inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Undecaeuropium hexazinc dodecaarsenide

Bayrammurad Saparov and Svilen Bobev*

Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA

Correspondence e-mail: sbobev@mail.chem.udel.edu

Received 9 February 2010; accepted 23 February 2010

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (As–As) = 0.002 Å; R factor = 0.028; wR factor = 0.062; data-to-parameter ratio = 20.0.

The title compound, $Eu_{11}Zn_6As_{12}$, crystallizes with the $Sr_{11}Cd_6Sb_{12}$ structure type (Pearson's symbol *mC58*). The complex monoclinic structure of the first arsenide to form with this type features chains made of corner-sharing ZnAs₄ tetrahedra, separated by Eu atoms. There are a total of 15 unique positions in the asymmetric unit. Except for one Eu atom with site symmetry 2/*m*, all atoms are located on mirror planes. An usual aspect of the structure are some Zn-As distances, which are much longer than the sum of the covalent radii, indicating weaker interactions.

Related literature

The growing interest in ternary pnictides of alkaline- and rareearth metals with group 12 metals has feen fueled by the recent discovery of superconductivity (Rotter et al., 2008). Such compounds have also been investigated because of their promising behaviour as materials with high thermoelectric conversion efficiency (Snyder & Toberer, 2008). Our own exploratory studies revealed a wealth of new compounds with diverse crystal structures, including Ca₂CdSb₂ and Yb₂CdSb₂ (Xia & Bobev, 2007*a*), A_9 Cd_{4+x}*Pn*₉ and A_9 Zn_{4+x}*Pn*₉ (A =Ca, Sr, Eu, Yb; Pn = Sb, Bi) (Xia & Bobev, 2007b), $A_{11}Cd_6Sb_{12}$ (A = Sr, Ba, Eu) and $Eu_{11}Zn_6Sb_{12}$ (Park & Kim, 2004; Xia & Bobev, 2008b; Saparov *et al.*, 2008a), A_{21} Cd₄ Pn_{18} (A = Sr, Ba, Eu; Pn = Sb, Bi) (Xia & Bobev, 2008*a*), Ba₃Cd₂Sb₄ (Saparov *et* al., 2008b), Ba₂Cd₂Pn₃ (Pn = As, Sb) (Saparov et al., 2010). The title compound is the As-analog of Eu₁₁Zn₆Sb₁₂ (Saparov et al., 2008a). For covalent radii, see: Pauling (1960).

Experimental

a = 30.310 (8) Å

b = 4.3318 (11) Å

c = 11.774 (3) Å

 $\beta = 109.746 \ (4)^{\circ}$ Data collection

Crystal data	
$\Xi u_{11}Zn_6As_{12}$	
$M_r = 2962.82$	
Monoclinic. $C2/m$	

 $V = 1455.0 (7) \text{ Å}^{3}$ Z = 2Mo K\alpha radiation $\mu = 41.68 \text{ mm}^{-1}$ T = 200 K $0.07 \times 0.05 \times 0.05 \text{ mm}$

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2002) T_{min} = 0.161, T_{max} = 0.256

Refinement $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.062$ S = 1.011796 reflections 1796 independent reflections 1498 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.042$

7178 measured reflections

90 parameters $\Delta \rho_{\text{max}} = 1.70 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -1.74 \text{ e } \text{ Å}^{-3}$

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *XP* in *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was funded by the University of Delaware and the Petroleum Research Fund (ACS-PRF).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2307).

References

- Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Park, S.-M. & Kim, S.-J. (2004). J. Solid State Chem. 177, 3418-3422.

Pauling, L. (1960). *The Nature of the Chemical Bond*, 3rd ed. Ithaca, NY: Cornell University Press.

- Rotter, M., Tegel, M. & Johrendt, D. (2008). Phys. Rev. Lett. 101, 107006.
- Saparov, B., Bobev, S., Ozbay, A. & Nowak, E. R. (2008a). J. Solid State Chem. 181, 2690–2696.
- Saparov, B., He, H., Zhang, H., Greene, R. & Bobev, S. (2010). *Dalton Trans.* pp. 1063–1070.
- Saparov, B., Xia, S.-Q. & Bobev, S. (2008b). Inorg. Chem. 47, 11237-11244.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Snyder, G. J. & Toberer, E. S. (2008). Nat. Mater. 7, 105-114.
- Xia, S.-Q. & Bobev, S. (2007a). J. Am. Chem. Soc. 129, 4049-4057.
- Xia, S.-Q. & Bobev, S. (2007b). J. Am. Chem. Soc. 129, 10011-10018.
- Xia, S.-Q. & Bobev, S. (2008a). Inorg. Chem. 47, 1919–1921.
- Xia, S.-Q. & Bobev, S. (2008b). J. Comput. Chem. 29, 2125-2133.

supporting information

Acta Cryst. (2010). E66, i24 [doi:10.1107/S1600536810006938]

Undecaeuropium hexazinc dodecaarsenide

Bayrammurad Saparov and Svilen Bobev

S1. Comment

The structure of $Eu_{11}Zn_6As_{12}$ projected along *b*-axis is shown in Figure 1. The asymmetric unit is composed of 6 Eu, 3 Zn and 6 As atoms, all in special positions (Wyckoff position for Eu6 is 2*a*, for all others 4*i*).

The anionic substructure is made of Zn-centered ZnAs₄ tetrahedra that share common corners to form chains. The terminal As atoms of two chains are close together, so that they form a covalent bond. This can be inferred from the resulting As5—As5 distance at 2.457 (3) Å, which is on par with the As—As separation in elemental As (2.517 Å). All other interatomic distances fall within the expected range, excluding the Zn3—As5 distance at 3.288 Å. The latter is too long - more than 30% longer than the sum of the Pauling's covalent radii (Pauling, 1960) - to be considered a simple 2-center-2-electron bond. Analogously longer than normal Cd3—Sb5 and Zn3—Sb5 distances have been reported in Eu₁₁Cd₆Sb₁₂ and Eu₁₁Zn₆Sb₁₂ (Saparov *et al.*, 2008a). We refer to the theoretical studies on Sr₁₁Cd₆Sb₁₂ and Ba₁₁Cd₆Sb₁₂ (Xia & Bobev, 2008b) for a more detailed discussion of the bonding interactions in this structure type.

d-metal centered tetrahedra of the pnicogen elements are recurring motifs in the structural chemistry of such solid-state compounds, as evidenced by a number of reports (Rotter et al., 2008; Snyder & Toberer, 2008; Xia & Bobey, 2008a; Saparov et al., 2008b; Saparov et al., 2010). Sr₁₁Cd₆Sb₁₂, the first structurally characterized phase with this monoclinic structure, was synthesized from a high temperature reaction of elements using Sn as metal flux (Park & Kim, 2004). In this report, the crystal structure was described as being composed of "double pentagonal tubes". A slightly different description of the structure was given in the light of the very long Cd3—Sb5 bond in Ba₁₁Cd₆Sb₁₂ (Xia & Bobev, 2008b). Therein, the authors performed comprehensive electronic structure calculations aimed at full understanding of the bonding in Sr₁₁Cd₆Sb₁₂ and Ba₁₁Cd₆Sb₁₂. From these computational results, and from earlier results pertaining to related materials such as Yb₂CdSb₂ (Xia & Bobev, 2007a), A₉Cd_{4+v}Pn₉ and A₉Zn_{4+v}Pn₉ (A=Ca, Sr, Eu, Yb; Pn=Sb, Bi) (Xia & Bobev, 2007b), it can be expected that the Eu cations in $Eu_{11}Zn_6As_{12}$ will be divalent, and the spins of the Eu's 7 unpaired electrons may couple magnetically at low temperatures. We were unable to experimentally confirm this conjecture because the title compound was not isolated as a pure phase, but magnetic property measurements on the isotypic europium antimonides $Eu_{11}Cd_6Sb_{12}$ and $Eu_{11}Zn_6Sb_{12}$ (Saparov *et al.*, 2008a) confirmed Eu^{2+} cations (4f' state). These measurements also suggested antiferromagnetic ordering in $Eu_{11}Cd_6Sb_{12}$ below $T_N=7.5$ K. The temperature dependent electrical resistivity measurements carried out on a single crystal of Eu₁₁Cd₆Sb₁₂ suggested poorly metallic behavior, as expected from band structure calculations performed for Sr₁₁Cd₆Sb₁₂ and Ba₁₁Cd₆Sb₁₂ (Xia & Bobev, 2008b).

S2. Experimental

The starting materials, Eu, Zn, As, and Pb, with stated purity greater than 99.9%, were purchased from Alfa or Aldrich, and used as received. Elements were loaded into an alumina crucible in a Eu:Zn:As:Pb=2:1:2:10 molar ratio inside an argon-filled glove-box. The alumina crucible was then sealed under vacuum in a silica tube. The reaction mixture was heated to 1223 K, kept at this temperature for 20 hours, and then slowly cooled to 723 K at a rate of 3 K/hour. Finally, the

Pb-flux was removed by centrifugation at this temperature. Together with irregular-shaped crystals with hitherto unknown structure, black needle shaped crystals of $Eu_{11}Zn_6As_{12}$ were also obtained.

S3. Refinement

The collected data were successfully refined using the coordinates of $Eu_{11}Zn_6Sb_{12}$ (Saparov *et al.*, 2008a) as a starting model. The maximum peak and deepest hole are located 0.97 Å away from Eu6 and 1.47 Å away from Zn1, respectively.

Figure 1

A plot of the $Eu_{11}Zn_6As_{12}$ structure viewed down the *b*-axis. Displacement ellipsoids are drawn at the 95% probability level. Color key: Eu - red, Zn - green, All As atoms, excluding As5 - blue. As5, which form dimers are shown in yellow. The long As5—Zn3 bonds are depicted as thiner solid lines. The unit cell is outlined.

Undecaeuropium hexazinc dodecaarsenide, Eu₁₁Zn₆As₁₂

Crystal data

 $Eu_{11}Zn_6As_{12}$ $M_r = 2962.82$ Monoclinic, C2/mHall symbol: -C 2y a = 30.310 (8) Å *b* = 4.3318 (11) Å c = 11.774(3) Å $\beta = 109.746 \ (4)^{\circ}$ V = 1455.0 (7) Å³ Z = 2

Data collection

Refinement on F^2

 $wR(F^2) = 0.062$

1796 reflections

90 parameters

0 restraints

S = 1.01

Bruker SMART APEX	7178 measured reflections
diffractometer	1796 independent reflections
Radiation source: fine-focus sealed tube	1498 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int}=0.042$
ω scans	$\theta_{\rm max} = 27.1^\circ, \ \theta_{\rm min} = 1.4^\circ$
Absorption correction: multi-scan	$h = -38 \rightarrow 38$
(SADABS; Bruker, 2002)	$k = -5 \rightarrow 5$
$T_{\min} = 0.161, \ T_{\max} = 0.256$	$l = -15 \rightarrow 15$
Refinement	

Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.028$ $w = 1/[\sigma^2(F_0^2) + (0.0242P)^2 + 16.9522P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 1.70 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -1.74 \text{ e} \text{ Å}^{-3}$ Extinction correction: SHELXTL (Sheldrick, 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Primary atom site location: structure-invariant Extinction coefficient: 0.000263 (17)

F(000) = 2538

 $\theta = 1.4 - 27.1^{\circ}$

Needle, black

 $0.07 \times 0.05 \times 0.05$ mm

T = 200 K

 $\mu = 41.68 \text{ mm}^{-1}$

 $D_{\rm x} = 6.763 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1796 reflections

Special details

direct methods

Experimental. Selected in the glove box, crystals were put in a Paratone N oil and cut to the desired dimensions. The chosen crystal was mounted on a tip of a glass fiber and quickly transferred onto the goniometer. The crystal was kept under a cold nitrogen stream to protect from the ambient air and moisture.

Data collection is performed with four batch runs at $\varphi = 0.00^{\circ}$ (600 frames), at $\varphi = 90.00^{\circ}$ (600 frames), at $\varphi = 180.00^{\circ}$ (600 frames), and at $\varphi = 270.00$ (600 frames). Frame width = 0.30 \& in ω . Data are merged and treated with multi-scan absorption corrections.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Eu1	0.01672 (2)	0.0000	0.67859 (6)	0.01461 (16)	
Eu2	0.11288 (2)	0.0000	0.51100 (6)	0.01520 (16)	
Eu3	0.12610 (2)	0.0000	0.02177 (6)	0.01671 (17)	
Eu4	0.19815 (2)	0.0000	0.34699 (6)	0.01708 (16)	
Eu5	0.28179 (2)	0.0000	0.13448 (6)	0.01841 (17)	
Eu6	0.0000	0.0000	0.0000	0.0151 (2)	
As1	0.08620 (4)	0.0000	0.23794 (11)	0.0139 (3)	
As2	0.14491 (4)	0.0000	0.78289 (12)	0.0141 (3)	
As3	0.30702 (5)	0.0000	0.45283 (12)	0.0147 (3)	
As4	0.45498 (4)	0.0000	0.12128 (12)	0.0137 (3)	
As5	0.45839 (4)	0.0000	0.49049 (12)	0.0139 (3)	
As6	0.70775 (4)	0.0000	0.14605 (12)	0.0150 (3)	
Zn1	0.21901 (6)	0.0000	0.66996 (14)	0.0204 (3)	
Zn2	0.40088 (5)	0.0000	0.24844 (14)	0.0175 (3)	
Zn3	0.54783 (6)	0.0000	0.23600 (16)	0.0226 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Eu1	0.0163 (3)	0.0135 (3)	0.0139 (3)	0.000	0.0050 (3)	0.000
Eu2	0.0129 (3)	0.0186 (3)	0.0146 (3)	0.000	0.0053 (3)	0.000
Eu3	0.0155 (3)	0.0209 (3)	0.0146 (4)	0.000	0.0063 (3)	0.000
Eu4	0.0142 (3)	0.0209 (3)	0.0164 (4)	0.000	0.0056 (3)	0.000
Eu5	0.0159 (3)	0.0153 (3)	0.0249 (4)	0.000	0.0080 (3)	0.000
Eu6	0.0138 (5)	0.0176 (4)	0.0142 (5)	0.000	0.0050 (4)	0.000
As1	0.0137 (6)	0.0153 (6)	0.0129 (7)	0.000	0.0048 (5)	0.000
As2	0.0145 (6)	0.0131 (6)	0.0149 (7)	0.000	0.0055 (5)	0.000
As3	0.0153 (7)	0.0135 (6)	0.0149 (7)	0.000	0.0047 (5)	0.000
As4	0.0136 (6)	0.0146 (6)	0.0135 (7)	0.000	0.0052 (5)	0.000
As5	0.0116 (6)	0.0140 (6)	0.0163 (7)	0.000	0.0050 (5)	0.000
As6	0.0129 (6)	0.0148 (6)	0.0164 (7)	0.000	0.0040 (5)	0.000
Zn1	0.0208 (8)	0.0175 (7)	0.0177 (8)	0.000	-0.0005 (7)	0.000
Zn2	0.0146 (7)	0.0165 (7)	0.0218 (8)	0.000	0.0066 (6)	0.000
Zn3	0.0197 (8)	0.0145 (7)	0.0330 (10)	0.000	0.0080 (7)	0.000

Geometric parameters (Å, °)

Eu1—As4 ⁱ	3.1006 (12)	Eu6—Zn3 ^{viii}	3.4339 (15)
Eu1—As4 ⁱⁱ	3.1006 (12)	Eu6—Zn3 ⁱⁱⁱ	3.4339 (15)
Eu1—As5 ⁱⁱⁱ	3.1742 (12)	Eu6—Eu3 ^{xi}	3.7434 (12)
Eu1—As5 ^{iv}	3.1742 (12)	As1—Zn3 ⁱⁱⁱ	2.4548 (11)
Eu1—Zn2 ⁱ	3.1965 (13)	As1—Zn3 ^{iv}	2.4548 (11)
Eu1—Zn2 ⁱⁱ	3.1965 (13)	As1—Eu1 ^v	3.5733 (16)
Eu1—As5 ⁱⁱ	3.1997 (12)	As2—Zn2 ⁱⁱ	2.5313 (12)
Eu1—As5 ⁱ	3.1997 (12)	As2—Zn2 ⁱ	2.5313 (12)

Eu1—Zn3 ⁱⁱ	3.2954 (14)	As2—Zn1	2.971 (2)
Eu1—Zn3 ⁱ	3.2954 (14)	As2—Eu5 ⁱ	3.0187 (11)
Eu1—As1 ^v	3.5732 (16)	As2—Eu5 ⁱⁱ	3.0187 (11)
Eu1—As2	3.6580 (17)	As2—Eu3 ^{xii}	3.0526 (16)
Eu2—As2	3.0150 (17)	As3—Zn1 ⁱⁱ	2.5754 (12)
Eu2—As1	3.0386 (16)	As3—Zn1 ⁱ	2.5754 (12)
Eu2—As5 ⁱⁱ	3.0548 (11)	As3—Eu2 ⁱ	3.1731 (12)
Eu2—As5 ⁱ	3.0548 (11)	As3—Eu2 ⁱⁱ	3.1731 (12)
Eu2-Zn1	3 1276 (18)	As3—Fu4 ⁱ	3 2434 (12)
$F_{11}2$ As^{3i}	3,1730(12)	$As3 = Fu4^{ii}$	3.2434(12)
F_{112} As^{3i}	3 1730 (12)	A_{s4}	2.567(2)
Eu2 7 n35 Eu2 7 n2i	3 6003 (15)	$\Lambda_{sA} = 7n^3$	2.507(2)
Eu2 - Eu2 $Eu2 - 7n2^{ii}$	3.6003 (15)	$A_{S}4 = E_{H}1^{i}$	2.079(2)
Eu2-ZHZ	3.0993(13)	$A_{24} = E_{11}$	3.1000(12)
Eu2-Eu4	3.7123(11)		3.1000 (12)
Eu2—Eu1	3.8063 (13)	As4—Eub ^{xii}	3.14//(10)
Eu3—As2 ^{vi}	3.0526 (16)	As4—Eu6 ^{xiv}	3.14//(10)
Eu3—Asl	3.1656 (15)	As4—Eu3 ^{vn}	3.2820 (12)
Eu3—As6 ^{iv}	3.2419 (12)	As4—Eu3 ^{viii}	3.2820 (12)
Eu3—As6 ⁱⁱⁱ	3.2419 (12)	As5—As5 ^{xv}	2.456 (3)
Eu3—As4 ^{vii}	3.2819 (12)	As5—Zn2	2.794 (2)
Eu3—As4 ^{viii}	3.2819 (12)	As5—Eu2 ⁱⁱ	3.0548 (11)
Eu3—Zn2 ^{vii}	3.7045 (16)	As5—Eu2 ⁱ	3.0548 (11)
Eu3—Zn2 ^{viii}	3.7045 (16)	As5—Eu1 ^{xiv}	3.1743 (12)
Eu3—Eu4	3.7122 (13)	As5—Eu1 ^{xiii}	3.1743 (12)
Eu3—Eu6	3.7434 (12)	As5—Eu1 ⁱⁱ	3.1996 (12)
Eu3—Eu1 ^{vi}	4.2739 (13)	As5—Eu1 ⁱ	3.1996 (12)
Eu3—Eu3 ^{ix}	4.3318 (11)	As6—Zn1 ^{xv}	2.524 (2)
Eu4—As3	3.1086 (16)	As6—Eu5 ^{xiv}	3.1547 (12)
Eu4—As1	3.1966 (16)	As6—Eu5 ^{xiii}	3.1547 (12)
Eu4—As3 ⁱ	3.2435 (12)	As6—Eu3 ^{xiii}	3.2418 (12)
$E_{11}4$ —As 3^{ii}	3 2435 (12)	As6—Fu3 ^{xiv}	3 2418 (12)
$E_{11}4$ $As6^{iii}$	3,2922,(13)	$As6 - Fu4^{xiv}$	3 2922 (13)
$F_{11}4$ $As6^{iv}$	3 2922 (13)	$As6 = Fu4^{xiii}$	3.2922(13)
$F_{11}4$ $7n^{1i}$	3 3727 (15)	$As6 - Fu5^x$	3.4229 (17)
$Eu4 Zn1^{ii}$	3 3727 (15)	$7n1 As6^{xy}$	2,524(2)
Eu - Zn1	3.5727(15)	$Z_{\rm III} = ASO$ $Z_{\rm III} = ASO$	2.524(2)
$E_{11}4 = E_{11}5$	5.058(2)	$Z_{\rm III} = ASS$ $Z_{\rm III} = ASS$	2.5754(12)
	4.1199(12)		2.3734(12)
$Eu5 - As2^{ii}$	3.0188(11)	$Z_{\rm m1}$ —EuS	3.10/1 (14)
$Eub-As2^{"}$	3.0188(11)	Zn1—EuS"	3.10/1 (14)
Euo—Aso ^m	3.1546 (12)	Zn1—Eu4 ⁴	3.3727 (15)
Eu5—As6 ^{iv}	3.1546 (12)	Zn1—Eu4 ⁿ	3.3727 (15)
Eu5—Znl ¹	3.1672 (14)	Zn2—As2 ⁿ	2.5313 (12)
Eu5—Zn1 ⁿ	3.1672 (14)	$Zn2$ — $As2^{1}$	2.5313 (12)
Eu5—Zn2	3.3995 (19)	Zn2—Eu1 ⁱ	3.1964 (13)
Eu5—As6 ^x	3.4230 (17)	Zn2—Eu1 ⁱⁱ	3.1964 (13)
Eu5—As3	3.5633 (18)	Zn2—Eu2 ⁱ	3.6993 (15)
Eu5—Eu5 ^{vii}	3.7827 (13)	Zn2—Eu2 ⁱⁱ	3.6993 (15)
Eu5—Eu5 ^{viii}	3.7827 (13)	Zn2—Eu3 ^{vii}	3.7045 (16)

supporting information

Eu6—As1 ^{xi}	3.1191 (14)	Zn2—Eu3 ^{viii}	3.7045 (16)
Eu6—As1	3.1191 (14)	$Zn3$ — $As1^{xiv}$	2.4548 (11)
Eu6—As4 ^{vii}	3.1478 (10)	Zn3—As1 ^{xiii}	2.4548 (11)
Eu6—As4 ^{iv}	3.1478 (10)	Zn3—Eu1 ⁱⁱ	3.2954 (14)
Eu6—As4 ^{viii}	3.1478 (10)	Zn3—Eu1 ⁱ	3.2954 (14)
Eu6—As4 ⁱⁱⁱ	3.1478 (10)	$Zn3$ — $Eu6^{xiii}$	3.4339 (15)
$E_{\rm H0}$ $-Z_{\rm H}3^{\rm vii}$	3 4339 (15)	$Zn3$ —Eu 6^{xiv}	3 4339 (15)
$Eu6 - Zn3^{iv}$	3.4339 (15)		011003 (10)
200 200			
As4 ⁱ —Eu1—As4 ⁱⁱ	88.62 (4)	As4 ^{iv} —Eu6—As4 ^{viii}	93.04 (4)
As4 ⁱ —Eu1—As5 ⁱⁱⁱ	162.32 (4)	As1 ^{xi} —Eu6—As4 ⁱⁱⁱ	92.72 (3)
As4 ⁱⁱ —Eu1—As5 ⁱⁱⁱ	89.97 (3)	As1—Eu6—As4 ⁱⁱⁱ	87.28 (3)
$As4^{i}$ —Eu1— $As5^{iv}$	89.97 (3)	As4 ^{vii} —Eu6—As4 ⁱⁱⁱ	93.04 (4)
$As4^{ii}$ —Eu1— $As5^{iv}$	162.32 (4)	As4 ^{iv} —Eu6—As4 ⁱⁱⁱ	86.96 (4)
As5 ⁱⁱⁱ —Eu1—As5 ^{iv}	86.05 (4)	As4 ^{viii} —Eu6—As4 ⁱⁱⁱ	180.00 (5)
$As4^{i}$ —Eu1—Zn2 ⁱ	48.09 (4)	As1 ^{xi} —Eu6—Zn3 ^{vii}	43.67 (2)
$As4^{ii}$ —Eu1—Zn2 ⁱ	106.18 (4)	$As1$ — $Eu6$ — $Zn3^{vii}$	136.33 (2)
$As5^{iii}$ —Eu1—Zn2 ⁱ	148.25 (4)	As4 ^{vii} —Eu6—Zn3 ^{vii}	47.79 (4)
$As5^{iv}$ —Eu1—Zn2 ⁱ	85.74 (3)	$As4^{iv}$ —Eu6—Zn3 ^{vii}	132.21 (4)
$As4^{i}$ Eu1 $Zn2^{ii}$	106 18 (4)	$As4^{viii}$ —Fu6—Zn3 ^{vii}	101.31(4)
$As4^{ii}$ —Eu1—Zn2 ⁱⁱ	48.09 (4)	$As4^{iii}$ —Eu6—Zn 3^{vii}	78.69 (4)
$As5^{iii}$ —Eu1—Zn2 ⁱⁱ	85 74 (3)	$As1^{xi}$ Eu6 $Zn3^{iv}$	136 33 (2)
$As5^{iv}$ —Eu1—Zn2 ⁱⁱ	148 25 (4)	$As1 - Fu6 - Zn3^{iv}$	43 67 (2)
$Zn2^{i}$ Eu1 Z $n2^{ii}$	85 31 (4)	$As4^{vii}$ $Eu6 Zn3^{iv}$	132.21(4)
$As4^{i}$ Eu1 $As5^{ii}$	151 99 (4)	$As4^{iv}$ —Eu6—Zn3 ^{iv}	47 79 (4)
$As4^{ii}$ Fu1 $As5^{ii}$	86 40 (3)	$As4^{viii}$ Fu6 $Zn3^{iv}$	78 69 (4)
$As5^{iii}$ Fu1 As5 ⁱⁱ	45 32 (4)	$As4^{iii}$ Fu6 $Zn3^{iv}$	$101 \ 31 \ (4)$
$As5^{iv}$ —Fu1—As5 ⁱⁱ	102.75(3)	$7n3^{vii}$ Fu6 $7n3^{iv}$	180.00(5)
$7n2^{i}$ Ful As5 ⁱⁱ	102.79(3) 107.39(4)	$As1^{xi}$ Fu6 $Zn3^{viii}$	43 67 (2)
$Zn2^{ii}$ Fu1—As5 ⁱⁱ	51 79 (4)	$As1 - Fu6 - Zn3^{viii}$	13633(2)
$As4^{i}$ Fu1 $As5^{i}$	86 40 (3)	$A s 4^{vii}$ Fu ₆ $7n 3^{viii}$	100.33(2) 101.31(4)
$As4^{ii}$ Fu1 $As5^{i}$	151 99 (4)	$As4^{iv}$ —Eu6—Zn3 ^{viii}	78 69 (4)
$As5^{iii}$ Eu1 As5 ⁱ	102.75 (3)	$As4^{viii}$ —Fu6—Zn3 ^{viii}	47 79 (4)
$As5^{iv}$ —Eu1—As5 ⁱ	45 32 (4)	$As4^{iii}$ —Eu6—Zn3 ^{viii}	132.21 (4)
$Zn2^{i}$ Eu1 As5 ⁱ	51 79 (4)	$Zn3^{vii}$ Fu6 $Zn3^{viii}$	78 21 (4)
$Zn2^{ii}$ —Eu1—As5 ⁱ	107.39 (4)	$Zn3^{iv}$ —Eu6— $Zn3^{viii}$	101.79 (4)
$As5^{ii}$ —Fu1—As5 ⁱ	85 20 (4)	$As1^{xi}$ Eu6 $Zn3^{iii}$	136 33 (2)
$As4^{i}$ Eu1 $Zn3^{ii}$	105 52 (4)	$As1 - Fu6 - Zn3^{iii}$	43 67 (2)
$As4^{ii}$ —Eu1—Zn3 ⁱⁱ	49.41 (4)	$As4^{vii}$ Eu6 Zn3 ⁱⁱⁱ	78.69 (4)
$As5^{iii}$ —Eu1—Zn3 ⁱⁱ	61.07 (4)	As4 ^{iv} —Eu6—Zn3 ⁱⁱⁱ	101.31 (4)
$As5^{iv}$ —Eu1—Zn3 ⁱⁱ	114.41 (4)	$As4^{viii}$ —Eu6—Zn3 ⁱⁱⁱ	132.21 (4)
$Zn2^{i}$ —Eu1— $Zn3^{ii}$	148.64 (5)	$As4^{iii}$ —Eu6—Zn3 ⁱⁱⁱ	47.79 (4)
$Zn2^{ii}$ —Eu1—Zn3 ⁱⁱ	87.89 (4)	Zn3 ^{vii} —Eu6—Zn3 ⁱⁱⁱ	101.79 (4)
$As5^{ii}$ —Eu1—Zn3 ⁱⁱ	91.95 (3)	Zn3 ^{iv} —Eu6—Zn3 ⁱⁱⁱ	78.21 (4)
$As5^{i}$ —Eu1—Zn3 ⁱⁱ	157.49 (4)	Zn3 ^{viii} —Eu6—Zn3 ⁱⁱⁱ	180.00 (8)
$As4^{i}$ —Eu1—Zn3 ⁱ	49.41 (4)	As1 ^{xi} —Eu6—Eu3	125.98 (3)
As4 ⁱⁱ —Eu1—Zn3 ⁱ	105.52 (4)	As1—Eu6—Eu3	54.02 (3)
As5 ⁱⁱⁱ —Eu1—Zn3 ⁱ	114.41 (4)	As4 ^{vii} —Eu6—Eu3	56.08 (2)

As5 ^{iv} —Eu1—Zn3 ⁱ	61.07 (4)	As4 ^{iv} —Eu6—Eu3	123.92 (2)
$Zn2^{i}$ —Eu1— $Zn3^{i}$	87.89 (4)	As4 ^{viii} —Eu6—Eu3	56.08 (2)
Zn2 ⁱⁱ —Eu1—Zn3 ⁱ	148.64 (5)	As4 ⁱⁱⁱ —Eu6—Eu3	123.92 (2)
As5 ⁱⁱ —Eu1—Zn3 ⁱ	157.49 (4)	Zn3 ^{vii} —Eu6—Eu3	101.40 (3)
As5 ⁱ —Eu1—Zn3 ⁱ	91.95 (3)	Zn3 ^{iv} —Eu6—Eu3	78.60 (3)
Zn3 ⁱⁱ —Eu1—Zn3 ⁱ	82.18 (4)	Zn3 ^{viii} —Eu6—Eu3	101.40 (3)
As4 ⁱ —Eu1—As1 ^v	80.45 (3)	Zn3 ⁱⁱⁱ —Eu6—Eu3	78.60 (3)
As4 ⁱⁱ —Eu1—As1 ^v	80.45 (3)	As1 ^{xi} —Eu6—Eu3 ^{xi}	54.02 (3)
As5 ⁱⁱⁱ —Eu1—As1 ^v	81.93 (3)	As1—Eu6—Eu3 ^{xi}	125.98 (3)
As5 ^{iv} —Eu1—As1 ^v	81.93 (3)	As4 ^{vii} —Eu6—Eu3 ^{xi}	123.92 (2)
Zn2 ⁱ —Eu1—As1 ^v	126.98 (3)	As4 ^{iv} —Eu6—Eu3 ^{xi}	56.08 (2)
Zn2 ⁱⁱ —Eu1—As1 ^v	126.98 (3)	As4 ^{viii} —Eu6—Eu3 ^{xi}	123.92 (2)
As5 ⁱⁱ —Eu1—As1 ^v	125.62 (3)	As4 ⁱⁱⁱ —Eu6—Eu3 ^{xi}	56.08 (2)
As5 ⁱ —Eu1—As1 ^v	125.62 (3)	Zn3 ^{vii} —Eu6—Eu3 ^{xi}	78.60 (3)
Zn3 ⁱⁱ —Eu1—As1 ^v	41.63 (2)	Zn3 ^{iv} —Eu6—Eu3 ^{xi}	101.40 (3)
Zn3 ⁱ —Eu1—As1 ^v	41.63 (2)	Zn3 ^{viii} —Eu6—Eu3 ^{xi}	78.60 (3)
As4 ⁱ —Eu1—As2	75.82 (3)	Zn3 ⁱⁱⁱ —Eu6—Eu3 ^{xi}	101.40 (3)
As4 ⁱⁱ —Eu1—As2	75.82 (3)	Eu3—Eu6—Eu3 ^{xi}	180.0
As5 ⁱⁱⁱ —Eu1—As2	120.82 (3)	Zn3 ⁱⁱⁱ —As1—Zn3 ^{iv}	123.85 (9)
As5 ^{iv} —Eu1—As2	120.82 (3)	Zn3 ⁱⁱⁱ —As1—Eu2	88.04 (5)
Zn2 ⁱ —Eu1—As2	42.68 (2)	Zn3 ^{iv} —As1—Eu2	88.04 (5)
Zn2 ⁱⁱ —Eu1—As2	42.68 (2)	Zn3 ⁱⁱⁱ —As1—Eu6	75.00 (5)
As5 ⁱⁱ —Eu1—As2	76.23 (3)	Zn3 ^{iv} —As1—Eu6	75.00 (5)
As5 ⁱ —Eu1—As2	76.23 (3)	Eu2—As1—Eu6	142.47 (5)
Zn3 ⁱⁱ —Eu1—As2	124.78 (3)	Zn3 ⁱⁱⁱ —As1—Eu3	107.52 (5)
Zn3 ⁱ —Eu1—As2	124.78 (3)	Zn3 ^{iv} —As1—Eu3	107.52 (5)
As1 ^v —Eu1—As2	146.58 (4)	Eu2—As1—Eu3	144.42 (5)
As2—Eu2—As1	176.86 (4)	Eu6—As1—Eu3	73.11 (4)
As2—Eu2—As5 ⁱⁱ	88.83 (3)	Zn3 ⁱⁱⁱ —As1—Eu4	116.04 (4)
As1—Eu2—As5 ⁱⁱ	93.38 (3)	Zn3 ^{iv} —As1—Eu4	116.04 (4)
As2—Eu2—As5 ⁱ	88.83 (3)	Eu2—As1—Eu4	73.03 (3)
As1—Eu2—As5 ⁱ	93.38 (3)	Eu6—As1—Eu4	144.50 (5)
As5 ⁱⁱ —Eu2—As5 ⁱ	90.31 (4)	Eu3—As1—Eu4	71.39 (3)
As2—Eu2—Zn1	57.82 (4)	Zn3 ⁱⁱⁱ —As1—Eu1 ^v	63.11 (4)
As1—Eu2—Zn1	119.04 (4)	$Zn3^{iv}$ —As1—Eu1 ^v	63.11 (4)
As5 ⁱⁱ —Eu2—Zn1	125.86 (3)	Eu2—As1—Eu1 ^v	69.76 (3)
As5 ⁱ —Eu2—Zn1	125.86 (3)	Eu6—As1—Eu1 ^v	72.71 (3)
As2—Eu2—As3 ⁱ	84.27 (3)	Eu3—As1—Eu1 ^v	145.82 (4)
As1—Eu2—As3 ⁱ	93.44 (3)	Eu4—As1—Eu1 ^v	142.79 (5)
As5 ⁱⁱ —Eu2—As3 ⁱ	172.86 (4)	Zn2 ⁱⁱ —As2—Zn2 ⁱ	117.67 (8)
As5 ⁱ —Eu2—As3 ⁱ	91.39 (3)	Zn2 ⁱⁱ —As2—Zn1	113.26 (5)
Zn1—Eu2—As3 ⁱ	48.25 (3)	Zn2 ⁱ —As2—Zn1	113.26 (5)
As2—Eu2—As3 ⁱⁱ	84.27 (3)	Zn2 ⁱⁱ —As2—Eu2	83.18 (5)
As1—Eu2—As3 ⁱⁱ	93.44 (3)	Zn2 ⁱ —As2—Eu2	83.18 (5)
As5 ⁱⁱ —Eu2—As3 ⁱⁱ	91.39 (3)	Zn1—As2—Eu2	62.99 (4)
As5 ⁱ —Eu2—As3 ⁱⁱ	172.86 (4)	Zn2 ⁱⁱ —As2—Eu5 ⁱ	165.57 (6)
Zn1—Eu2—As3 ⁱⁱ	48.25 (3)	Zn2 ⁱ —As2—Eu5 ⁱ	74.97 (4)
As3 ⁱ —Eu2—As3 ⁱⁱ	86.09 (4)	Zn1—As2—Eu5 ⁱ	63.83 (3)

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	/ (4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	7 (6)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	7 (4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	3 (6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	3 (5)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	7 (6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$)(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$) (2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$) (8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	3 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	l (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(3)
Eu4—Eu2—Eu1117.19 (3)Eu2 ⁱⁱ —As3—Eu4 ⁱⁱ 125.51As2—Eu2—Eu1 60.49 (3) $Zn1^{ii}$ —As3—Eu4 ⁱⁱ 76.44As1—Eu2—Eu1122.65 (3) $Zn1^{ii}$ —As3—Eu4 ⁱⁱ 152.71As5 ⁱⁱ —Eu2—Eu151.43 (2)Eu4—As3—Eu4 ⁱⁱ 89.20As5 ⁱⁱ —Eu2—Eu151.43 (2)Eu2 ⁱⁱ —As3—Eu4 ⁱⁱ 89.20As5 ⁱⁱ —Eu2—Eu1118.31 (4)Eu2 ⁱⁱ —As3—Eu4 ⁱⁱ 89.20As3 ⁱⁱ —Eu2—Eu1118.31 (4)Eu2 ⁱⁱ —As3—Eu4 ⁱⁱ 83.79As3 ⁱⁱ —Eu2—Eu1125.51 (3)Eu4 ⁱⁱ —As3—Eu4 ⁱⁱ 83.79As3 ⁱⁱ —Eu2—Eu1125.51 (3)Zn1 ⁱⁱ —As3—Eu559.56Zn2 ⁱⁱ —Eu2—Eu148.59 (2)Zn1 ⁱⁱ —As3—Eu559.56Zn2 ⁱⁱ —Eu2—Eu1178.10 (2)Eu2 ⁱ —As3—Eu591.36	(2)
As2—Eu2—Eu1 $60.49 (3)$ $Zn1^{ii}$ —As3—Eu4 ⁱⁱ 76.44 As1—Eu2—Eu1 $122.65 (3)$ $Zn1^{i}$ —As3—Eu4 ⁱⁱ 152.71 As5 ⁱⁱ —Eu2—Eu1 $51.43 (2)$ $Eu4$ —As3—Eu4 ⁱⁱ $89.20 (2)$ As5 ⁱ —Eu2—Eu1 $51.43 (2)$ $Eu4$ —As3—Eu4 ⁱⁱ $89.20 (2)$ As5 ⁱ —Eu2—Eu1 $51.43 (2)$ $Eu4$ —As3—Eu4 ⁱⁱ $89.20 (2)$ As5 ⁱ —Eu2—Eu1 $118.31 (4)$ $Eu2^{ii}$ —As3—Eu4 ⁱⁱ $70.69 (2)$ As3 ⁱ —Eu2—Eu1 $125.51 (3)$ $Eu4^{ii}$ —As3—Eu4 ⁱⁱ $83.79 (2)$ As3 ⁱⁱ —Eu2—Eu1 $125.51 (3)$ $Zn1^{ii}$ —As3—Eu5 $59.56 (2)$ Zn2 ⁱ —Eu2—Eu1 $48.59 (2)$ $Zn1^{ii}$ —As3—Eu5 $59.56 (2)$ Zn2 ⁱⁱ —Eu2—Eu1 $48.59 (2)$ $Eu4$ —As3—Eu5 $59.56 (2)$ Eu4 $Eu2$ —Eu1 $178.10 (2)$ $Eu2^{ii}$ —As3—Eu5 $91.36 (2)$	l (5)
As1—Eu2—Eu1122.65 (3) $Zn1^{i}$ —As3—Eu4 ⁱⁱ 152.71As5 ⁱⁱ —Eu2—Eu151.43 (2)Eu4—As3—Eu4 ⁱⁱ 89.20 (200)As5 ⁱⁱ —Eu2—Eu151.43 (2)Eu2 ⁱⁱ —As3—Eu4 ⁱⁱ 125.51Zn1—Eu2—Eu1118.31 (4)Eu2 ⁱⁱ —As3—Eu4 ⁱⁱ 70.69 (200)As3 ⁱⁱ —Eu2—Eu1125.51 (3)Eu4 ⁱ —As3—Eu4 ⁱⁱ 83.79 (200)As3 ⁱⁱ —Eu2—Eu1125.51 (3)Zn1 ⁱⁱ —As3—Eu4 ⁱⁱ 83.79 (200)Zn2 ⁱⁱ —Eu2—Eu148.59 (2)Zn1 ⁱⁱ —As3—Eu559.56 (200)Zn2 ⁱⁱ —Eu2—Eu148.59 (2)Eu4—As3—Eu559.56 (200)Eu4—Eu2—Eu1178.10 (2)Eu2 ⁱⁱ —As3—Eu591.36 (200)	(4)
As5 ⁱⁱ —Eu2—Eu151.43 (2)Eu4—As3—Eu4 ⁱⁱ 89.20 (200)As5 ⁱ —Eu2—Eu151.43 (2)Eu2 ⁱ —As3—Eu4 ⁱⁱ 125.51 (200)Zn1—Eu2—Eu1118.31 (4)Eu2 ⁱⁱ —As3—Eu4 ⁱⁱ 70.69 (200)As3 ⁱ —Eu2—Eu1125.51 (3)Eu4 ⁱⁱ —As3—Eu4 ⁱⁱⁱ 83.79 (200)As3 ⁱⁱ —Eu2—Eu1125.51 (3)Zn1 ⁱⁱ —As3—Eu559.56 (200)Zn2 ⁱⁱ —Eu2—Eu148.59 (2)Zn1 ⁱⁱ —As3—Eu559.56 (200)Zn2 ⁱⁱ —Eu2—Eu148.59 (2)Eu4—As3—Eu559.56 (200)Eu4—Eu2—Eu1178.10 (2)Eu2 ⁱⁱ —As3—Eu591.36 (200)	l (6)
As5 ⁱ —Eu2—Eu151.43 (2)Eu2 ⁱ —As3—Eu4 ⁱⁱ 125.51Zn1—Eu2—Eu1118.31 (4)Eu2 ⁱⁱ —As3—Eu4 ⁱⁱ 70.69As3 ⁱ —Eu2—Eu1125.51 (3)Eu4 ⁱⁱ —As3—Eu4 ⁱⁱ 83.79As3 ⁱⁱ —Eu2—Eu1125.51 (3)Zn1 ⁱⁱ —As3—Eu559.56Zn2 ⁱⁱ —Eu2—Eu148.59 (2)Zn1 ⁱⁱ —As3—Eu559.56Zn2 ⁱⁱ —Eu2—Eu148.59 (2)Eu4—As3—Eu575.93Eu4—Eu2—Eu1178.10 (2)Eu2 ⁱ —As3—Eu591.36	(3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	l (5)
As3iEu2Eu1125.51 (3)Eu4iAs3Eu4iii83.79 (d)As3iiEu2Eu1125.51 (3)Zn1iiAs3Eu559.56 (d)Zn2iEu2Eu148.59 (2)Zn1iiAs3Eu559.56 (d)Zn2iiEu2Eu148.59 (2)Eu4As3Eu559.56 (d)Eu4Eu2Eu1178.10 (2)Eu2iAs3Eu591.36 (d)	(2)
As 3^{ii} —Eu2—Eu1125.51 (3)Zn 1^{ii} —As 3 —Eu559.56Zn 2^{i} —Eu2—Eu148.59 (2)Zn 1^{i} —As 3 —Eu559.56Zn 2^{ii} —Eu2—Eu148.59 (2)Eu4—As 3 —Eu575.93Eu4—Eu2—Eu1178.10 (2)Eu 2^{i} —As 3 —Eu591.36	(4)
Zn2 ⁱ —Eu2—Eu1 48.59 (2) Zn1 ⁱ —As3—Eu5 59.56 Zn2 ⁱⁱ —Eu2—Eu1 48.59 (2) Eu4—As3—Eu5 75.93 Eu4—Eu2—Eu1 178.10 (2) Eu2 ⁱ —As3—Eu5 91.36	(4)
Zn2 ⁱⁱ —Eu2—Eu1 48.59 (2) Eu4—As3—Eu5 75.93 (2) Eu4—Eu2—Eu1 178.10 (2) Eu2 ⁱ —As3—Eu5 91.36 (2)	(4)
Eu4—Eu2—Eu1 178.10 (2) Eu2 ⁱ —As3—Eu5 91.36	(3)
	(3)
$Eu1^{v}$ — $Eu2$ — $Eu1$ 60.91 (3) $Eu2^{n}$ — $As3$ — $Eu5$ 91.36 ((3)
As2 ^{vi} —Eu3—As1 169.05 (4) Eu4 ⁱ —As3—Eu5 135.93	3 (2)
$As2^{vi}$ —Eu3— $As6^{iv}$ 93.68 (3) Eu4 ⁱⁱ — $As3$ —Eu5 135.93	3 (2)
As1—Eu3—As6 ^{iv} 94.47 (4) Zn2—As4—Zn3 118.37	7 (7)

As2 ^{vi} —Eu3—As6 ⁱⁱⁱ	93.68 (3)	Zn2—As4—Eu1 ⁱ	67.91 (4)
As1—Eu3—As6 ⁱⁱⁱ	94.47 (4)	Zn3—As4—Eu1 ⁱ	69.09 (4)
As6 ^{iv} —Eu3—As6 ⁱⁱⁱ	83.84 (4)	Zn2—As4—Eu1 ⁱⁱ	67.91 (4)
As2 ^{vi} —Eu3—As4 ^{vii}	82.40 (3)	Zn3—As4—Eu1 ⁱⁱ	69.09 (4)
As1—Eu3—As4 ^{vii}	89.39 (4)	Eu1 ⁱ —As4—Eu1 ⁱⁱ	88.62 (4)
As6 ^{iv} —Eu3—As4 ^{vii}	176.07 (4)	Zn2—As4—Eu6 ^{xiii}	136.452 (19)
As6 ⁱⁱⁱ —Eu3—As4 ^{vii}	96.65 (3)	Zn3—As4—Eu6 ^{xiii}	71.71 (4)
As2 ^{vi} —Eu3—As4 ^{viii}	82.40 (3)	Eu1 ⁱ —As4—Eu6 ^{xiii}	140.75 (5)
As1—Eu3—As4 ^{viii}	89.39 (4)	Eu1 ⁱⁱ —As4—Eu6 ^{xiii}	79.23 (2)
As6 ^{iv} —Eu3—As4 ^{viii}	96.65 (3)	Zn2—As4—Eu6 ^{xiv}	136.452 (19)
As6 ⁱⁱⁱ —Eu3—As4 ^{viii}	176.07 (4)	Zn3—As4—Eu6 ^{xiv}	71.71 (4)
As4 ^{vii} —Eu3—As4 ^{viii}	82.59 (4)	Eu1 ⁱ —As4—Eu6 ^{xiv}	79.23 (2)
As2 ^{vi} —Eu3—Zn2 ^{vii}	42.65 (3)	Eu1 ⁱⁱ —As4—Eu6 ^{xiv}	140.75 (5)
As1—Eu3—Zn2 ^{vii}	131.07 (3)	Eu6 ^{xiii} —As4—Eu6 ^{xiv}	86.96 (4)
As6 ^{iv} —Eu3—Zn2 ^{vii}	133.76 (4)	Zn2—As4—Eu3 ^{vii}	77.53 (4)
As6 ⁱⁱⁱ —Eu3—Zn2 ^{vii}	84.86 (3)	Zn3—As4—Eu3 ^{vii}	137.37 (2)
As4 ^{vii} —Eu3—Zn2 ^{vii}	42.58 (3)	Eu1 ⁱ —As4—Eu3 ^{vii}	144.88 (5)
As4 ^{viii} —Eu3—Zn2 ^{vii}	92.03 (3)	Eu1 ⁱⁱ —As4—Eu3 ^{vii}	84.03 (2)
As2 ^{vi} —Eu3—Zn2 ^{viii}	42.65 (3)	Eu6 ^{xiii} —As4—Eu3 ^{vii}	71.18 (3)
As1—Eu3—Zn 2^{viii}	131.07 (3)	Eu6 ^{xiv} —As4—Eu3 ^{vii}	125.84 (5)
$As6^{iv}$ —Eu3—Zn2 ^{viii}	84.86 (3)	Zn2—As4—Eu3 ^{viii}	77.53 (4)
As6 ⁱⁱⁱ —Eu3—Zn2 ^{viii}	133.76 (4)	Zn3—As4—Eu3 ^{viii}	137.37 (2)
As4 ^{vii} —Eu3—Zn2 ^{viii}	92.03 (3)	Eu1 ⁱ —As4—Eu3 ^{viii}	84.03 (2)
As4 ^{viii} —Eu3—Zn2 ^{viii}	42.58 (3)	Eu1 ⁱⁱ —As4—Eu3 ^{viii}	144.88 (5)
$Zn2^{vii}$ —Eu3— $Zn2^{viii}$	71.56 (4)	Eu6 ^{xiii} —As4—Eu3 ^{viii}	125.84 (5)
As2 ^{vi} —Eu3—Eu4	136.26 (4)	Eu6 ^{xiv} —As4—Eu3 ^{viii}	71.18 (3)
As1—Eu3—Eu4	54.69 (3)	Eu3 ^{vii} —As4—Eu3 ^{viii}	82.59 (4)
$As6^{iv}$ —Eu3—Eu4	56.02 (2)	$As5^{xv}$ $As5$ $Zn2$	111.14 (8)
As6 ⁱⁱⁱ —Eu3—Eu4	56.02 (2)	As5 ^{xv} —As5—Eu2 ⁱⁱ	134.67 (2)
As4 ^{vii} —Eu3—Eu4	127.36 (3)	Zn2—As5—Eu2 ⁱⁱ	78.34 (4)
$As4^{viii}$ —Eu3—Eu4	127.36 (3)	$As5^{xv}$ $As5$ $Eu2^i$	134.67 (2)
$Zn2^{vii}$ —Eu3—Eu4	140.18 (2)	Zn2—As5—Eu2 ⁱ	78.34 (4)
$Zn2^{viii}$ —Eu3—Eu4	140.18(2)	$Eu2^{ii}$ As5 $Eu2^{i}$	90.31 (4)
$As2^{vi}$ —Eu3—Eu6	11617(3)	$As5^{xv}$ $As5$ $Eu1^{xiv}$	67 89 (4)
As1 - Eu3 - Eu6	52, 87 (3)	$7n^2$ —As5—Fu1 ^{xiv}	136.08(2)
$As6^{iv}$ —Eu3—Eu6	129 57 (2)	$Eu2^{ii}$ As5 $Eu1^{xiv}$	135.00(2) 135.55(5)
$As6^{iii}$ —Eu3—Eu6	129.57 (2)	$Eu2^{i}$ As5 $Eu1^{xiv}$	75 31 (3)
$As4^{vii}$ Eu3 Eu6	52.74 (2)	$As5^{xv}$ $As5$ $Eu1^{xiii}$	67 89 (4)
$A s 4^{vii}$ Fu 3 Fu 6	52.74(2)	$7n^2$ —As5—Fu1 ^{xiii}	136.08(2)
$Zn2^{vii}$ —Eu3—Eu6	90.98(3)	$Eu2^{ii}$ As5 $Eu1^{xiii}$	75 31 (3)
$Zn2^{viii}$ —Eu3—Eu6	90.98 (3)	$Eu2^{i}$ As5 $Eu1^{xiii}$	135 55 (5)
F_{112} F_{113} F_{116}	10757(2)	$Fu1^{xiv}$ As5 $Fu1^{xiii}$	86.05 (4)
$As2^{vi}$ Fu3 Fu1 ^{vi}	57.02(3)	$As5^{xv}$ $As5$ $Eu1^{ii}$	66 79 (4)
$As1$ — $Eu3$ — $Eu1^{vi}$	112.03 (4)	Zn2—As5—Fu1 ⁱⁱ	64 04 (4)
$As6^{iv}$ —Fu3—Fu1 ^{vi}	131.05 (2)	$E_{II}2^{II}$ As5 $E_{II}1^{II}$	80 29 (2)
$As6^{iii}$ _Fu3_Fu1 ^{vi}	131.05(2)	$Fu2^{i}$ As5 $Fu1^{ii}$	142 30 (5)
$As4^{vii}$ Eu3 Eu1 vi	46 18 (2)	$Fu1^{xiv}$ As5 $Fu1^{ii}$	134 68 (4)
$As \Delta v^{iii} = Fu 3 = Fu 1^{vi}$	46.18 (2)	$Fu1^{xiii}$ As5 $Fu1^{ii}$	77 25 (3)
ANT	TU.10 (2)	Lui —A5J—Bul	11.25 (3)

Zn2 ^{vii} —Eu3—Eu1 ^{vi}	46.56 (2)	$As5^{xv}$ — $As5$ — $Eu1^{i}$	66.79 (4)
Zn2 ^{viii} —Eu3—Eu1 ^{vi}	46.56 (2)	Zn2—As5—Eu1 ⁱ	64.04 (4)
Eu4—Eu3—Eu1 ^{vi}	166.72 (2)	Eu2 ⁱⁱ —As5—Eu1 ⁱ	142.30 (5)
Eu6—Eu3—Eu1 ^{vi}	59.155 (18)	Eu2 ⁱ —As5—Eu1 ⁱ	80.29 (2)
As2 ^{vi} —Eu3—Eu3 ^{ix}	90.0	$Eu1^{xiv}$ —As5— $Eu1^{i}$	77.25 (3)
As1—Eu3—Eu3 ^{ix}	90.0	Eu1 ^{xiii} —As5—Eu1 ⁱ	134.68 (4)
As6 ^{iv} —Eu3—Eu3 ^{ix}	48.08 (2)	Eu1 ⁱⁱ —As5—Eu1 ⁱ	85.21 (4)
As6 ⁱⁱⁱ —Eu3—Eu3 ^{ix}	131.919 (19)	Zn1 ^{xv} —As6—Eu5 ^{xiv}	66.73 (4)
As4 ^{vii} —Eu3—Eu3 ^{ix}	131.297 (19)	Zn1 ^{xv} —As6—Eu5 ^{xiii}	66.73 (4)
As4 ^{viii} —Eu3—Eu3 ^{ix}	48.705 (19)	Eu5 ^{xiv} —As6—Eu5 ^{xiii}	86.72 (4)
Zn2 ^{vii} —Eu3—Eu3 ^{ix}	125.780 (18)	Zn1 ^{xv} —As6—Eu3 ^{xiii}	134.69 (3)
Zn2 ^{viii} —Eu3—Eu3 ^{ix}	54.221 (18)	Eu5 ^{xiv} —As6—Eu3 ^{xiii}	152.24 (5)
Eu4—Eu3—Eu3 ^{ix}	90.0	Eu5 ^{xiii} —As6—Eu3 ^{xiii}	88.14 (3)
Eu6—Eu3—Eu3 ^{ix}	90.001 (1)	Zn1 ^{xv} —As6—Eu3 ^{xiv}	134.69 (3)
Eu1 ^{vi} —Eu3—Eu3 ^{ix}	90.0	Eu5 ^{xiv} —As6—Eu3 ^{xiv}	88.14 (3)
As3—Eu4—As1	179.95 (4)	Eu5 ^{xiii} —As6—Eu3 ^{xiv}	152.24 (5)
As3—Eu4—As3 ⁱ	90.81 (3)	Eu3 ^{xiii} —As6—Eu3 ^{xiv}	83.84 (4)
As1—Eu4—As3 ⁱ	89.23 (3)	$Zn1^{xv}$ —As6—Eu4 ^{xiv}	69.45 (4)
As3—Eu4—As3 ⁱⁱ	90.81 (3)	Eu5 ^{xiv} —As6—Eu4 ^{xiv}	79.41 (2)
As1—Eu4—As3 ⁱⁱ	89.23 (3)	$Eu5^{xiii}$ As6 $Eu4^{xiv}$	136.02 (5)
As3 ⁱ —Eu4—As3 ⁱⁱ	83.79 (4)	Eu3 ^{xiii} —As6—Eu4 ^{xiv}	121.64 (4)
As3—Eu4—As6 ⁱⁱⁱ	87.04 (3)	Eu3 ^{xiv} —As6—Eu4 ^{xiv}	69.23 (3)
As1—Eu4—As6 ⁱⁱⁱ	92.92 (3)	$Zn1^{xv}$ —As6—Eu4 ^{xiii}	69.45 (4)
$As3^{i}$ Eu4 $As6^{iii}$	177.74 (4)	$Eu5^{xiv}$ —As6— $Eu4^{xiii}$	136.02 (5)
As3 ⁱⁱ —Eu4—As6 ⁱⁱⁱ	96.93 (3)	$Eu5^{xiii}$ —As6— $Eu4^{xiii}$	79.41 (2)
$As3$ — $Eu4$ — $As6^{iv}$	87.04 (3)	$Eu3^{xiii}$ As6 $Eu4^{xiii}$	69.23 (3)
$As1$ —Eu4— $As6^{iv}$	92.92 (3)	$Eu3^{xiv}$ —As6— $Eu4^{xiii}$	121.64 (4)
$As3^{i}$ Eu4 $As6^{iv}$	96.93 (3)	$Eu4^{xiv}$ —As6— $Eu4^{xiii}$	82.28 (4)
$As3^{ii}$ —Eu4— $As6^{iv}$	177.74 (4)	$Zn1^{xv}$ —As6—Eu5 ^x	119.13 (6)
$As6^{iii}$ —Eu4—As6 ^{iv}	82.28 (4)	$Eu5^{xiv}$ —As6— $Eu5^{x}$	70.08 (3)
$As3$ — $Fu4$ — $Zn1^{i}$	46.61 (3)	$E_{11}5^{xiii}$ As6 $E_{11}5^{x}$	70.08(3)
As1—Eu4—Zn1 ⁱ	133.37 (3)	$Eu3^{xiii}$ As6 $Eu5^{x}$	82.52 (3)
$As3^{i}$ Eu4 $Zn1^{i}$	80 44 (3)	$Eu3^{xiv}$ —As6— $Eu5^{x}$	82.52 (3)
$As3^{ii}$ Fu4 $Zn1^{i}$	133 75 (4)	Eug^{xiv} As6 Eug^{x}	$138\ 84\ (2)$
$As6^{iii}$ Fu4 $Zn1^{i}$	97 56 (4)	$Fu4^{xii}$ As6 $Fu5^{x}$	138.844(19)
$As6^{iv}$ —Eu4—Zn1 ⁱ	44 49 (3)	$As6^{xv}$ $Zn1$ $As3^{ii}$	119 71 (4)
As3— $Fu4$ — $Zn1$ ⁱⁱ	46.61 (3)	$As6^{xv}$ Zn1 As3 ⁱ	119.71 (4)
As1 $-$ Fu4 $-$ Zn1 ⁱⁱ	133 37 (3)	$As3^{ii}$ $7n1$ $As3^{ii}$	114 49 (8)
$As3^{i}$ Fu4 $Zn1^{ii}$	133,75 (4)	$As6^{xv}$ $Zn1$ $As2$	101 21 (7)
$As3^{ii}$ Fu4 $Zn1^{ii}$	80 44 (3)	$As3^{ii}$ $Zn1$ $As2$	96 70 (5)
$As6^{iii}$ —Fu4— $Zn1^{ii}$	44 49 (3)	$As3^{i}$ $Zn1$ $As2$	96.70 (5)
$As6^{iv}$ —Fu4— $Zn1^{ii}$	97 56 (4)	$As6^{xv}$ $Zn1$ $Fu2$	16040(7)
$7n^{i}$ Fu ⁴ $7n^{i}$	79 91 (4)	$As3^{ii}$ $Zn1$ $Eu2$	66 80 (4)
As3—Fu4— $7n1$	78.17 (4)	$As3^{i}$ $Zn1$ $Eu2$	66 80 (4)
As1 - Eu4 - Zn1	101 88 (4)	As2-Zn1-Fu2	59 19 (5)
As_3^i Fu ₄ $7n^1$	43 49 (2)	$As6^{xv}$ $7n1$ $Fu5^{i}$	66 21 (4)
$As3^{ii}$ _Fu4_Zn1	43.49(2)	$As3^{ii}$ $7n1$ $Fu5^{i}$	155 11 (7)
$As6^{iii}$ _Fu2_7n1	136 45 (2)	$As_{3i} 7n1 Fu_{5i}$	75 93 (4)
	130.73 (2)	1105 - ZIII - EUS	(+) ((+)

As6 ^{iv} —Eu4—Zn1	136.45 (2)	As2—Zn1—Eu5 ⁱ	58.81 (3)
Zn1 ⁱ —Eu4—Zn1	101.07 (4)	Eu2—Zn1—Eu5 ⁱ	100.14 (4)
Zn1 ⁱⁱ —Eu4—Zn1	101.07 (4)	As6 ^{xv} —Zn1—Eu5 ⁱⁱ	66.21 (4)
As3—Eu4—Eu3	126.04 (3)	As3 ⁱⁱ —Zn1—Eu5 ⁱⁱ	75.93 (4)
As1—Eu4—Eu3	53.92 (3)	As3 ⁱ —Zn1—Eu5 ⁱⁱ	155.11 (7)
As3 ⁱ —Eu4—Eu3	126.41 (3)	As2—Zn1—Eu5 ⁱⁱ	58.81 (3)
As3 ⁱⁱ —Eu4—Eu3	126.41 (3)	Eu2—Zn1—Eu5 ⁱⁱ	100.14 (4)
As6 ⁱⁱⁱ —Eu4—Eu3	54.74 (3)	Eu5 ⁱ —Zn1—Eu5 ⁱⁱ	86.29 (5)
As6 ^{iv} —Eu4—Eu3	54.74 (3)	$As6^{xv}$ — $Zn1$ — $Eu4^{i}$	66.06 (4)
Zn1 ⁱ —Eu4—Eu3	97.42 (3)	As3 ⁱⁱ —Zn1—Eu4 ⁱ	126.86 (7)
Zn1 ⁱⁱ —Eu4—Eu3	97.42 (3)	$As3^{i}$ — $Zn1$ — $Eu4^{i}$	61.30 (4)
Zn1—Eu4—Eu3	155.80 (3)	As2—Zn1—Eu4 ⁱ	135.80 (3)
As3—Eu4—Eu2	128.52 (4)	Eu2—Zn1—Eu4 ⁱ	126.90 (4)
As1—Eu4—Eu2	51.53 (3)	Eu5 ⁱ —Zn1—Eu4 ⁱ	78.03 (3)
As3 ⁱ —Eu4—Eu2	53.77 (2)	Eu5 ⁱⁱ —Zn1—Eu4 ⁱ	132.14 (5)
As3 ⁱⁱ —Eu4—Eu2	53.77 (2)	As6 ^{xv} —Zn1—Eu4 ⁱⁱ	66.06 (4)
As6 ⁱⁱⁱ —Eu4—Eu2	128.31 (3)	As3 ⁱⁱ —Zn1—Eu4 ⁱⁱ	61.30 (4)
As6 ^{iv} —Eu4—Eu2	128.31 (3)	As3 ⁱ —Zn1—Eu4 ⁱⁱ	126.86 (7)
Zn1 ⁱ —Eu4—Eu2	133.94 (3)	As2—Zn1—Eu4 ⁱⁱ	135.80 (3)
Zn1 ⁱⁱ —Eu4—Eu2	133.94 (3)	Eu2—Zn1—Eu4 ⁱⁱ	126.90 (4)
Zn1—Eu4—Eu2	50.35 (3)	Eu5 ⁱ —Zn1—Eu4 ⁱⁱ	132.14 (5)
Eu3—Eu4—Eu2	105.44 (3)	Eu5 ⁱⁱ —Zn1—Eu4 ⁱⁱ	78.03 (3)
As3—Eu4—Eu5	57.03 (3)	Eu4 ⁱ —Zn1—Eu4 ⁱⁱ	79.91 (4)
As1—Eu4—Eu5	122.92 (3)	As6 ^{xv} —Zn1—Eu4	133.54 (7)
As3 ⁱ —Eu4—Eu5	129.20 (3)	As3 ⁱⁱ —Zn1—Eu4	60.08 (4)
As3 ⁱⁱ —Eu4—Eu5	129.20 (3)	As3 ⁱ —Zn1—Eu4	60.08 (4)
As6 ⁱⁱⁱ —Eu4—Eu5	48.82 (2)	As2—Zn1—Eu4	125.24 (6)
As6 ^{iv} —Eu4—Eu5	48.82 (2)	Eu2—Zn1—Eu4	66.06 (3)
Zn1 ⁱ —Eu4—Eu5	48.77 (3)	Eu5 ⁱ —Zn1—Eu4	135.94 (3)
Zn1 ⁱⁱ —Eu4—Eu5	48.77 (3)	Eu5 ⁱⁱ —Zn1—Eu4	135.94 (3)
Zn1—Eu4—Eu5	135.20 (3)	Eu4 ⁱ —Zn1—Eu4	78.93 (4)
Eu3—Eu4—Eu5	69.01 (3)	Eu4 ⁱⁱ —Zn1—Eu4	78.93 (4)
Eu2—Eu4—Eu5	174.45 (2)	As2 ⁱⁱ —Zn2—As2 ⁱ	117.66 (8)
As2 ⁱ —Eu5—As2 ⁱⁱ	91.69 (4)	As2 ⁱⁱ —Zn2—As4	109.99 (5)
As2 ⁱ —Eu5—As6 ⁱⁱⁱ	159.31 (4)	As2 ⁱ —Zn2—As4	109.99 (5)
As2 ⁱⁱ —Eu5—As6 ⁱⁱⁱ	87.15 (3)	As2 ⁱⁱ —Zn2—As5	105.73 (5)
As2 ⁱ —Eu5—As6 ^{iv}	87.15 (3)	As2 ⁱ —Zn2—As5	105.73 (5)
As2 ⁱⁱ —Eu5—As6 ^{iv}	159.31 (4)	As4—Zn2—As5	107.07 (7)
As6 ⁱⁱⁱ —Eu5—As6 ^{iv}	86.72 (4)	As2 ⁱⁱ —Zn2—Eu1 ⁱ	163.56 (6)
As2 ⁱ —Eu5—Zn1 ⁱ	57.36 (4)	As2 ⁱ —Zn2—Eu1 ⁱ	78.43 (3)
As2 ⁱⁱ —Eu5—Zn1 ⁱ	116.22 (4)	As4—Zn2—Eu1 ⁱ	64.00 (4)
As6 ⁱⁱⁱ —Eu5—Zn1 ⁱ	104.95 (4)	As5—Zn2—Eu1 ⁱ	64.16 (4)
As6 ^{iv} —Eu5—Zn1 ⁱ	47.06 (4)	As2 ⁱⁱ —Zn2—Eu1 ⁱⁱ	78.43 (3)
As2 ⁱ —Eu5—Zn1 ⁱⁱ	116.22 (4)	As2 ⁱ —Zn2—Eu1 ⁱⁱ	163.56 (6)
As2 ⁱⁱ —Eu5—Zn1 ⁱⁱ	57.36 (4)	As4—Zn2—Eu1 ⁱⁱ	64.00 (4)
As6 ⁱⁱⁱ —Eu5—Zn1 ⁱⁱ	47.06 (4)	As5—Zn2—Eu1 ⁱⁱ	64.16 (4)
$As6^{iv}$ —Eu5—Zn1 ⁱⁱ	104.95 (4)	$Eu1^{i}$ — $Zn2$ — $Eu1^{ii}$	85.31 (4)
Zn1 ⁱ —Eu5—Zn1 ⁱⁱ	86.29 (5)	As2 ⁱⁱ —Zn2—Eu5	59.05 (4)

As2 ⁱ —Eu5—Zn2	45.98 (2)	As2 ⁱ —Zn2—Eu5	59.05 (4)
As2 ⁱⁱ —Eu5—Zn2	45.98 (2)	As4—Zn2—Eu5	124.90 (7)
As6 ⁱⁱⁱ —Eu5—Zn2	131.21 (3)	As5—Zn2—Eu5	128.03 (6)
As6 ^{iv} —Eu5—Zn2	131.21 (3)	Eu1 ⁱ —Zn2—Eu5	137.32 (2)
Zn1 ⁱ —Eu5—Zn2	88.91 (4)	Eu1 ⁱⁱ —Zn2—Eu5	137.32 (2)
Zn1 ⁱⁱ —Eu5—Zn2	88.91 (4)	As2 ⁱⁱ —Zn2—Eu2 ⁱ	114.49 (6)
As2 ⁱ —Eu5—As6 ^x	90.74 (3)	As2 ⁱ —Zn2—Eu2 ⁱ	54.02 (4)
As2 ⁱⁱ —Eu5—As6 ^x	90.74 (3)	As4—Zn2—Eu2 ⁱ	134.91 (4)
As6 ⁱⁱⁱ —Eu5—As6 ^x	109.93 (3)	As5—Zn2—Eu2 ⁱ	53.97 (3)
As6 ^{iv} —Eu5—As6 ^x	109.93 (3)	$Eu1^{i}$ — $Zn2$ — $Eu2^{i}$	71.18 (3)
Zn1 ⁱ —Eu5—As6 ^x	136.67 (2)	Eu1 ⁱⁱ —Zn2—Eu2 ⁱ	118.09 (5)
Zn1 ⁱⁱ —Eu5—As6 ^x	136.67 (2)	Eu5—Zn2—Eu2 ⁱ	85.58 (3)
Zn2—Eu5—As6 ^x	87.06 (4)	As2 ⁱⁱ —Zn2—Eu2 ⁱⁱ	54.02 (4)
As2 ⁱ —Eu5—As3	77.76 (3)	As2 ⁱ —Zn2—Eu2 ⁱⁱ	114.49 (6)
As2 ⁱⁱ —Eu5—As3	77.76 (3)	As4—Zn2—Eu2 ⁱⁱ	134.91 (4)
As6 ⁱⁱⁱ —Eu5—As3	81.81 (3)	As5—Zn2—Eu2 ⁱⁱ	53.97 (3)
As6 ^{iv} —Eu5—As3	81.81 (3)	$Eu1^{i}$ Zn2 $Eu2^{ii}$	118.09 (5)
$Zn1^{i}$ —Eu5—As3	44.51 (2)	$Eu1^{ii}$ — $Zn2$ — $Eu2^{ii}$	71.18 (3)
$Zn1^{ii}$ —Eu5—As3	44.51 (2)	$Eu5$ — $Zn2$ — $Eu2^{ii}$	85.58 (3)
$Z_n^2 = E_{u5}^2 = A_{s3}^2$	76 28 (4)	$Eu2^{i}$ $Zn2$ $Eu2^{ii}$	71 68 (4)
$As6^{x}$ —Eu5—As3	163.35 (4)	$As2^{ii}$ $Zn2$ $Eu3^{vii}$	54.79 (4)
As2 ⁱ —Eu5—Eu5 ^{vii}	142.36 (4)	$As2^{i}$ $Zn2$ $Eu3^{vii}$	115.09 (6)
As2 ⁱⁱ —Eu5—Eu5 ^{vii}	88.30 (3)	$As4$ — $Zn2$ — $Eu3^{vii}$	59.89 (4)
As6 ⁱⁱⁱ —Eu5—Eu5 ^{vii}	58.29 (3)	$As5 - Zn2 - Eu3^{vii}$	139.18 (3)
As6 ^{iv} —Eu5—Eu5 ^{vii}	105.11 (4)	$Eu1^{i}$ $Zn2$ $Eu3^{vii}$	123.56 (5)
$Zn1^{i}$ —Eu5—Eu5 ^{vii}	150.85 (4)	$Eu1^{ii}$ $Zn2$ $Eu3^{vii}$	76.14 (3)
Zn1 ⁱⁱ —Eu5—Eu5 ^{vii}	95.17 (3)	$Eu5$ — $Zn2$ — $Eu3^{vii}$	76.36 (3)
Zn2—Eu5—Eu5 ^{vii}	120.20(3)	$Eu2^{i}$ $Zn2$ $Eu3^{vii}$	161.91 (5)
$As6^{x}$ —Eu5—Eu5 ^{vii}	51.63 (3)	$Eu2^{ii}$ $Zn2$ $Eu3^{vii}$	105.42(2)
$As3$ — $Eu5$ — $Eu5^{vii}$	138.43 (2)	$As2^{ii}$ $Zn2$ $Eu3^{viii}$	115.09 (6)
$As2^{i}$ Eu5 Eu5 V^{iii}	88 30 (3)	As^{2i} Zn^{2} Eu^{3viii}	54 79 (4)
$As2^{ii}$ Eu5 Eu5 V^{iii}	142.36 (4)	As4— $Zn2$ —Eu3 ^{viii}	59.89 (4)
$As6^{iii}$ —Eu5—Eu5 ^{viii}	105 11 (4)	$As5 - Zn2 - Eu3^{viii}$	139 18 (3)
$As6^{iv}$ —Eu5—Eu5 viii	58 29 (3)	Ful^{i} Zn^{2} Ful^{viii}	76 14 (3)
$Zn1^{i}$ Fu5 Fu5 V^{iii}	95 17 (3)	$Fu1^{ii}$ $7n^2$ $Fu3^{viii}$	12356(5)
$Zn1^{ii}$ _Fu5_Fu5 ^{viii}	150 85 (4)	$Fu5 - 7n2 - Fu3^{viii}$	76 36 (3)
Zn^2 —Fu5—Fu5 ^{viii}	120.00(1) 120.20(3)	$Fu2^{i}$ $Tn2$ $Fu3^{viii}$	10542(2)
$A = 6^{x} - F_{11} 5 - F_{11} 5^{v_{111}}$	51 63 (3)	$Fu2^{ii}$ $7n2$ $Fu3^{viii}$	163.12(2) 161.91(5)
$As3 = Fu5 = Fu5^{viii}$	13843(2)	$Fu3^{vii} - 7n2 - Fu3^{viii}$	71 56 (4)
$Fu5^{vii} Fu5 Fu5^{viii}$	69 86 (3)	$A \le 1^{xiv} - 7n^3 - A \le 1^{xiii}$	123 84 (9)
$A s 2^{i}$ Fu 5 Fu 4	109.95 (3)	$A \le 1^{\text{xiv}} - 7n3 - A \le 4$	123.04(5) 114 73(5)
Δs^{2i} Fu ⁵ Fu ⁴	109.95(3)	$\Delta s 1^{xiii} 7n3 \Delta s 4$	114.73(5)
As2 - Eu3 - Eu4 $As6^{iii} - Eu5 - Eu4$	109.95 (3) 51 77 (2)	$As1 - 2ii3 - As4$ $As1^{xiv} - 7n3 - Fu1^{ii}$	114.75(3) 154.86(7)
$As6^{iv}$ _Fu5_Fu4	51 77 (2)	$As1^{xiii}$ $7n3$ $Fu1^{ii}$	75 26 (4)
$7n1^{i}$ Fu5 Fu4	53.21 (3)	As4 $-7n3$ $-Fu1ii$	61 51 (4)
$2n1^{ii}$ Eu5 Eu4	53.21(3)	$\Delta c 1^{xiv} - 7n3 - Fu 1^{i}$	75 26 (4)
2n1 - Eu - Eu - Eu + 7n2 - Eu - E	123 33 (4)	$As1^{xiii} 7n3 Fu1^{i}$	154 86 (7)
$\Delta = 6^{x}$ Eu5 Eu 4	140.61 (3)	$A_{s}A = 7n^3 \text{Eul}^{1}$	61 51 (A)
ASU —EUJ—EUH	149.01 (3)	AST-LIIJ-LUI	01.51 (4)

As3—Eu5—Eu4	47.04 (3)	Eu1 ⁱⁱ —Zn3—Eu1 ⁱ	82.18 (4)
Eu5 ^{vii} —Eu5—Eu4	105.33 (3)	As1 ^{xiv} —Zn3—Eu6 ^{xiii}	129.29 (7)
Eu5 ^{viii} —Eu5—Eu4	105.33 (3)	As1 ^{xiii} —Zn3—Eu6 ^{xiii}	61.33 (4)
As1 ^{xi} —Eu6—As1	180.0	As4—Zn3—Eu6 ^{xiii}	60.50 (3)
As1 ^{xi} —Eu6—As4 ^{vii}	87.28 (3)	Eu1 ⁱⁱ —Zn3—Eu6 ^{xiii}	72.57 (3)
As1—Eu6—As4 ^{vii}	92.72 (3)	Eu1 ⁱ —Zn3—Eu6 ^{xiii}	121.98 (5)
As1 ^{xi} —Eu6—As4 ^{iv}	92.72 (3)	$As1^{xiv}$ — $Zn3$ — $Eu6^{xiv}$	61.33 (4)
As1—Eu6—As4 ^{iv}	87.28 (3)	As1 ^{xiii} —Zn3—Eu6 ^{xiv}	129.29 (7)
As4 ^{vii} —Eu6—As4 ^{iv}	180.00 (5)	As4—Zn3—Eu6 ^{xiv}	60.50 (3)
As1 ^{xi} —Eu6—As4 ^{viii}	87.28 (3)	Eu1 ⁱⁱ —Zn3—Eu6 ^{xiv}	121.98 (5)
As1—Eu6—As4 ^{viii}	92.72 (3)	Eu1 ⁱ —Zn3—Eu6 ^{xiv}	72.57 (3)
As4 ^{vii} —Eu6—As4 ^{viii}	86.96 (4)	Eu6 ^{xiii} —Zn3—Eu6 ^{xiv}	78.21 (4)

Symmetry codes: (i) -*x*+1/2, -*y*+1/2, -*z*+1; (ii) -*x*+1/2, -*y*-1/2, -*z*+1; (iii) *x*-1/2, *y*-1/2, *z*; (iv) *x*-1/2, *y*+1/2, *z*; (v) -*x*, -*y*, -*z*+1; (vi) *x*, *y*, *z*-1; (vii) -*x*+1/2, -*y*-1/2, -*z*; (viii) -*x*+1/2, -*y*+1/2, -*z*; (ix) *x*, *y*+1, *z*; (x) -*x*+1, -*y*, -*z*; (xi) -*x*, -*y*, -*z*; (xii) *x*, *y*, *z*+1; (xiii) *x*+1/2, *y*-1/2, *z*; (xiv) *x*+1/2, *y*+1/2, *z*; (x) -*x*+1, -*y*, -*z*; (xii) -*x*, -*y*, -*z*+1; (x) -*x*+1/2, -*y*+1/2, *z*; (x) -*x*+1, -*y*, -*z*; (x) -*x*, -*y*, -*z*; (x) -*x*+1, -*y*, -*z*; (x) -*x*+1, -*y*, -*z*; (x) -*x*+1, -*y*, -*z*; (x) -*x*+1, -*y*, -*z*+1; (x) -*x*+1/2, -*y*+1/2, *z*; (x) -*x*+1, -*y*, -*z*; (x) -*x*+1, -*y*, -*z*+1.