	110.6 (5)
C4—O3—Zn1	122.3 (3)	O5—C2—H2	109.0
C4—O4—Zn1 ⁱⁱ	127.5 (3)	C1—C2—H2	109.0
C2—O5—Zn1	112.7 (3)	C2 ⁱⁱⁱ —C2—H2	109.0
С2—О5—Н5	123.7	O6—C3—C4	109.7 (4)
Zn1—O5—H5	123.7	O6—C3—C3 ⁱⁱⁱ	109.8 (3)
C3—O6—Zn1	112.2 (3)	C4—C3—C3 ⁱⁱⁱ	111.1 (5)
С3—О6—Н6	123.9	O6—C3—H3	108.7
Zn1—O6—H6	123.9	С4—С3—Н3	108.7
Zn1—O7—H7B	111.1	С3 ^{ііі} —С3—Н3	108.7
Zn1—07—H7C	110.8	O4—C4—O3	124.9 (4)
Н7В—О7—Н7С	109.2	O4—C4—C3	115.8 (4)
H8A—O8—H8D	110.0	O3—C4—C3	119.3 (4)

Symmetry codes: (i) -*x*+1/2, *y*-1/2, -*z*; (ii) -*x*+1/2, *y*+1/2, -*z*; (iii) -*x*, *y*, -*z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O8—H8D····O2 ^{iv}	0.85	2.23	3.074 (10)	174
O9—H9A…O1 ^{iv}	0.85	2.41	2.849 (7)	113
O9—H9A…O7 ^{iv}	0.85	2.38	3.094 (8)	142
O9—H9 <i>C</i> ···O9 ^v	0.85	1.95	2.421 (14)	113
O8—H8A···O8′ ^v	0.85	2.16	2.791 (12)	131
O9—H9 <i>C</i> ···O9′ ^v	0.85	2.00	2.761 (10)	149
O9′—H9′C…O1 ^{iv}	0.85	1.92	2.765 (7)	177
$O9'$ — $H9'C$ ··· $O2^{iv}$	0.85	2.66	3.225 (8)	125

Symmetry codes: (iv) -x+1/2, y+1/2, -z+1; (v) -x, y, -z+1.