Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Chloro-2-{3-chloro-2-[(3,5-dimethylpiperidin-1-yl)methyl]phenylsulfanyl}-6methoxypyrimidine

Guanglong Zou^a and Mei Zhu^b*

^aSchool of Chemistry and Environmental Science, Guizhou University for Nationalities, Guiyang 550025, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China

Correspondence e-mail: zhumei@iccas.ac.cn

Received 1 January 2010; accepted 5 February 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.041; wR factor = 0.119; data-to-parameter ratio = 16.2.

In the title compound, $C_{19}H_{23}Cl_2N_3OS$, the dihedral angle between the benzene ring and the pyrimidine ring is $86.6 (9)^{\circ}$. The piperidine ring adopts a chair conformation.

Related literature

For the biological activity of pyrimidine derivatives, see: Joffe et al. (1989); Petersen & Schmidt (2003); Blum (2001); Gompper et al. (2004); Michael (2005); Nadal & Olavarria (2004).

Experimental

Crystal data

-	
C ₁₉ H ₂₃ Cl ₂ N ₃ OS	$\gamma = 77.700 \ (6)^{\circ}$
$M_r = 412.36$	V = 1042.9 (10) Å ³
Triclinic, $P\overline{1}$	Z = 2
a = 8.000 (4) Å	Mo $K\alpha$ radiation
b = 11.454 (6) Å	$\mu = 0.42 \text{ mm}^{-1}$
c = 12.001 (7) Å	$T = 296 { m K}$
$\alpha = 87.820 \ (7)^{\circ}$	$0.39 \times 0.37 \times 0.25$
$\beta = 76.084 \ (6)^{\circ}$	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS: Sheldrick, 1996) $T_{\min} = 0.852, T_{\max} = 0.901$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.119$ S = 1.033848 reflections

K $.37 \times 0.25 \text{ mm}$

7861 measured reflections 3848 independent reflections 2553 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.019$

238 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.30 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.31$ e Å⁻³

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

This work was supported by the Doctoral Foundation of Luoyang Normal University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PB2021).

References

Blum, J. L. (2001). Oncologist, 6, 56-64.

Bruker (2004). APEX2, and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA

Gompper, R., Mair, H.-J. & Polborn, K. (2004). Synthesis, pp. 696-708.

Joffe, A. M., Farley, J. D., Linden, D. & Goldsand, G. (1989). Am. J. Med., 87, 332-338.

Michael, J. P. (2005). Nat. Prod. Rep., 22, 627-646.

Nadal, E. & Olavarria, E. (2004). Int. J. Clin. Pract., 58, 511-516.

Petersen, E. & Schmidt, D. R. (2003). Expert Rev. Anti-Infect. Ther. 1, 175-182. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2010). E66, o650 [doi:10.1107/S1600536810004599]

4-Chloro-2-{3-chloro-2-[(3,5-dimethylpiperidin-1-yl)methyl]phenylsulfanyl}-6-methoxypyrimidine

Guanglong Zou and Mei Zhu

S1. Comment

Pyrimidine derivatives are widespread in medicinal and natural products chemistry. A number of natural products, pharmaceuticals, and functional materials incorporate this heterocycle (Michael, 2005. Several examples of pharmaceutically important compounds include trimethoprim (Joffe *et al.*, 1989), sulfadiazine (Petersen & Schmidt, 2003),Gleevec (imatinib mesilate) (Nadal & Olavarria, 2004), and Xeloda (capecitabine) (Blum, 2001). Natural and unnatural polymers also contain pyrimidine derivatives (Gompper *et al.*, 2004). The potent physiological properties of these pyrimidine derivatives led to vast research of their use as medicines in the field of pharmaceutical chemistry. So in the recent decades, many chemists have been attracted by the synthesis of pyrimidines. In this context, we report the synthesis of the title compound.

The molecular structure is shown in Fig. 1. The bond lengths and angles are within normal ranges. The pyrimidine ring makes dihedral angles of 86.6 $(9)^{\circ}$ with the benzene ring. In the crystal structure, The cyclohexyl groups display chair-type conformation.

S2. Experimental

To a solution of 2,4-dichloro-6-methoxypyrimidine (0.5 mmol) and 3-chloro-2-((3,5-dimethylpiperidin-1-yl)methyl)benzenethiol (0.5 mmol) in dry methylbenzene was added NaH (0.6 mmol). The mixture was stirred for 12 h at room temperature. After evaporation of the solvent, the residue was purified by column chromatography on silica gel to afford the title compound as a colorless solid (yield 78%). The title compound was recrystallized from CH_2Cl_2 at room temperature to give the desired crystals suitable for single-crystal X-ray diffraction.

S3. Refinement

All H atoms were positioned geometrically and treated as riding, with C—H bond lengths constrained to 0.93 Å (aromatic CH) or 0.97 Å (methylene CH₂), and with Uiso~(H) = 1.2Ueq(C) or 1.5Ueq(methylene C).

Figure 1

View of the molecular structure of (I) with atom numbering scheme and 30% probability displacement ellipsoids.

4-Chloro-2-{3-chloro-2-[(3,5-dimethylpiperidin-1-yl)methyl]phenylsulfanyl}- 6-methoxypyrimidine

Crystal data	
$\begin{array}{l} C_{19}H_{23}Cl_2N_3OS\\ M_r = 412.36\\ Triclinic, P\overline{1}\\ a = 8.000 \ (4) \ \text{\AA}\\ b = 11.454 \ (6) \ \text{\AA}\\ c = 12.001 \ (7) \ \text{\AA}\\ a = 87.820 \ (7)^{\circ}\\ \beta = 76.084 \ (6)^{\circ}\\ \gamma = 77.700 \ (6)^{\circ}\\ V = 1042.9 \ (10) \ \text{\AA}^{3} \end{array}$	Z = 2 F(000) = 432 $D_x = 1.313 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 2557 reflections $\theta = 2.5-25.9^{\circ}$ $\mu = 0.42 \text{ mm}^{-1}$ T = 296 K Block, colourless $0.39 \times 0.37 \times 0.25 \text{ mm}$
Data collection	
Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.852, T_{\max} = 0.901$	7861 measured reflections 3848 independent reflections 2553 reflections with $I > 2\sigma(I)$ $R_{int} = 0.019$ $\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 2.5^{\circ}$ $h = -9 \rightarrow 9$ $k = -13 \rightarrow 13$ $l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from
$wR(F^2) = 0.119$	neighbouring sites
S = 1.03	H-atom parameters constrained
3848 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0498P)^2 + 0.3748P]$
238 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. **Refinement**. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F, and R-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.8993 (3)	0.4679 (2)	0.3790 (2)	0.0511 (6)	
C2	0.7914 (4)	0.5783 (3)	0.4072 (2)	0.0639 (7)	
H2	0.8031	0.6417	0.3572	0.077*	
C3	0.6657 (4)	0.5951 (3)	0.5096 (3)	0.0772 (10)	
Н3	0.5913	0.6695	0.5281	0.093*	
C4	0.6503 (4)	0.5026 (4)	0.5841 (3)	0.0765 (10)	
H4	0.5657	0.5136	0.6533	0.092*	
C5	0.7618 (4)	0.3926 (3)	0.5555 (2)	0.0649 (8)	
C6	0.8897 (3)	0.3706 (2)	0.4527 (2)	0.0517 (6)	
C7	1.0146 (4)	0.2522 (3)	0.4215 (2)	0.0613 (7)	
H7A	1.1342	0.2648	0.3977	0.074*	
H7B	1.0071	0.2019	0.4886	0.074*	
C8	1.1282 (4)	0.1048 (3)	0.2685 (3)	0.0722 (8)	
H8A	1.1601	0.0419	0.3206	0.087*	
H8B	1.2269	0.1439	0.2432	0.087*	
C9	1.0929 (4)	0.0498 (3)	0.1644 (3)	0.0773 (9)	
H9	1.0612	0.1145	0.1126	0.093*	
C10	0.9343 (4)	-0.0090 (3)	0.2069 (3)	0.0838 (10)	
H10A	0.9048	-0.0403	0.1418	0.101*	
H10B	0.9647	-0.0753	0.2562	0.101*	
C11	0.7761 (4)	0.0801 (3)	0.2730 (3)	0.0867 (10)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H11	0.7438	0.1436	0.2202	0.104*
C12	0.8245 (4)	0.1367 (3)	0.3699 (3)	0.0757 (9)
H12A	0.7247	0.1972	0.4083	0.091*
H12B	0.8503	0.0761	0.4256	0.091*
C13	1.2537 (5)	-0.0357 (3)	0.1000 (3)	0.1102 (13)
H13A	1.3485	0.0055	0.0749	0.165*
H13B	1.2284	-0.0676	0.0345	0.165*
H13C	1.2871	-0.0998	0.1494	0.165*
C14	0.6166 (5)	0.0238 (4)	0.3187 (5)	0.151 (2)
H14A	0.6428	-0.0360	0.3738	0.226*
H14B	0.5894	-0.0124	0.2562	0.226*
H14C	0.5174	0.0844	0.3547	0.226*
C15	0.9754 (3)	0.4023 (2)	0.14901 (19)	0.0466 (6)
C16	1.0372 (3)	0.3253 (2)	-0.0292 (2)	0.0483 (6)
C17	0.8596 (3)	0.3280 (2)	-0.0188 (2)	0.0528 (6)
H17	0.8179	0.3030	-0.0778	0.063*
C18	0.7513 (3)	0.3697 (2)	0.0833 (2)	0.0500 (6)
C19	1.3329 (4)	0.2760 (3)	-0.1362 (3)	0.0729 (8)
H19A	1.3525	0.3554	-0.1317	0.109*
H19B	1.3998	0.2398	-0.2085	0.109*
H19C	1.3695	0.2292	-0.0749	0.109*
C11	0.73889 (14)	0.27940 (11)	0.65587 (8)	0.1117 (4)
C12	0.52759 (9)	0.37327 (8)	0.10766 (6)	0.0780 (3)
N1	0.9758 (3)	0.19101 (19)	0.32894 (19)	0.0585 (6)
N2	0.8031 (3)	0.40866 (18)	0.16994 (16)	0.0497 (5)
N3	1.0978 (3)	0.36245 (17)	0.05379 (16)	0.0480 (5)
O1	1.1505 (2)	0.28158 (17)	-0.12653 (14)	0.0651 (5)
S1	1.06955 (9)	0.45367 (7)	0.25092 (6)	0.0613 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0428 (14)	0.0719 (18)	0.0443 (13)	-0.0167 (13)	-0.0152 (11)	-0.0130 (13)
C2	0.0580 (18)	0.0735 (19)	0.0658 (18)	-0.0100 (15)	-0.0263 (15)	-0.0174 (15)
C3	0.0500 (18)	0.095 (2)	0.088 (2)	-0.0002 (16)	-0.0258 (17)	-0.043 (2)
C4	0.0440 (17)	0.127 (3)	0.0581 (18)	-0.0211 (19)	-0.0025 (13)	-0.0381 (19)
C5	0.0497 (16)	0.102 (2)	0.0489 (15)	-0.0256 (16)	-0.0123 (12)	-0.0129 (15)
C6	0.0387 (14)	0.0765 (18)	0.0458 (14)	-0.0172 (13)	-0.0144 (11)	-0.0118 (13)
C7	0.0502 (16)	0.0762 (19)	0.0630 (17)	-0.0127 (14)	-0.0235 (13)	-0.0044 (14)
C8	0.0544 (18)	0.075 (2)	0.086 (2)	-0.0077 (15)	-0.0158 (15)	-0.0109 (16)
C9	0.088 (2)	0.0613 (19)	0.084 (2)	-0.0076 (17)	-0.0285 (18)	-0.0092 (16)
C10	0.090 (2)	0.063 (2)	0.104 (3)	-0.0093 (18)	-0.038 (2)	-0.0161 (18)
C11	0.069 (2)	0.078 (2)	0.126 (3)	-0.0152 (17)	-0.044 (2)	-0.019 (2)
C12	0.0523 (18)	0.080(2)	0.096 (2)	-0.0149 (15)	-0.0165 (16)	-0.0183 (17)
C13	0.120 (3)	0.099 (3)	0.097 (3)	-0.015 (2)	-0.003 (2)	-0.023 (2)
C14	0.081 (3)	0.149 (4)	0.234 (6)	-0.048 (3)	-0.028 (3)	-0.070 (4)
C15	0.0469 (15)	0.0525 (15)	0.0424 (13)	-0.0118 (12)	-0.0128 (11)	-0.0016 (11)
C16	0.0533 (16)	0.0477 (14)	0.0413 (13)	-0.0097 (11)	-0.0065 (11)	-0.0045 (11)

C17	0.0575 (16)	0.0600 (16)	0.0461 (14)	-0.0163 (13)	-0.0179 (12)	-0.0061 (12)
C18	0.0462 (15)	0.0567 (15)	0.0498 (14)	-0.0110 (12)	-0.0159 (12)	-0.0012 (12)
C19	0.0481 (17)	0.087 (2)	0.0704 (19)	-0.0035 (15)	0.0056 (14)	-0.0227 (16)
Cl1	0.1161 (8)	0.1555 (10)	0.0669 (5)	-0.0582 (7)	-0.0048 (5)	0.0201 (6)
Cl2	0.0450 (4)	0.1197 (7)	0.0740 (5)	-0.0198 (4)	-0.0189 (3)	-0.0135 (4)
N1	0.0447 (13)	0.0622 (14)	0.0712 (14)	-0.0079 (11)	-0.0197 (11)	-0.0128 (11)
N2	0.0428 (12)	0.0640 (13)	0.0436 (11)	-0.0108 (10)	-0.0120 (9)	-0.0063 (9)
N3	0.0459 (12)	0.0536 (12)	0.0436 (11)	-0.0111 (9)	-0.0076 (9)	-0.0041 (9)
O1	0.0607 (12)	0.0770 (13)	0.0517 (11)	-0.0109 (10)	-0.0021 (9)	-0.0198 (9)
S 1	0.0499 (4)	0.0947 (6)	0.0468 (4)	-0.0301 (4)	-0.0108 (3)	-0.0118 (3)

Geometric parameters (Å, °)

C1—C2	1.374 (4)	C11—C14	1.527 (5)	
C1—C6	1.400 (4)	C11—H11	0.9800	
C1—S1	1.778 (3)	C12—N1	1.451 (3)	
C2—C3	1.378 (4)	C12—H12A	0.9700	
С2—Н2	0.9300	C12—H12B	0.9700	
C3—C4	1.367 (5)	C13—H13A	0.9600	
С3—Н3	0.9300	C13—H13B	0.9600	
C4—C5	1.381 (4)	C13—H13C	0.9600	
C4—H4	0.9300	C14—H14A	0.9600	
C5—C6	1.392 (4)	C14—H14B	0.9600	
C5—C11	1.744 (3)	C14—H14C	0.9600	
C6—C7	1.504 (4)	C15—N2	1.327 (3)	
C7—N1	1.462 (3)	C15—N3	1.336 (3)	
C7—H7A	0.9700	C15—S1	1.759 (2)	
С7—Н7В	0.9700	C16—N3	1.327 (3)	
C8—N1	1.450 (3)	C16—O1	1.334 (3)	
C8—C9	1.531 (4)	C16—C17	1.390 (3)	
C8—H8A	0.9700	C17—C18	1.356 (3)	
C8—H8B	0.9700	C17—H17	0.9300	
C9—C13	1.501 (5)	C18—N2	1.331 (3)	
C9—C10	1.533 (4)	C18—C12	1.735 (3)	
С9—Н9	0.9800	C19—O1	1.423 (3)	
C10—C11	1.517 (4)	C19—H19A	0.9600	
C10—H10A	0.9700	C19—H19B	0.9600	
C10—H10B	0.9700	C19—H19C	0.9600	
C11—C12	1.518 (4)			
C2—C1—C6	122.1 (2)	C10—C11—H11	107.8	
C2-C1-S1	118.1 (2)	C14—C11—H11	107.8	
C6-C1-S1	119.5 (2)	N1-C12-C11	112.1 (3)	
C1—C2—C3	120.0 (3)	N1—C12—H12A	109.2	
C1—C2—H2	120.0	C11—C12—H12A	109.2	
С3—С2—Н2	120.0	N1-C12-H12B	109.2	
C4—C3—C2	120.1 (3)	C11—C12—H12B	109.2	
С4—С3—Н3	119.9	H12A—C12—H12B	107.9	

С2—С3—Н3	119.9	C9—C13—H13A	109.5
C3—C4—C5	119.2 (3)	C9—C13—H13B	109.5
C3—C4—H4	120.4	H13A—C13—H13B	109.5
С5—С4—Н4	120.4	C9—C13—H13C	109.5
C4—C5—C6	122.9 (3)	H13A—C13—H13C	109.5
C4 - C5 - C11	116.9(2)	H13B-C13-H13C	109.5
C6-C5-C11	1201(2)	C11—C14—H14A	109.5
$C_{5} - C_{6} - C_{1}$	1157(3)	C11 - C14 - H14B	109.5
C_{5} C_{6} C_{7}	113.7(3) 123.5(3)	$H_{14A} = C_{14} + H_{14B}$	109.5
$C_{1} = C_{0} = C_{7}$	123.3(3) 120.8(2)	C11 C14 H14C	109.5
N1 C7 C6	120.0(2)		109.5
NI = C7 = U7A	112.1 (2)	H14A - C14 - H14C	109.5
NI - C / - H / A	109.2	H14B - C14 - H14C	109.5
C_{0} $-C_{-H/A}$	109.2	N2 - C15 - N3	127.9 (2)
	109.2	N2—C15—S1	120.94 (18)
С6—С/—Н/В	109.2	N3—C15—S1	111.10(18)
Н7А—С7—Н7В	107.9	N3—C16—O1	119.2 (2)
N1—C8—C9	111.9 (2)	N3—C16—C17	122.8 (2)
N1—C8—H8A	109.2	O1—C16—C17	118.0 (2)
C9—C8—H8A	109.2	C18—C17—C16	115.4 (2)
N1—C8—H8B	109.2	C18—C17—H17	122.3
C9—C8—H8B	109.2	C16—C17—H17	122.3
H8A—C8—H8B	107.9	N2-C18-C17	124.9 (2)
C13—C9—C8	111.4 (3)	N2—C18—Cl2	115.60 (19)
C13—C9—C10	112.8 (3)	C17—C18—Cl2	119.48 (19)
C8—C9—C10	107.9 (3)	O1—C19—H19A	109.5
С13—С9—Н9	108.2	O1—C19—H19B	109.5
С8—С9—Н9	108.2	H19A—C19—H19B	109.5
С10—С9—Н9	108.2	01—C19—H19C	109.5
$C_{11} - C_{10} - C_{9}$	1110(3)	H19A - C19 - H19C	109.5
C_{11} C_{10} H_{10A}	109.4	H19B - C19 - H19C	109.5
C_{0} C_{10} H_{10A}	109.4	C_8 N1 C_{12}	109.5 111.5 (2)
C_{11} C_{10} H_{10R}	109.4	C_{8} N1 C_{7}	111.5(2) 111.9(2)
C_{10} C_{10} H_{10}	109.4	C_{12} N1 C_{7}	111.9(2)
$U_{10A} = C_{10} = H_{10B}$	109.4	C12 $N1 - C/$	111.0(2)
	108.0	C13— $N2$ — $C15$	115.9 (2)
C12— $C11$ — $C10$	110.0(3)	C16 - N3 - C15	115.1 (2)
	110.9 (3)		118.0 (2)
C10—C11—C14	112.3 (3)	C15—S1—C1	103.40 (12)
C12—C11—H11	107.8		
C6—C1—C2—C3	-1.7 (4)	N3-C16-C17-C18	-1.0 (4)
S1—C1—C2—C3	-175.51 (19)	O1—C16—C17—C18	178.0 (2)
C1—C2—C3—C4	1.2 (4)	C16—C17—C18—N2	1.2 (4)
C2—C3—C4—C5	0.0 (4)	C16—C17—C18—Cl2	-178.17 (19)
C3-C4-C5-C6	-0.7(4)	C9-C8-N1-C12	59.6 (3)
$C_{3}-C_{4}-C_{5}-C_{11}$	178 5 (2)	C9 - C8 - N1 - C7	-1744(2)
C4-C5-C6-C1	0.1(4)	$C_{11} - C_{12} - N_{1} - C_{8}$	-57.7(3)
$C_{11} = C_{5} = C_{6} = C_{1}$	-178 95 (17)	C11 - C12 - N1 - C7	1762(2)
C4-C5-C6-C7	178.6 (2)	C6-C7-N1-C8	1572(2)
	······································		

Cl1—C5—C6—C7	-0.5 (3)	C6—C7—N1—C12	-76.9 (3)	
C2-C1-C6-C5	1.0 (3)	N3-C15-N2-C18	-0.1 (4)	
S1—C1—C6—C5	174.74 (17)	S1—C15—N2—C18	178.03 (18)	
C2-C1-C6-C7	-177.5 (2)	C17—C18—N2—C15	-0.7 (4)	
S1—C1—C6—C7	-3.8 (3)	Cl2—C18—N2—C15	178.70 (18)	
C5—C6—C7—N1	109.8 (3)	O1-C16-N3-C15	-178.6 (2)	
C1-C6-C7-N1	-71.8 (3)	C17—C16—N3—C15	0.4 (3)	
N1-C8-C9-C13	177.8 (3)	N2-C15-N3-C16	0.2 (4)	
N1-C8-C9-C10	-57.8 (3)	S1-C15-N3-C16	-178.04 (17)	
C13—C9—C10—C11	179.1 (3)	N3-C16-O1-C19	0.5 (3)	
C8—C9—C10—C11	55.6 (4)	C17—C16—O1—C19	-178.5 (2)	
C9—C10—C11—C12	-54.9 (4)	N2-C15-S1-C1	15.0 (2)	
C9—C10—C11—C14	-178.9 (3)	N3-C15-S1-C1	-166.64 (18)	
C10-C11-C12-N1	55.2 (4)	C2-C1-S1-C15	-95.9 (2)	
C14—C11—C12—N1	180.0 (3)	C6-C1-S1-C15	90.2 (2)	