metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

trans-Bis{1,2-bis[bis(2-methoxyethyl)phosphino]ethane}dichloridoiron(II)

Justin L. Crossland, Lev N. Zakharov and David R. Tyler*

Department of Chemistry, 1253 University of Oregon, Eugene, Oregon 97403-1253, USA

Correspondence e-mail: dtyler@uoregon.edu

Received 27 January 2010; accepted 29 January 2010

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.034; wR factor = 0.094; data-to-parameter ratio = 21.1.

The Fe atom in the title compound, $[FeCl_2(C_{14}H_{32}O_4P_2)_2]$, has a distorted octahedral coordination with four P atoms in equatorial positions and two Cl atoms in apical positions.

Related literature

For the applications of similar complexes in dinitrogen binding, see: Gilbertson *et al.* (2007); Lyon (1993); MacKay & Fryzuk (2004). For related structures, see: Herbowski & Deutsch (1993); Miller *et al.* (2002).

Experimental

Crystal data	
$[FeCl_2(C_{14}H_{32}O_4P_2)_2]$ $M_r = 779.42$ Monoclinic, $P2_1/c$ a = 12.3417 (7) Å	$b = 12.1825 (7) \text{ Å} c = 25.3621 (15) \text{ Å} \beta = 100.124 (1)^{\circ} V = 3753.9 (4) \text{ Å}^{3}$

Z = 4
Mo Kα radiation
$\mu = 0.76 \text{ mm}^{-1}$

Data collection

Bruker APEX CCD area-detector	41489 measured reflections
diffractometer	8193 independent reflections
Absorption correction: multi-scan	7057 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1995)	$R_{\rm int} = 0.033$
$T_{\rm min} = 0.794, T_{\rm max} = 0.935$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ 388 parameters $wR(F^2) = 0.094$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 1.70 \text{ e Å}^{-3}$ 8193 reflections $\Delta \rho_{min} = -0.52 \text{ e Å}^{-3}$

T = 173 K

 $0.32 \times 0.19 \times 0.09 \text{ mm}$

Table 1 Selected geometric parameters (Å, °).

Fe1-P1	2.2581 (6)	Fe1-P4	2.2814 (5)
Fe1-P2	2.2770 (5)	Fe1-Cl2	2.3491 (5)
Fe1-P3	2.2792 (6)	Fe1-Cl1	2.3529 (5)
P1-Fe1-P3	175.71 (2)	Cl2-Fe1-Cl1	179.11 (2)
P2-Fe1-P4	178.82 (2)		

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We thank the NSF for funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2718).

References

Bruker (2000). SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.

- Gilbertson, J. D., Szymczak, N. K., Crossland, J. L., Miller, W. K., Lyon, D. K., Foxman, B. M., Davis, J. & Tyler, D. R. (2007). *Inorg. Chem.* 46, 1205–1214.
- Herbowski, A. & Deutsch, E. A. (1993). J. Organomet. Chem. 460, 19-23.
- Lyon, D. K. (1993). Fe Phosphine Complexes for N₂ Removal from Natural Gas. US Patent No. 5 225 174.

MacKay, B. A. & Fryzuk, M. D. (2004). Chem. Rev. 104, 385-401.

- Miller, W. K., Gilbertson, J. D., Leiva-Paredes, C., Bernatis, P. R., Weakley, T. J. R., Lyon, D. K. & Tyler, D. R. (2002). *Inorg. Chem.* **41**, 5453–5465.
- Sheldrick, G. M. (1995). SADABS, University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2010). E66, m256 [doi:10.1107/S1600536810003727]

trans-Bis{1,2-bis[bis(2-methoxyethyl)phosphino]ethane}dichloridoiron(II)

Justin L. Crossland, Lev N. Zakharov and David R. Tyler

S1. Comment

Numerous iron-diphosphine complexes have shown the ability to coordinate dinitrogen (MacKay & Fryzuk, 2004). Because of this ability, these complexes have received interest as dinitrogen scrubbers for nitrogen-containing natural gas streams (Lyon, 1993). One requirement for a successful dinitrogen scrubber is high solubility in water, a solvent in which methane has limited solubility. Research in our group has explored the synthesis of iron-diphosphine complexes containing water-soluble phosphine ligands, specifically diphosphine ligands containing hydroxyl and methoxy functional groups (Gilbertson *et al.*, 2007; Miller *et al.*, 2002). One problem facing hydroxyl functionalized phosphine ligands is that the hydroxyl groups have been shown in some cases to coordinate to the metal center. The methoxy functionalized phosphines are not plagued by this problem and thus have been our recent focus. Here we report the synthesis and structural characterization of a water-soluble iron dichloride phosphine complex, *trans*-Fe(DMeOEtPE)₂Cl₂ (DMeOEtPE=1,2-bis(dimethoxyethylphosphino)ethane).

The Fe atom in *trans*-Fe(DMeOEtPE)₂Cl₂ has a distorted octahedral coordination with four P atoms in equatorial and two Cl atoms in apical positions (Fig. 1). The Fe(1)—P distances are in the range 2.2581 (6)-2.2814 (5) Å, and the Fe(1) —Cl(1,2) distances are 2.3529 (5) and 2.3491 (5) Å, respectively.

S2. Experimental

1,2-bis(dimethoxyethylphosphino)ethane (DMeOEtPE) was synthesized as previously reported (Herbowski & Deutsch, 1993). *trans*-Fe(DMeOEtPE)₂Cl₂ was prepared by adding DMeOEtPE (0.826 g, 2.53 mmol) to a stirring solution of FeCl₂4H₂O (0.25 g, 1.26 mmol) in 30 ml of toluene under an argon atmosphere. The reaction was allowed to stir at room temperature for 24 hrs. The resulting green solution was carefully decanted into a clean flask, leaving a small amount of oily, red impurity in the original vessel. Approximately 20 ml of the toluene was removed under vacuum followed by addition of hexane (50 ml). Vacuum was applied to remove some of the hexane and chill the mixture. A green crystalline product was obtained by filtration followed by a hexane rinse and drying in vacuo. Yield 0.73 g, 74%. ³¹P{¹H} NMR (toluene-d⁸) at 233 K: 55 ppm.

S3. Refinement

The H atoms were positioned geometrically and refined using the riding model approximation, C-H = 0.99 and 0.98 Å; $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(C)$, respectively for CH_2 and CH_3 groups. There are eight flexible ($CH_2CH_2OCH_3$) groups in the structure and as a result there are elongations of displacement ellipsoids for some atoms. On the residial density there is one peak, 1.699 e Å³, corresponding to a second position for the O(4) atom. The treatment of the disorder shows that the O(4) atom in the terminal C(15)O(4) C(16) group is disordered over two postions in ratio 84/16. Such refinement doesn't significantly improve the final crystal structure and the second possible position for the disordered C(15)O(4) C(16) group was not taken into consideration.

Figure 1

The structure of the title compound with 50% probability displacement ellipsoids and the atom-numbering scheme. The H atoms are omitted for clarity.

trans-Bis{1,2-bis[bis(2-methoxyethyl)phosphino]ethane}dichloridoiron(II)

Crystal data	
$[FeCl_{2}(C_{14}H_{32}O_{4}P_{2})_{2}]$ $M_{r} = 779.42$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc $a = 12.3417 (7) \text{ Å}$ $b = 12.1825 (7) \text{ Å}$ $c = 25.3621 (15) \text{ Å}$ $\beta = 100.124 (1)^{\circ}$ $V = 3753.9 (4) \text{ Å}^{3}$ $Z = 4$	F(000) = 1664 $D_x = 1.379 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5483 reflections $\theta = 2.3-27.0^{\circ}$ $\mu = 0.76 \text{ mm}^{-1}$ T = 173 K Block, light green $0.32 \times 0.19 \times 0.09 \text{ mm}$
Data collection	
Bruker APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans	Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1995) $T_{min} = 0.794$, $T_{max} = 0.935$ 41489 measured reflections 8193 independent reflections 7057 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.033$	$k = -15 \rightarrow 15$
$\theta_{\rm max} = 27.0^{\circ}, \theta_{\rm min} = 1.6^{\circ}$	$l = -32 \rightarrow 32$
$h = -15 \rightarrow 15$	

Refinement

5	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from
$wR(F^2) = 0.094$	neighbouring sites
<i>S</i> = 1.03	H-atom parameters constrained
8193 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0481P)^2 + 2.6254P]$
388 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.70 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$
Fe1	0.22245 (2)	0.97476 (2)	0.194352 (10)	0.01452 (8)
Cl1	0.08642 (4)	0.83773 (4)	0.187910 (19)	0.02216 (11)
Cl2	0.35615 (4)	1.11358 (4)	0.200262 (19)	0.02214 (11)
P1	0.30134 (4)	0.87521 (4)	0.136197 (19)	0.01708 (11)
P2	0.33088 (4)	0.87234 (4)	0.257867 (19)	0.01768 (11)
P3	0.13372 (4)	1.06472 (4)	0.253109 (19)	0.01742 (11)
P4	0.11197 (4)	1.07416 (4)	0.130031 (19)	0.01745 (11)
01	0.19237 (15)	0.71639 (14)	-0.00460 (6)	0.0400 (4)
O2	0.54120 (13)	1.03024 (14)	0.07202 (7)	0.0341 (4)
O3	0.26896 (14)	0.60274 (13)	0.26502 (7)	0.0352 (4)
O4	0.57019 (19)	0.95126 (18)	0.38323 (9)	0.0639 (6)
05	0.27939 (14)	1.12839 (14)	0.37116 (6)	0.0341 (4)
O6	-0.03861 (15)	0.96739 (14)	0.36821 (7)	0.0377 (4)
07	-0.18270 (12)	0.98052 (14)	0.03537 (6)	0.0315 (4)
08	0.15366 (13)	1.29630 (13)	0.01486 (6)	0.0295 (3)
C1	0.35201 (17)	0.74704 (16)	0.17059 (8)	0.0217 (4)
H1A	0.2895	0.6989	0.1748	0.026*
H1B	0.4001	0.7071	0.1497	0.026*
C2	0.41655 (16)	0.77930 (17)	0.22520 (8)	0.0213 (4)
H2A	0.4858	0.8165	0.2209	0.026*
H2B	0.4355	0.7130	0.2475	0.026*
C3	0.00598 (16)	1.12040 (17)	0.21359 (8)	0.0217 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H3A	-0.0480	1.0606	0.2034	0.026*
H3B	-0.0269	1.1751	0.2350	0.026*
C4	0.03478 (17)	1.17450 (17)	0.16345 (8)	0.0222 (4)
H4A	0.0801	1.2408	0.1734	0.027*
H4B	-0.0333	1.1967	0.1390	0.027*
C5	0.21964 (16)	0.82790 (17)	0.07278 (8)	0.0214 (4)
H5A	0.1470	0.8038	0.0800	0.026*
H5B	0.2066	0.8916	0.0483	0.026*
C6	0.26683 (17)	0.73570 (17)	0.04360 (8)	0.0245 (4)
H6A	0.3398	0.7568	0.0358	0.029*
H6B	0.2756	0.6685	0.0659	0.029*
C7	0.2245 (3)	0.6320 (2)	-0.03610(11)	0.0463 (7)
H7A	0.1692	0.6236	-0.0687	0.069*
H7B	0.2310	0.5632	-0.0158	0.069*
H7C	0.2957	0.6503	-0.0459	0.069*
C8	0.43141 (16)	0.92093 (18)	0.11705 (8)	0.0241 (4)
H8A	0.4839	0.9362	0.1505	0.029*
H8B	0.4615	0.8584	0.0993	0.029*
C9	0.43092 (18)	1.01955 (19)	0.08110 (9)	0.0274 (5)
H9A	0.3796	1.0081	0.0469	0.033*
H9B	0.4081	1.0862	0.0987	0.033*
C10	0.5572 (2)	1.1256 (2)	0.04272 (10)	0.0396 (6)
H10A	0.6340	1.1288	0.0375	0.059*
H10B	0.5405	1.1906	0.0625	0.059*
H10C	0.5084	1.1234	0.0078	0.059*
C11	0.26345 (18)	0.78176 (18)	0.30135 (9)	0.0267 (5)
H11A	0.2683	0.8187	0.3365	0.032*
H11B	0.1844	0.7774	0.2854	0.032*
C12	0.30510 (19)	0.66529 (18)	0.31191 (9)	0.0305 (5)
H12A	0.3865	0.6648	0.3207	0.037*
H12B	0.2758	0.6336	0.3425	0.037*
C13	0.3024 (3)	0.4922 (2)	0.27114 (13)	0.0592 (9)
H13A	0.2757	0.4521	0.2379	0.089*
H13B	0.2719	0.4590	0.3005	0.089*
H13C	0.3830	0.4885	0.2793	0.089*
C14	0.43117 (18)	0.94582 (18)	0.30686 (9)	0.0277 (5)
H14A	0.4756	0.9927	0.2869	0.033*
H14B	0.3900	0.9954	0.3272	0.033*
C15	0.5095 (2)	0.8796 (2)	0.34673 (10)	0.0425 (6)
H15A	0.4679	0.8278	0.3657	0.051*
H15B	0.5594	0.8367	0.3281	0.051*
C16	0.6081 (3)	0.9017 (3)	0.43294 (12)	0.0707 (10)
H16A	0.6508	0.9551	0.4570	0.106*
H16B	0.6549	0.8388	0.4280	0.106*
H16C	0.5452	0.8767	0.4485	0.106*
C17	0.18716 (18)	1.19478 (17)	0.28572 (8)	0.0245 (4)
H17A	0.1977	1.2466	0.2570	0.029*
H17B	0.1287	1.2259	0.3034	0.029*

C18	0.29249 (18)	1.19403 (18)	0.32654 (8)	0.0263 (4)
H18A	0.3533	1.1646	0.3100	0.032*
H18B	0.3117	1.2700	0.3386	0.032*
C19	0.3712 (2)	1.1381 (2)	0.41344 (9)	0.0408 (6)
H19A	0.3596	1.0917	0.4435	0.061*
H19B	0.3792	1.2147	0.4252	0.061*
H19C	0.4380	1.1145	0.4007	0.061*
C20	0.08209 (18)	0.98752 (17)	0.30572 (8)	0.0233 (4)
H20A	0.0556	0.9153	0.2908	0.028*
H20B	0.1447	0.9737	0.3352	0.028*
C21	-0.00960 (18)	1.04069 (18)	0.32942 (9)	0.0263 (5)
H21A	0.0156	1.1115	0.3464	0.032*
H21B	-0.0740	1.0548	0.3010	0.032*
C22	-0.1338 (2)	1.0037 (2)	0.38722 (10)	0.0391 (6)
H22A	-0.1518	0.9515	0.4138	0.059*
H22B	-0.1956	1.0084	0.3572	0.059*
H22C	-0.1199	1.0761	0.4038	0.059*
C23	0.00492 (16)	0.99868 (17)	0.08353 (8)	0.0228 (4)
H23A	0.0312	0.9902	0.0491	0.027*
H23B	-0.0010	0.9241	0.0983	0.027*
C24	-0.11012 (17)	1.04770 (19)	0.07170 (9)	0.0262 (4)
H24A	-0.1391	1.0552	0.1055	0.031*
H24B	-0.1066	1.1218	0.0561	0.031*
C25	-0.2284 (2)	0.8934 (2)	0.06156 (10)	0.0376 (6)
H25A	-0.2776	0.8497	0.0350	0.056*
H25B	-0.2702	0.9237	0.0877	0.056*
H25C	-0.1691	0.8466	0.0800	0.056*
C26	0.17307 (17)	1.16139 (17)	0.08401 (8)	0.0228 (4)
H26A	0.2262	1.2118	0.1055	0.027*
H26B	0.2150	1.1140	0.0631	0.027*
C27	0.09244 (18)	1.22924 (18)	0.04524 (9)	0.0262 (5)
H27A	0.0422	1.1805	0.0211	0.031*
H27B	0.0477	1.2758	0.0652	0.031*
C28	0.0831 (2)	1.3495 (2)	-0.02759 (10)	0.0394 (6)
H28A	0.1271	1.3948	-0.0478	0.059*
H28B	0.0310	1.3961	-0.0129	0.059*
H28C	0.0426	1.2943	-0.0514	0.059*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.01472 (14)	0.01411 (14)	0.01440 (14)	-0.00007 (10)	0.00165 (10)	0.00078 (10)
Cl1	0.0221 (2)	0.0208 (2)	0.0230 (2)	-0.00560 (18)	0.00258 (18)	0.00148 (18)
Cl2	0.0229 (2)	0.0229 (2)	0.0202 (2)	-0.00762 (18)	0.00275 (18)	-0.00048 (18)
P1	0.0166 (2)	0.0176 (2)	0.0168 (2)	0.00109 (18)	0.00235 (18)	-0.00022 (18)
P2	0.0182 (2)	0.0183 (2)	0.0160 (2)	0.00186 (19)	0.00133 (19)	0.00167 (18)
P3	0.0191 (2)	0.0169 (2)	0.0163 (2)	0.00138 (19)	0.00322 (19)	0.00023 (18)
P4	0.0183 (2)	0.0175 (2)	0.0160 (2)	0.00196 (19)	0.00166 (18)	0.00139 (18)

supporting information

01	0.0503 (11)	0.0377 (10)	0.0264 (8)	0.0136 (8)	-0.0088 (8)	-0.0137 (7)
O2	0.0260 (8)	0.0392 (9)	0.0398 (9)	-0.0014 (7)	0.0135 (7)	0.0062 (7)
O3	0.0346 (9)	0.0241 (8)	0.0437 (10)	0.0014 (7)	-0.0018 (7)	0.0085 (7)
O4	0.0736 (15)	0.0545 (13)	0.0500 (13)	-0.0061 (11)	-0.0268 (11)	-0.0005 (10)
O5	0.0364 (9)	0.0427 (10)	0.0219 (8)	-0.0054 (7)	0.0012 (7)	0.0022 (7)
O6	0.0466 (10)	0.0339 (9)	0.0398 (10)	0.0134 (8)	0.0277 (8)	0.0145 (7)
O7	0.0244 (8)	0.0394 (9)	0.0278 (8)	-0.0064 (7)	-0.0036 (6)	0.0024 (7)
08	0.0307 (8)	0.0320 (8)	0.0246 (8)	-0.0033 (7)	0.0017 (6)	0.0117 (6)
C1	0.0250 (10)	0.0188 (10)	0.0207 (10)	0.0052 (8)	0.0028 (8)	0.0005 (8)
C2	0.0187 (10)	0.0227 (10)	0.0220 (10)	0.0053 (8)	0.0025 (8)	0.0028 (8)
C3	0.0197 (10)	0.0243 (10)	0.0211 (10)	0.0065 (8)	0.0039 (8)	0.0004 (8)
C4	0.0236 (10)	0.0206 (10)	0.0214 (10)	0.0055 (8)	0.0014 (8)	0.0012 (8)
C5	0.0214 (10)	0.0231 (10)	0.0189 (10)	0.0025 (8)	0.0011 (8)	-0.0026 (8)
C6	0.0275 (11)	0.0246 (11)	0.0212 (10)	0.0006 (9)	0.0037 (8)	-0.0025 (8)
C7	0.0630 (18)	0.0407 (15)	0.0338 (14)	0.0007 (13)	0.0046 (13)	-0.0168 (11)
C8	0.0185 (10)	0.0291 (11)	0.0253 (11)	0.0011 (8)	0.0056 (8)	-0.0006 (9)
C9	0.0239 (11)	0.0335 (12)	0.0262 (11)	0.0010 (9)	0.0084 (9)	0.0023 (9)
C10	0.0457 (15)	0.0380 (14)	0.0393 (14)	-0.0083 (11)	0.0187 (12)	0.0014 (11)
C11	0.0253 (11)	0.0299 (12)	0.0258 (11)	0.0038 (9)	0.0074 (9)	0.0096 (9)
C12	0.0298 (12)	0.0294 (12)	0.0323 (12)	0.0027 (9)	0.0057 (9)	0.0131 (9)
C13	0.081 (2)	0.0315 (15)	0.062 (2)	0.0152 (15)	0.0033 (17)	0.0078 (14)
C14	0.0305 (12)	0.0256 (11)	0.0232 (11)	0.0013 (9)	-0.0056 (9)	-0.0031 (9)
C15	0.0469 (15)	0.0352 (14)	0.0361 (14)	0.0069 (11)	-0.0184 (11)	-0.0024 (11)
C16	0.084 (3)	0.079 (2)	0.0369 (16)	0.004 (2)	-0.0216 (16)	0.0008 (16)
C17	0.0288 (11)	0.0191 (10)	0.0256 (11)	0.0014 (8)	0.0049 (9)	-0.0036 (8)
C18	0.0327 (12)	0.0220 (10)	0.0239 (11)	-0.0015 (9)	0.0036 (9)	-0.0031 (8)
C19	0.0482 (15)	0.0464 (15)	0.0239 (12)	-0.0013 (12)	-0.0041 (11)	-0.0022 (11)
C20	0.0289 (11)	0.0212 (10)	0.0207 (10)	0.0035 (8)	0.0075 (8)	0.0027 (8)
C21	0.0296 (11)	0.0262 (11)	0.0251 (11)	0.0060 (9)	0.0102 (9)	0.0056 (9)
C22	0.0386 (14)	0.0470 (15)	0.0361 (13)	0.0066 (12)	0.0183 (11)	0.0061 (11)
C23	0.0222 (10)	0.0234 (10)	0.0206 (10)	0.0021 (8)	-0.0026 (8)	-0.0019 (8)
C24	0.0214 (10)	0.0299 (11)	0.0256 (11)	0.0013 (9)	-0.0008 (8)	0.0009 (9)
C25	0.0300 (13)	0.0387 (14)	0.0448 (15)	-0.0063 (10)	0.0083 (11)	-0.0005 (11)
C26	0.0230 (10)	0.0253 (10)	0.0201 (10)	0.0031 (8)	0.0033 (8)	0.0070 (8)
C27	0.0263 (11)	0.0274 (11)	0.0245 (11)	0.0011 (9)	0.0030 (8)	0.0080 (9)
C28	0.0464 (15)	0.0368 (14)	0.0329 (13)	0.0002 (11)	0.0009 (11)	0.0169 (11)

Geometric parameters (Å, °)

Fe1—P1	2.2581 (6)	C8—H8B	0.9900
Fe1—P2	2.2770 (5)	С9—Н9А	0.9900
Fe1—P3	2.2792 (6)	С9—Н9В	0.9900
Fe1—P4	2.2814 (5)	C10—H10A	0.9800
Fe1—Cl2	2.3491 (5)	C10—H10B	0.9800
Fe1—Cl1	2.3529 (5)	C10—H10C	0.9800
P1—C5	1.835 (2)	C11—C12	1.517 (3)
P1—C8	1.843 (2)	C11—H11A	0.9900
P1—C1	1.843 (2)	C11—H11B	0.9900

P2—C14	1.827 (2)	C12—H12A	0.9900
P2—C2	1.843 (2)	C12—H12B	0.9900
P2—C11	1.857 (2)	C13—H13A	0.9800
P3—C20	1.836 (2)	C13—H13B	0.9800
P3—C3	1 842 (2)	C13—H13C	0 9800
P3-C17	1.812(2) 1 854(2)	C14-C15	1.505(3)
P4—C26	1.031(2) 1.836(2)	C14—H14A	0.9900
P4—C4	1.030(2) 1.845(2)	C14—H14B	0.9900
$PA = C^2$	1.043(2) 1.853(2)	C15 H15A	0.9900
14-023	1.000(2)	C15 H15B	0.9900
01 - 06	1.401(3)	C16 H16A	0.9900
01 - 00	1.414(2)	C16 H16P	0.9800
02 - 010	1.411(3)		0.9800
02 - 09	1.426 (3)	C16—H16C	0.9800
03-013	1.409 (3)		1.513 (3)
03-012	1.417 (3)		0.9900
04—C15	1.391 (3)	С17—Н17В	0.9900
O4—C16	1.402 (4)	C18—H18A	0.9900
O5—C18	1.418 (3)	C18—H18B	0.9900
O5—C19	1.421 (3)	C19—H19A	0.9800
O6—C22	1.417 (3)	C19—H19B	0.9800
O6—C21	1.420 (3)	C19—H19C	0.9800
O7—C25	1.421 (3)	C20—C21	1.517 (3)
O7—C24	1.425 (3)	C20—H20A	0.9900
O8—C28	1.417 (3)	С20—Н20В	0.9900
O8—C27	1.427 (2)	C21—H21A	0.9900
C1—C2	1.523 (3)	C21—H21B	0.9900
C1—H1A	0.9900	C22—H22A	0.9800
C1—H1B	0.9900	C22—H22B	0.9800
C2—H2A	0.9900	C22—H22C	0.9800
C2—H2B	0.9900	C23—C24	1.521 (3)
C3—C4	1.529 (3)	C23—H23A	0.9900
С3—НЗА	0.9900	C23—H23B	0.9900
С3—Н3В	0.9900	C24—H24A	0.9900
C4—H4A	0 9900	C24—H24B	0 9900
C4—H4B	0.9900	C25—H25A	0.9800
C5-C6	1517(3)	C25—H25B	0.9800
C5H5A	0.9900	C25_H25C	0.9800
C5 H5B	0.9900	C26 C27	1.515(3)
	0.9900	$C_{20} = C_{27}$	1.313(3)
Cé Hép	0.9900	C_{20} H_{20} H_{20}	0.9900
	0.9900		0.9900
C_{I} Π_{I} Π_{I	0.9800	$C_2 / - \Pi_2 / A$	0.9900
C = H/B	0.9800	$C_2 = H_2 B$	0.9900
$C = \frac{1}{2}$	0.9800	C20—H28A	0.9800
	1.508 (3)		0.9800
Съ—нъа	0.9900	C28—H28C	0.9800
P1—Fe1—P2	84.29 (2)	C12—C11—H11A	107.5
P1—Fe1—P3	175.71 (2)	P2—C11—H11A	107.5

P2—Fe1—P3	95.23 (2)	C12—C11—H11B	107.5
P1—Fe1—P4	95.17 (2)	P2—C11—H11B	107.5
P2—Fe1—P4	178.82 (2)	H11A—C11—H11B	107.0
P3—Fe1—P4	85.23 (2)	O3—C12—C11	107.94 (18)
P1—Fe1—Cl2	92.85 (2)	O3—C12—H12A	110.1
P2—Fe1—Cl2	91.75 (2)	C11—C12—H12A	110.1
P3—Fe1—Cl2	91.43 (2)	03—C12—H12B	110.1
P4—Fe1—C12	89 33 (2)	C11 - C12 - H12B	110.1
P1— $Fe1$ — $C11$	87 59 (2)	H12A - C12 - H12B	108.4
P2— $Fe1$ — $C11$	89.07 (2)	$03-C13-H13\Delta$	109.5
$P_3 = F_{e1} = C_{11}$	88.14 (2)	$O_3 C_{13} H_{13}B$	109.5
P_{4} Fe1 C11	80.85 (2)	U12A C12 U12P	109.5
$\begin{array}{cccc} \Gamma 4 - \Gamma c \Pi \\ \Gamma 2 & \Gamma - c \Pi \\ \Gamma 1 & \Gamma 1 \\ \Gamma $	69.65(2)	02 C12 U12C	109.5
C_{12} —rei— C_{11}	1/9.11(2) 102.52(10)		109.5
C_{2}	103.32(10)	HI3A—CI3—HI3C	109.5
	103.72 (9)	HI3B—CI3—HI3C	109.5
C8—PI—CI	98.16 (10)	C15—C14—P2	118.23 (16)
C5—P1—Fe1	120.51 (7)	C15—C14—H14A	107.8
C8—P1—Fe1	120.35 (7)	P2—C14—H14A	107.8
C1—P1—Fe1	107.17 (7)	C15—C14—H14B	107.8
C14—P2—C2	103.50 (10)	P2—C14—H14B	107.8
C14—P2—C11	102.01 (11)	H14A—C14—H14B	107.1
C2—P2—C11	104.70 (10)	O4—C15—C14	108.5 (2)
C14—P2—Fe1	117.16 (7)	O4—C15—H15A	110.0
C2—P2—Fe1	109.34 (6)	C14—C15—H15A	110.0
C11—P2—Fe1	118.47 (7)	O4—C15—H15B	110.0
C20—P3—C3	102.18 (10)	C14—C15—H15B	110.0
C20—P3—C17	104.79 (10)	H15A—C15—H15B	108.4
C3—P3—C17	97.55 (10)	O4—C16—H16A	109.5
C20—P3—Fe1	119.80(7)	O4—C16—H16B	109.5
C3—P3—Fe1	106.55 (7)	H16A—C16—H16B	109.5
C17—P3—Fe1	121.90 (7)	O4—C16—H16C	109.5
C26—P4—C4	102.21 (9)	H16A—C16—H16C	109.5
$C_{26} - P_{4} - C_{23}$	102.07(10)	H16B—C16—H16C	109.5
C4 - P4 - C23	104 67 (9)	C18 - C17 - P3	119 71 (15)
C26—P4—Fe1	120.08(7)	C18 - C17 - H17A	107.4
C4 - P4 - Fe1	108.37(6)	P3H17A	107.1
C_{3} P4 Fe1	100.37(0) 117.48(7)	C18 - C17 - H17B	107.4
C_{23} C_{14} C_{6}	117.46(7) 114.15(10)	P3 C17 H17B	107.4
$C_{1} = 0$	114.13(19) 112.74(19)	$\frac{13-17-117}{117}$	107.4
$C_{10} = 02 = C_{9}$	112.74(10) 112.2(2)	$n_1/A = C_1/= n_1/B$	100.9
C15 - 03 - C12	112.2(2)	05 - 018 - 017	100.(
C13 - 04 - C10	112.0 (2)	05—C18—H18A	109.6
C18 - 05 - C19	111.58 (18)	CI/-CI8HI8A	109.6
C22—O6—C21	111.39 (17)		109.6
$C_{25} = O/-C_{24}$	112.52 (17)	C1/-C18-H18B	109.6
C28—O8—C27	111.06 (17)	H18A—C18—H18B	108.1
C2—C1—P1	106.94 (14)	O5—C19—H19A	109.5
C2—C1—H1A	110.3	O5—C19—H19B	109.5
P1—C1—H1A	110.3	H19A—C19—H19B	109.5

C2—C1—H1B	110.3	O5—C19—H19C	109.5
P1—C1—H1B	110.3	H19A—C19—H19C	109.5
H1A—C1—H1B	108.6	H19B—C19—H19C	109.5
C1—C2—P2	108.53 (13)	C21—C20—P3	116.59 (14)
C1—C2—H2A	110.0	C21—C20—H20A	108.1
P2—C2—H2A	110.0	P3—C20—H20A	108.1
C1—C2—H2B	110.0	C21—C20—H20B	108.1
P2—C2—H2B	110.0	P3—C20—H20B	108.1
H2A—C2—H2B	108.4	H20A—C20—H20B	107.3
C4—C3—P3	108.03 (14)	O6—C21—C20	107.60 (17)
С4—С3—НЗА	110.1	O6—C21—H21A	110.2
Р3—С3—НЗА	110.1	C20—C21—H21A	110.2
C4—C3—H3B	110.1	06—C21—H21B	110.2
P3—C3—H3B	110.1	C20—C21—H21B	110.2
H3A—C3—H3B	108.4	H21A—C21—H21B	108.5
C3—C4—P4	108.11 (13)	06—C22—H22A	109.5
C3—C4—H4A	110.1	06—C22—H22B	109.5
P4—C4—H4A	110.1	H22A-C22-H22B	109.5
$C_3 - C_4 - H_4B$	110.1	$06-C^{2}-H^{2}C$	109.5
P4—C4—H4B	110.1	H22A-C22-H22C	109.5
H4A—C4—H4B	108.4	H22B-C22-H22C	109.5
C6-C5-P1	117 48 (14)	C_{24} C_{23} P_{4}	117 85 (15)
C6—C5—H5A	107.9	C24—C23—H23A	107.8
P1—C5—H5A	107.9	P4—C23—H23A	107.8
C6—C5—H5B	107.9	C24—C23—H23B	107.8
P1—C5—H5B	107.9	P4—C23—H23B	107.8
H5A—C5—H5B	107.2	H23A—C23—H23B	107.2
01 - C6 - C5	107.35 (16)	07-C24-C23	111 16 (18)
01—C6—H6A	110.2	07—C24—H24A	109.4
C5—C6—H6A	110.2	C23—C24—H24A	109.4
01—C6—H6B	110.2	07—C24—H24B	109.4
C5—C6—H6B	110.2	C23—C24—H24B	109.4
H6A—C6—H6B	108.5	H24A—C24—H24B	108.0
O1—C7—H7A	109.5	$07-C^{25}-H^{25A}$	109.5
01—C7—H7B	109.5	07—C25—H25B	109.5
H7A—C7—H7B	109.5	H25A—C25—H25B	109.5
01—C7—H7C	109.5	07—C25—H25C	109.5
H7A—C7—H7C	109.5	H_{25A} C_{25} H_{25C}	109.5
H7B-C7-H7C	109.5	H_{25B} C_{25} H_{25C}	109.5
C9—C8—P1	119.28 (15)	C27—C26—P4	115.60 (14)
C9—C8—H8A	107.5	C27—C26—H26A	108.4
P1—C8—H8A	107.5	P4—C26—H26A	108.4
C9—C8—H8B	107.5	C27—C26—H26B	108.4
P1—C8—H8B	107.5	P4—C26—H26B	108.4
H8A—C8—H8B	107.0	H26A—C26—H26B	107.4
$0^{2}-0^{2}-0^{8}$	105 55 (17)	08-C27-C26	108 24 (16)
02 - C9 - H9A	110.6	08—C27—H27A	110.1
C8—C9—H9A	110.6	C26—C27—H27A	110.1
		$C_{20} = C_{21} = 112/11$	

O2—C9—H9B	110.6	O8—C27—H27B	110.1
С8—С9—Н9В	110.6	С26—С27—Н27В	110.1
H9A—C9—H9B	108.8	H27A—C27—H27B	108.4
O2—C10—H10A	109.5	O8—C28—H28A	109.5
O2—C10—H10B	109.5	O8—C28—H28B	109.5
H10A—C10—H10B	109.5	H28A—C28—H28B	109.5
O2—C10—H10C	109.5	O8—C28—H28C	109.5
H10A—C10—H10C	109.5	H28A—C28—H28C	109.5
H10B-C10-H10C	109.5	H28B—C28—H28C	109.5
C12—C11—P2	119.17 (15)	11202 020 11200	10,00
P2—Fe1—P1—C5	140.63 (8)	P1—C1—C2—P2	50.69 (16)
P4—Fe1—P1—C5	-38.31 (8)	C14—P2—C2—C1	-157.94 (14)
Cl2—Fe1—P1—C5	-127.90(8)	C11—P2—C2—C1	95.55 (15)
Cl1—Fe1—P1—C5	51.32 (8)	Fe1—P2—C2—C1	-32.36(15)
P2—Fe1—P1—C8	-88.10 (8)	C20—P3—C3—C4	-172.46(14)
P4— $Fe1$ — $P1$ — $C8$	92.96 (8)	C17—P3—C3—C4	80.57 (15)
C12—Fe1—P1—C8	3.37 (8)	Fe1—P3—C3—C4	-45.98(15)
Cl1—Fe1—P1—C8	-177.41(8)	P3-C3-C4-P4	52.38 (16)
P2—Fe1—P1—C1	22.58 (7)	$C_{26} - P_{4} - C_{4} - C_{3}$	-164.32(14)
P4—Fe1—P1—C1	-156.36(7)	C23—P4—C4—C3	89.55 (15)
Cl2—Fe1—P1—C1	114.05 (7)	Fe1—P4—C4—C3	-36.56(15)
Cl1—Fe1—P1—C1	-66.73 (7)	C8—P1—C5—C6	59.36 (18)
P1—Fe1—P2—C14	119.39 (9)	C1—P1—C5—C6	-42.70(18)
P3—Fe1—P2—C14	-64.89 (9)	Fe1—P1—C5—C6	-162.48(13)
Cl2—Fe1—P2—C14	26.70 (9)	C7—O1—C6—C5	-179.5 (2)
Cl1—Fe1—P2—C14	-152.94 (9)	P1-C5-C6-O1	-177.78 (14)
P1—Fe1—P2—C2	2.12 (7)	C5—P1—C8—C9	66.56 (18)
P3—Fe1—P2—C2	177.84 (7)	C1—P1—C8—C9	172.87 (17)
Cl2—Fe1—P2—C2	-90.57 (7)	Fe1—P1—C8—C9	-71.69 (18)
Cl1—Fe1—P2—C2	89.79 (7)	C10—O2—C9—C8	-174.59 (18)
P1—Fe1—P2—C11	-117.64 (9)	P1-C8-C9-O2	-177.44 (14)
P3—Fe1—P2—C11	58.08 (9)	C14—P2—C11—C12	-94.62 (19)
Cl2—Fe1—P2—C11	149.67 (9)	C2—P2—C11—C12	13.0 (2)
Cl1—Fe1—P2—C11	-29.97 (9)	Fe1—P2—C11—C12	135.13 (16)
P2—Fe1—P3—C20	-45.62 (8)	C13—O3—C12—C11	-179.2 (2)
P4—Fe1—P3—C20	133.28 (8)	P2-C11-C12-O3	-74.6 (2)
Cl2—Fe1—P3—C20	-137.51 (8)	C2—P2—C14—C15	-55.2 (2)
Cl1—Fe1—P3—C20	43.27 (8)	C11—P2—C14—C15	53.4 (2)
P2—Fe1—P3—C3	-160.70(7)	Fe1—P2—C14—C15	-175.56 (17)
P4—Fe1—P3—C3	18.21 (7)	C16—O4—C15—C14	154.0 (3)
Cl2—Fe1—P3—C3	107.42 (7)	P2-C14-C15-O4	-174.0(2)
Cl1—Fe1—P3—C3	-71.80(7)	C20—P3—C17—C18	71.91 (18)
P2—Fe1—P3—C17	89.04 (8)	C3—P3—C17—C18	176.69 (17)
P4—Fe1—P3—C17	-92.06 (8)	Fe1—P3—C17—C18	-68.42 (18)
Cl2—Fe1—P3—C17	-2.85 (8)	C19—O5—C18—C17	-171.85 (19)
Cl1—Fe1—P3—C17	177.93 (8)	P3—C17—C18—O5	-62.4 (2)
P1—Fe1—P4—C26	-60.68 (8)	C3—P3—C20—C21	-40.69 (19)

$\begin{array}{c} P3 - Fe1 - P4 - C26 \\ C12 - Fe1 - P4 - C26 \\ C11 - Fe1 - P4 - C26 \\ P1 - Fe1 - P4 - C4 \\ P3 - Fe1 - P4 - C4 \\ C12 - Fe1 - P4 - C4 \\ C11 - Fe1 - P4 - C4 \\ P1 - Fe1 - P4 - C23 \\ P3 - Fe1 - P4 - C23 \\ C12 - Fe1 - P4 - C23 \\ C12 - Fe1 - P4 - C23 \\ C12 - Fe1 - P4 - C23 \\ C11 - Fe1 - P4 - C23 \\ C23 - P1 - C1 - C2 \\ \end{array}$	123.61 (8) $32.12 (8)$ $-148.24 (8)$ $-177.42 (7)$ $6.87 (7)$ $-84.62 (7)$ $95.02 (7)$ $64.33 (8)$ $-111.38 (8)$ $157.13 (8)$ $-23.24 (8)$ $-177.30 (13)$	C17—P3—C20—C21 Fe1—P3—C20—C21 C22—O6—C21—C20 P3—C20—C21—O6 C26—P4—C23—C24 C4—P4—C23—C24 Fe1—P4—C23—C24 C25—O7—C24—C23 P4—C23—C24—O7 C4—P4—C26—C27 Fe1—P4—C26—C27 Fe1—P4—C26—C27	60.61 (18) -158.04 (14) -172.0 (2) 178.90 (15) -91.54 (18) 14.69 (19) 134.91 (14) 84.0 (2) 179.90 (14) -56.39 (18) 51.74 (18) -176.26 (13)
Cl1—Fe1—P4—C23	-23.24 (8)	C23—P4—C26—C27	51.74 (18)
C5—P1—C1—C2	-177.30 (13)	Fe1—P4—C26—C27	-176.26 (13)
C8—P1—C1—C2	76.56 (15)	C28—O8—C27—C26	171.15 (19)
Fe1—P1—C1—C2	-48.80 (14)	P4—C26—C27—O8	176.70 (14)