

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Ethyl N-[3-(N,N-dimethylcarbamoyl)pyridin-2-ylsulfonyl]carbamate

#### Yan-Jun Hou, Wen-Yi Chu, Jun Sui and Zhi-Zhong Sun\*

College of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China Correspondence e-mail: hljusunzhizhong@163.com

Received 29 January 2010; accepted 21 February 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.045; wR factor = 0.129; data-to-parameter ratio = 15.6.

In the molecular structure of the title compound, C<sub>11</sub>H<sub>15</sub>N<sub>3</sub>O<sub>5</sub>S, the amide group is nearly perpendicular to the pyridine ring, making a dihedral angle of  $86.30 (13)^\circ$ . The terminal ethyl group is disordered over two sites of equal occupancy. Intermolecular N-H···O hydrogen bonding is present in the crystal structure.

#### **Related literature**

The title compound is used in the preparation of nicosulfuron, a member of the sulfonylurea family of herbicides, see: Green & Ulrich (1993). For the synthesis, see: Murai et al. (1992).



#### **Experimental**

Crystal data

| C <sub>11</sub> H <sub>15</sub> N <sub>3</sub> O <sub>5</sub> S |
|-----------------------------------------------------------------|
| $M_r = 301.32$                                                  |
| Monoclinic, P21/n                                               |
| a = 8.4370 (11)  Å                                              |

b = 11.1141 (15) Å

c = 15.074 (2) Å

 $\beta = 100.594 (2)^{\circ}$ 

V = 1389.4 (3) Å<sup>3</sup>

Z = 4Mo  $K\alpha$  radiation  $\mu = 0.26 \text{ mm}^{-1}$ 

#### Data collection

Bruker SMART APEXILCCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $T_{\min} = 0.958, T_{\max} = 0.963$ 

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$  $wR(F^2) = 0.129$ S = 1.043036 reflections 195 parameters

Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$   | D-H                                     | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|--------------------|-----------------------------------------|-------------------------|--------------|--------------------------------------|
| $N3-H3\cdots O1^i$ | 0.87 (2)                                | 1.91 (3)                | 2.773 (2)    | 172 (2)                              |
| Symmetry code: (i) | $-x + \frac{3}{2}, y + \frac{1}{2}, -z$ | $z + \frac{1}{2}$ .     |              |                                      |

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank the National Natural Science Foundation of China (No. 20872030) and Heilongjiang University of China for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2723).

#### References

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Green, J. M. & Ulrich, J. F. (1993). Weed Sci.. 41, 508-516.
- Murai, S., Nakamura, Y., Akagi, T., Sakashita, T. & Haga, T. (1992). Synthesis and Chemistry of Agrochemicals III, ACS Symposium Series, Vol. 504, edited by D. R., Baker, J. G. Fenyes & J. J. Steffens, pp. 43-55. Washington: American Chemical Society.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). publCIF. In preparation.

 $0.17 \times 0.16 \times 0.15 \ \mathrm{mm}$ 

7979 measured reflections

3036 independent reflections

2384 reflections with  $I > 2\sigma(I)$ 

H atoms treated by a mixture of

independent and constrained

T = 296 K

 $R_{\rm int} = 0.026$ 

refinement

 $\Delta \rho_{\rm max} = 0.29 \text{ e} \text{ Å}^{-3}$ 

 $\Delta \rho_{\rm min} = -0.47 \text{ e} \text{ Å}^{-3}$ 

# supporting information

Acta Cryst. (2010). E66, o707 [doi:10.1107/S160053681000663X]

# Ethyl N-[3-(N,N-dimethylcarbamoyl)pyridin-2-ylsulfonyl]carbamate

## Yan-Jun Hou, Wen-Yi Chu, Jun Sui and Zhi-Zhong Sun

## S1. Comment

The ethyl 3-(dimethylcarbamoyl)pyridin-2-ylsulfonylcarbamate is used for preparation of nicosulfuron, which is a member of the sulfonylurea family of herbicides (Green *et al.*, 1993).

The molecular structure is shown in Fig. 1. In the molecular structure the amide group is nearly perpendicular to the pyridine ring, the dihedral angle being 86.30 (13)°. Intermolecular N—H…O hydrogen bonding (Table 1) helps to stabilize the crystal structure.

#### **S2. Experimental**

To a solution of *N*,*N*-dimethyl-2-sulfamoylnicotinamide (10 mmol) and NaOH (12 mmol) in anhydrous toluene (50 ml) was added ethyl carbonochloridate (12 mmol). After stirring the mixture for 10 h at room temperature, the solvent was removed and 100 ml water was added. The oil after separation was concentrated under reduced pressure and the residue was recrystallized from methanol to give the title compound in a yield of 90% (Murai *et al.* 1992). Crystals suitable for single-crystal X-ray diffraction were obtained by recrystallization from ethanol at room temperature in a yield of 60%. Analysis found: C 43.9, H 4.9, N 13.9%; C<sub>11</sub>H<sub>15</sub>N<sub>3</sub>O<sub>5</sub>S requires: C 43.9, H 5.0, N 14.0%.

## **S3. Refinement**

The ethyl group is disordered over two positions with 0.5 occupancy for each component. In the refinement. Imino H atom was located in a difference Fourier map and was refined isotropically. Other H atoms were placed in idealized positions with C—H = 0.96 (methyl), 0.97 (methylene) and 0.93 Å (aromatic), and refined in the riding-model approximation with  $U_{iso}(H) = 1.5U_{eq}(C)$  for methyl H atoms and  $1.2U_{eq}(C)$  for the others.



# Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. The disorder is shown.



# Figure 2

A part of packing of the crystal structure of the title compound, viewed down the a direction. Dashed lines indicate hydrogen bonds.

# Ethyl N-[3-(N,N-dimethylcarbamoyl)pyridin-2-ylsulfonyl]carbamate

| Crystal data                             |                                                |
|------------------------------------------|------------------------------------------------|
| $C_{11}H_{15}N_3O_5S$                    | F(000) = 632                                   |
| $M_r = 301.32$                           | $D_{\rm x} = 1.441 {\rm Mg} {\rm m}^{-3}$      |
| Monoclinic, $P2_1/n$                     | Melting point = $436-437$ K                    |
| Hall symbol: -P 2yn                      | Mo K $\alpha$ radiation, $\lambda = 0.71073$ Å |
| a = 8.4370 (11)  Å                       | Cell parameters from 2785 reflections          |
| b = 11.1141(15) Å                        | $\theta = 2.3 - 26.9^{\circ}$                  |
| c = 15.074 (2) Å                         | $\mu = 0.26 \text{ mm}^{-1}$                   |
| $\beta = 100.594 (2)^{\circ}$            | T = 296  K                                     |
| V = 1389.4 (3) Å <sup>3</sup>            | Prism, colorless                               |
| Z=4                                      | $0.17 \times 0.16 \times 0.15 \text{ mm}$      |
| Data collection                          |                                                |
| Bruker SMART APEXII CCD area-detector    | Absorption correction: multi-scan              |
| diffractometer                           | (SADABS; Sheldrick, 1996)                      |
| Radiation source: fine-focus sealed tube | $T_{\rm min} = 0.958, T_{\rm max} = 0.963$     |
| Graphite monochromator                   | 7979 measured reflections                      |
| $\varphi$ and $\omega$ scans             | 3036 independent reflections                   |
|                                          | 2384 reflections with $I > 2\sigma(I)$         |

| $R_{\rm int} = 0.026$                                              | $k = -13 \rightarrow 14$ |
|--------------------------------------------------------------------|--------------------------|
| $\theta_{\rm max} = 27.1^{\circ},  \theta_{\rm min} = 2.3^{\circ}$ | $l = -19 \rightarrow 18$ |
| $h = -10 \rightarrow 10$                                           |                          |

| Refinement                                      |                                                           |
|-------------------------------------------------|-----------------------------------------------------------|
| Refinement on $F^2$                             | Secondary atom site location: difference Fourier          |
| Least-squares matrix: full                      | map                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.045$                 | Hydrogen site location: inferred from                     |
| $wR(F^2) = 0.129$                               | neighbouring sites                                        |
| S = 1.04                                        | H atoms treated by a mixture of independent               |
| 3036 reflections                                | and constrained refinement                                |
| 195 parameters                                  | $w = 1/[\sigma^2(F_o^2) + (0.0732P)^2 + 0.3548P]$         |
| 0 restraints                                    | where $P = (F_o^2 + 2F_c^2)/3$                            |
| Primary atom site location: structure-invariant | $(\Delta/\sigma)_{\rm max} = 0.001$                       |
| direct methods                                  | $\Delta \rho_{\rm max} = 0.29 \text{ e } \text{\AA}^{-3}$ |
|                                                 | $\Delta  ho_{ m min} = -0.47$ e Å <sup>-3</sup>           |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|     | x            | у            | Z            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|--------------|--------------|--------------|-----------------------------|-----------|
| S1  | 0.81078 (6)  | 0.56615 (4)  | 0.24067 (3)  | 0.03700 (17)                |           |
| O1  | 1.05540 (17) | 0.28321 (14) | 0.28830 (10) | 0.0475 (4)                  |           |
| O2  | 0.97802 (19) | 0.58254 (14) | 0.27370 (11) | 0.0526 (4)                  |           |
| O3  | 0.7045 (2)   | 0.54186 (15) | 0.30175 (11) | 0.0554 (4)                  |           |
| O4  | 0.90004 (19) | 0.68423 (15) | 0.08036 (11) | 0.0539 (4)                  |           |
| O5  | 0.6813 (2)   | 0.80460 (14) | 0.06652 (12) | 0.0552 (4)                  |           |
| N1  | 0.6502 (2)   | 0.45464 (16) | 0.10014 (12) | 0.0432 (4)                  |           |
| N2  | 1.19984 (19) | 0.39369 (16) | 0.20603 (12) | 0.0407 (4)                  |           |
| N3  | 0.7342 (2)   | 0.68519 (15) | 0.18467 (12) | 0.0379 (4)                  |           |
| Н3  | 0.641 (3)    | 0.709 (2)    | 0.1945 (16)  | 0.045 (6)*                  |           |
| C1  | 0.6257 (3)   | 0.37404 (19) | 0.03341 (15) | 0.0480 (5)                  |           |
| H1A | 0.5289       | 0.3764       | -0.0076      | 0.058*                      |           |
| C2  | 0.7368 (3)   | 0.28809 (19) | 0.02256 (15) | 0.0490 (5)                  |           |
| H2A | 0.7162       | 0.2340       | -0.0253      | 0.059*                      |           |
| C3  | 0.8789 (3)   | 0.28309 (19) | 0.08340 (15) | 0.0434 (5)                  |           |
| H3A | 0.9543       | 0.2239       | 0.0778       | 0.052*                      |           |
| C4  | 0.9110 (2)   | 0.36615 (16) | 0.15349 (12) | 0.0315 (4)                  |           |
| C5  | 0.7912 (2)   | 0.45025 (16) | 0.15719 (12) | 0.0313 (4)                  |           |
| C6  | 1.0625 (2)   | 0.34801 (17) | 0.22302 (13) | 0.0341 (4)                  |           |
| C7  | 1.2086 (3)   | 0.4806 (2)   | 0.13467 (18) | 0.0538 (6)                  |           |
| H7A | 1.1029       | 0.4929       | 0.0995       | 0.081*                      |           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| H7B  | 1.2790      | 0.4505       | 0.0965       | 0.081*      |      |
|------|-------------|--------------|--------------|-------------|------|
| H7C  | 1.2498      | 0.5555       | 0.1610       | 0.081*      |      |
| C8   | 1.3496 (3)  | 0.3661 (3)   | 0.26777 (18) | 0.0624 (7)  |      |
| H8A  | 1.3293      | 0.3065       | 0.3105       | 0.094*      |      |
| H8B  | 1.3907      | 0.4378       | 0.2993       | 0.094*      |      |
| H8C  | 1.4273      | 0.3357       | 0.2342       | 0.094*      |      |
| С9   | 0.7842 (2)  | 0.72299 (17) | 0.10698 (14) | 0.0381 (4)  |      |
| C10A | 0.698 (2)   | 0.8377 (11)  | -0.0234 (15) | 0.068 (3)   | 0.50 |
| H10A | 0.5943      | 0.8591       | -0.0591      | 0.082*      | 0.50 |
| H10B | 0.7428      | 0.7715       | -0.0528      | 0.082*      | 0.50 |
| C11A | 0.8134 (12) | 0.9468 (6)   | -0.0135 (5)  | 0.0974 (19) | 0.50 |
| H11A | 0.8150      | 0.9806       | -0.0720      | 0.146*      | 0.50 |
| H11B | 0.9201      | 0.9212       | 0.0133       | 0.146*      | 0.50 |
| H11C | 0.7768      | 1.0063       | 0.0242       | 0.146*      | 0.50 |
| C10B | 0.734 (2)   | 0.8705 (11)  | -0.0110 (16) | 0.068 (3)   | 0.50 |
| H10C | 0.8457      | 0.8953       | 0.0046       | 0.082*      | 0.50 |
| H10D | 0.7203      | 0.8205       | -0.0646      | 0.082*      | 0.50 |
| C11B | 0.6287 (12) | 0.9729 (6)   | -0.0249 (5)  | 0.0974 (19) | 0.50 |
| H11D | 0.6625      | 1.0259       | -0.0682      | 0.146*      | 0.50 |
| H11E | 0.6330      | 1.0147       | 0.0312       | 0.146*      | 0.50 |
| H11F | 0.5203      | 0.9466       | -0.0471      | 0.146*      | 0.50 |
|      |             |              |              |             |      |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|                                                                                                                                              | <b>U</b> 711 | I /22       | 1/33        | 1712         | 1713         | 1/23         |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|-------------|--------------|--------------|--------------|
| <u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> | 0.0268 (2)   | 0.0411 (2)  | 0.0217 (2)  | 0,0050 (2)   | 0.00264 (10) | 0.00250 (10) |
| 51                                                                                                                                           | 0.0308(3)    | 0.0411(3)   | 0.0317(3)   | 0.0030(2)    | 0.00264(19)  | -0.00239(19) |
| 01                                                                                                                                           | 0.0327 (8)   | 0.0603 (9)  | 0.0480 (9)  | -0.0012(/)   | 0.0035 (6)   | 0.0214 (7)   |
| 02                                                                                                                                           | 0.0417 (9)   | 0.0563 (9)  | 0.0520 (10) | 0.0039 (7)   | -0.0116 (7)  | -0.0142 (7)  |
| 03                                                                                                                                           | 0.0664 (11)  | 0.0635 (10) | 0.0407 (9)  | 0.0091 (8)   | 0.0214 (8)   | 0.0056 (7)   |
| O4                                                                                                                                           | 0.0500 (10)  | 0.0582 (10) | 0.0589 (10) | 0.0103 (8)   | 0.0243 (8)   | 0.0051 (8)   |
| 05                                                                                                                                           | 0.0601 (11)  | 0.0493 (9)  | 0.0592 (10) | 0.0162 (8)   | 0.0191 (8)   | 0.0155 (8)   |
| N1                                                                                                                                           | 0.0331 (9)   | 0.0446 (10) | 0.0461 (10) | 0.0040 (7)   | -0.0076 (7)  | -0.0011 (8)  |
| N2                                                                                                                                           | 0.0248 (8)   | 0.0466 (9)  | 0.0516 (10) | 0.0009 (7)   | 0.0094 (7)   | 0.0087 (8)   |
| N3                                                                                                                                           | 0.0364 (9)   | 0.0384 (9)  | 0.0401 (9)  | 0.0081 (7)   | 0.0098 (7)   | -0.0021 (7)  |
| C1                                                                                                                                           | 0.0455 (12)  | 0.0434 (12) | 0.0472 (12) | -0.0058 (10) | -0.0125 (10) | -0.0005 (10) |
| C2                                                                                                                                           | 0.0632 (15)  | 0.0402 (11) | 0.0406 (12) | -0.0055 (10) | 0.0010 (10)  | -0.0050 (9)  |
| C3                                                                                                                                           | 0.0483 (12)  | 0.0385 (10) | 0.0444 (11) | 0.0060 (9)   | 0.0115 (10)  | -0.0015 (9)  |
| C4                                                                                                                                           | 0.0283 (9)   | 0.0337 (9)  | 0.0334 (9)  | 0.0000 (7)   | 0.0079 (7)   | 0.0058 (7)   |
| C5                                                                                                                                           | 0.0280 (9)   | 0.0332 (9)  | 0.0316 (9)  | -0.0002 (7)  | 0.0025 (7)   | 0.0013 (7)   |
| C6                                                                                                                                           | 0.0274 (9)   | 0.0363 (9)  | 0.0390 (10) | 0.0040 (7)   | 0.0071 (8)   | 0.0045 (8)   |
| C7                                                                                                                                           | 0.0412 (13)  | 0.0582 (14) | 0.0667 (16) | -0.0022 (10) | 0.0219 (11)  | 0.0172 (12)  |
| C8                                                                                                                                           | 0.0280 (11)  | 0.0805 (18) | 0.0759 (17) | 0.0020 (11)  | 0.0024 (11)  | 0.0118 (14)  |
| C9                                                                                                                                           | 0.0383 (11)  | 0.0310 (9)  | 0.0453 (11) | -0.0002 (8)  | 0.0087 (9)   | -0.0025 (8)  |
| C10A                                                                                                                                         | 0.083 (7)    | 0.044 (6)   | 0.083 (6)   | 0.002 (4)    | 0.030 (5)    | 0.026 (6)    |
| C11A                                                                                                                                         | 0.170 (6)    | 0.059 (2)   | 0.069 (3)   | 0.005 (3)    | 0.036 (4)    | 0.007 (2)    |
| C10B                                                                                                                                         | 0.083 (7)    | 0.044 (6)   | 0.083 (6)   | 0.002 (4)    | 0.030 (5)    | 0.026 (6)    |
| C11B                                                                                                                                         | 0.170 (6)    | 0.059 (2)   | 0.069 (3)   | 0.005 (3)    | 0.036 (4)    | 0.007 (2)    |

Geometric parameters (Å, °)

| S1—02        | 1.4191 (16) | С3—НЗА         | 0.9300      |  |
|--------------|-------------|----------------|-------------|--|
| S1—O3        | 1.4241 (16) | C4—C5          | 1.385 (3)   |  |
| S1—N3        | 1.6369 (18) | C4—C6          | 1.510 (3)   |  |
| S1—C5        | 1.7871 (19) | C7—H7A         | 0.9600      |  |
| O1—C6        | 1.230 (2)   | C7—H7B         | 0.9600      |  |
| O4—C9        | 1.202 (2)   | C7—H7C         | 0.9600      |  |
| О5—С9        | 1.324 (2)   | C8—H8A         | 0.9600      |  |
| O5—C10A      | 1.44 (2)    | C8—H8B         | 0.9600      |  |
| O5-C10B      | 1.51 (2)    | C8—H8C         | 0.9600      |  |
| N1—C1        | 1.334 (3)   | C10A—C11A      | 1.544 (11)  |  |
| N1—C5        | 1.335 (2)   | C10A—H10A      | 0.9700      |  |
| N2—C6        | 1.332 (2)   | C10A—H10B      | 0.9700      |  |
| N2—C7        | 1.458 (3)   | C11A—H11A      | 0.9600      |  |
| N2—C8        | 1.457 (3)   | C11A—H11B      | 0.9600      |  |
| N3—C9        | 1.381 (3)   | C11A—H11C      | 0.9600      |  |
| N3—H3        | 0.87 (2)    | C10B—C11B      | 1.434 (19)  |  |
| C1—C2        | 1.369 (3)   | C10B—H10C      | 0.9700      |  |
| C1—H1A       | 0.9300      | C10B—H10D      | 0.9700      |  |
| C2—C3        | 1.370 (3)   | C11B—H11D      | 0.9600      |  |
| C2—H2A       | 0.9300      | C11B—H11E      | 0.9600      |  |
| C3—C4        | 1.392 (3)   | C11B—H11F      | 0.9600      |  |
| 02—\$1—03    | 120.07 (11) | N2—C7—H7A      | 109.5       |  |
| O2—S1—N3     | 110.48 (10) | N2—C7—H7B      | 109.5       |  |
| O3—S1—N3     | 104.54 (9)  | H7A—C7—H7B     | 109.5       |  |
| O2—S1—C5     | 107.25 (9)  | N2—C7—H7C      | 109.5       |  |
| O3—S1—C5     | 109.34 (10) | H7A—C7—H7C     | 109.5       |  |
| N3—S1—C5     | 104.06 (9)  | H7B—C7—H7C     | 109.5       |  |
| C9—O5—C10A   | 116.1 (8)   | N2—C8—H8A      | 109.5       |  |
| C9—O5—C10B   | 115.3 (7)   | N2—C8—H8B      | 109.5       |  |
| C10A—O5—C10B | 18.8 (10)   | H8A—C8—H8B     | 109.5       |  |
| C1—N1—C5     | 117.19 (18) | N2—C8—H8C      | 109.5       |  |
| C6—N2—C7     | 123.95 (18) | H8A—C8—H8C     | 109.5       |  |
| C6—N2—C8     | 118.64 (18) | H8B—C8—H8C     | 109.5       |  |
| C7—N2—C8     | 117.07 (18) | O4—C9—O5       | 126.6 (2)   |  |
| C9—N3—S1     | 122.01 (14) | O4—C9—N3       | 124.59 (19) |  |
| C9—N3—H3     | 118.8 (16)  | O5—C9—N3       | 108.80 (17) |  |
| S1—N3—H3     | 116.1 (16)  | O5-C10A-C11A   | 106.2 (12)  |  |
| N1—C1—C2     | 123.0 (2)   | O5-C10A-H10A   | 110.5       |  |
| N1—C1—H1A    | 118.5       | C11A—C10A—H10A | 110.5       |  |
| C2—C1—H1A    | 118.5       | O5-C10A-H10B   | 110.5       |  |
| C1—C2—C3     | 118.8 (2)   | C11A—C10A—H10B | 110.5       |  |
| C1—C2—H2A    | 120.6       | H10A—C10A—H10B | 108.7       |  |
| С3—С2—Н2А    | 120.6       | C11B—C10B—O5   | 103.6 (13)  |  |
| C2—C3—C4     | 120.37 (19) | C11B—C10B—H10C | 111.0       |  |
| С2—С3—НЗА    | 119.8       | O5-C10B-H10C   | 111.0       |  |

| С4—С3—НЗА   | 119.8        | C11B—C10B—H10D    | 111.0        |
|-------------|--------------|-------------------|--------------|
| C5—C4—C3    | 115.90 (18)  | O5-C10B-H10D      | 111.0        |
| C5—C4—C6    | 126.36 (17)  | H10C-C10B-H10D    | 109.0        |
| C3—C4—C6    | 117.39 (17)  | C10B—C11B—H11D    | 109.5        |
| N1-C5-C4    | 124.70 (17)  | C10B—C11B—H11E    | 109.5        |
| N1—C5—S1    | 112.53 (14)  | H11D—C11B—H11E    | 109.5        |
| C4—C5—S1    | 122.77 (14)  | C10B—C11B—H11F    | 109.5        |
| O1—C6—N2    | 123.32 (18)  | H11D—C11B—H11F    | 109.5        |
| O1—C6—C4    | 118.27 (16)  | H11E—C11B—H11F    | 109.5        |
| N2—C6—C4    | 118.10 (17)  |                   |              |
|             |              |                   |              |
| O2—S1—N3—C9 | 62.57 (18)   | N3—S1—C5—C4       | 138.92 (16)  |
| O3—S1—N3—C9 | -166.94 (17) | C7—N2—C6—O1       | -173.2 (2)   |
| C5—S1—N3—C9 | -52.26 (18)  | C8—N2—C6—O1       | -0.1 (3)     |
| C5—N1—C1—C2 | 0.9 (3)      | C7—N2—C6—C4       | 13.3 (3)     |
| N1—C1—C2—C3 | 0.9 (4)      | C8—N2—C6—C4       | -173.57 (19) |
| C1—C2—C3—C4 | -1.7 (3)     | C5-C4-C6-O1       | 85.0 (3)     |
| C2—C3—C4—C5 | 0.7 (3)      | C3—C4—C6—O1       | -87.8 (2)    |
| C2—C3—C4—C6 | 174.29 (19)  | C5—C4—C6—N2       | -101.2 (2)   |
| C1—N1—C5—C4 | -2.0 (3)     | C3—C4—C6—N2       | 86.0 (2)     |
| C1—N1—C5—S1 | 177.97 (16)  | C10A—O5—C9—O4     | 8.8 (6)      |
| C3—C4—C5—N1 | 1.2 (3)      | C10B—O5—C9—O4     | -12.0 (7)    |
| C6-C4-C5-N1 | -171.70 (18) | C10A—O5—C9—N3     | -169.1 (6)   |
| C3—C4—C5—S1 | -178.77 (14) | C10B—O5—C9—N3     | 170.0 (7)    |
| C6—C4—C5—S1 | 8.3 (3)      | S1—N3—C9—O4       | -10.6 (3)    |
| O2—S1—C5—N1 | -158.18 (15) | S1—N3—C9—O5       | 167.38 (14)  |
| O3—S1—C5—N1 | 70.14 (16)   | C9                | -91.5 (10)   |
| N3—S1—C5—N1 | -41.09 (16)  | C10B-O5-C10A-C11A | 1 (4)        |
| O2—S1—C5—C4 | 21.83 (18)   | C9—O5—C10B—C11B   | -164.2 (7)   |
| O3—S1—C5—C4 | -109.86 (17) | C10A—O5—C10B—C11B | 99 (5)       |

# Hydrogen-bond geometry (Å, °)

| D—H···A               | <i>D</i> —Н | H···A    | D····A    | <i>D</i> —H··· <i>A</i> |
|-----------------------|-------------|----------|-----------|-------------------------|
| N3—H3…O1 <sup>i</sup> | 0.87 (2)    | 1.91 (3) | 2.773 (2) | 172 (2)                 |

Symmetry code: (i) -x+3/2, y+1/2, -z+1/2.