organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(1*R**,2*R**)-1-(7-Bromo-3-methoxynaphthalen-2-yl)-4-(dimethylamino)-2-(naphthalen-1-yl)-1-phenylbutan-2-ol

Ping Liu,^a Wu Zhong,^b Pengfei Chen,^b Xiaohong Yang^a* and Song Li^b

^aDepartment of Medicinal Chemistry, School of Pharmacy, Jilin University, Changchun, 130021, People's Republic of China, and ^bBeijing Institute of Pharmacology and Toxicology, Beijing, 100850, People's Republic of China Correspondence e-mail: zhongwu@nic.bmi.ac.cn

Received 1 February 2010; accepted 9 February 2010

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; R factor = 0.030; wR factor = 0.066; data-to-parameter ratio = 18.6.

In the crystal structure of the title compound, $C_{33}H_{32}BrNO_2$, the naphthalene ring system and the benzene ring are oriented at dihedral angles of 82.24 (4) and 79.53 (4) $^{\circ}$, respectively, to the quinoline ring system. An intramolecular O-H···N hydrogen bond occurs between the hydroxy H atom and the amine N atom.

Related literature

For general background and the synthesis of diarylquinoline anti-tuberculosis drugs, see: Cohen (2004), Andries et al. (2005); Guillemont et al. (2004)

Experimental

Crystal data

	8.0
$C_{33}H_{32}BrNO_2$	$V = 2640.6 (12) \text{ A}^3$
$M_r = 554.51$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 12.716 (3) Å	$\mu = 1.59 \text{ mm}^{-1}$
b = 12.505 (4) Å	$T = 113 { m K}$
c = 17.771 (4) Å	$0.22 \times 0.20 \times 0.16 \text{ mm}$
$\beta = 110.863 \ (7)^{\circ}$	

Data collection

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	338 parameters
$vR(F^2) = 0.066$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-3}$
297 reflections	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

21986 measured reflections

 $R_{\rm int} = 0.039$

6297 independent reflections 4775 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O2−H2···N1	0.84	1.93	2.6988 (17)	151

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XCIF in SHELXTL.

This work was supported by the 863 Program (2006 A A020601).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2176).

References

Andries, K., Verhasselt, P. & Guillemont, J. (2005). Science, 307, 223-227. Cohen, J. (2004). Science. 306, 1872.

Guillemont, J., Van Gestel, J., Venet, M., Poignet, H., Decrane, L. & Vernier, D. (2004). WO Patent, WO2004011436.

Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, USA. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2010). E66, o636 [doi:10.1107/S1600536810005209]

(1*R**,2*R**)-1-(7-Bromo-3-methoxynaphthalen-2-yl)-4-(dimethyl-amino)-2-(naphthalen-1-yl)-1-phenylbutan-2-ol

Ping Liu, Wu Zhong, Pengfei Chen, Xiaohong Yang and Song Li

S1. Comment

The compound $(1R^*,2R^*)-(1R,2S)-1-(6-bromo-2-methoxyquinolin-3-yl)-4- (dimethylamino)-2-(naphthalene-1-\yl)-1-phenylbutan-2-ol, is a promising drug against tuberculosis (Andries$ *et al.*, 2005; Cohen, 2004 and Guillemont and Frans, 2004)). We modified this compound in order to get some more efficient antituberculosis drugs. To characterize our product its single crystal structure was determined.

In the molecule of the title compound (Fig. 1), the dihedral angle between the naphthalene ring (C20—C29) and the quinoline ring (C1—C10) amount to $82.244 (39)^\circ$ whereas the benzene ring (C13—C18) is oriented with respect to the quinoline ring at a dihedral angle of $79.534 (39)^\circ$. In the structure an intramolecular O—H…N hydrogen bond is found (Tab. 1).

S2. Experimental

nBuLi (2.5M in hexanes, 4 ml, 10 mmol) was added slowly at 233 K under N_2 to a solution of diisopropylamine (1.4 ml, 10 mmol) in THF (15 ml). The mixture was stirred at 233k for 30 min, then cooled to 195 K. Afterwards a solution of 3-benzyl-6-bromo-2-methoxynaphthalene (2.58 g, 9.2 mmol) in THF (20 ml) was added slowly. The mixture was stirred at 195 K for about 40 min and then a solution of 3-(dimethylamino)-1-(naphthalen-1-yl)propan-1-one(2.9 g, 12.8 mmol) in THF (20 ml) was added slowly. The mixture was stirred at 195 K for 8 h, hydrolyzed with ice water at 233 K and extracted with ethyl acetate. The organic layer was separated, dried over MgSO₄, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: petroleum ether/ethyl acetate, 50/1).Two fractions were collected (Guillemont *et al.*, 2004). On evaporation of the solvent (petroleum ether/ethyl acetate, 50/1) from fraction at room temperature in air single crystals of the title compound were obtained.

S3. Refinement

All H atoms were positioned with ideal geometry (O-H H atoms allowed to rotate but not to tip) and with d(C-H)=0.93Å for aromatic, 0.98 Å for CH, 0.97 Å for CH₂ and 0.96 Å for CH₃ atoms and were refined with $U_{iso}(H) = 1.2 U_{eq}(C)$ for CH and CH₂ H atoms and $U_{iso}(H) = 1.5 U_{eq}(C)$ for CH₃ and O-H H atoms.

Figure 1

The molecular structure of title compound. Displacement ellipsoides a drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

(1R*,2R*)-1-(7-Bromo-3-methoxynaphthalen- 2-yl)-4-(dimethylamino)-2-(naphthalen-1-yl)-1-phenylbutan-2-ol

Crystal data	
$C_{33}H_{32}BrNO_2$	F(000) = 1152
$M_r = 554.51$	$D_{\rm x} = 1.395 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 12.716 (3) Å	Cell parameters from 9894 reflections
b = 12.505 (4) Å	$\theta = 1.7 - 27.9^{\circ}$
c = 17.771 (4) Å	$\mu = 1.59 \text{ mm}^{-1}$
$\beta = 110.863 \ (7)^{\circ}$	T = 113 K
$V = 2640.6 (12) \text{ Å}^3$	Prism, colorless
<i>Z</i> = 4	$0.22 \times 0.20 \times 0.16 \text{ mm}$
Data collection	
Rigaku Saturn CCD area-detector	21986 measured reflections
diffractometer	6297 independent reflections
Radiation source: rotating anode	4775 reflections with $I > 2\sigma(I)$
Multilayer monochromator	$R_{\rm int} = 0.039$
Detector resolution: 14.63 pixels mm ⁻¹	$\theta_{\text{max}}^{\text{max}} = 27.9^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
ω and φ scans	$h = -14 \rightarrow 16$
Absorption correction: multi-scan	$k = -16 \rightarrow 13$
(<i>CrystalClear</i> ; Rigaku/MSC, 2005)	$l = -23 \rightarrow 23$
$T_{\min} = 0.721, T_{\max} = 0.785$	

Refinement

0	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.030$	Hydrogen site location: inferred from
$wR(F^2) = 0.066$	neighbouring sites
S = 1.01	H-atom parameters constrained
6297 reflections	$w = 1/[\sigma^2(F_o^2) + (0.026P)^2]$
338 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.004$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.44 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.36 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.855107 (15)	-0.301941 (13)	0.033962 (11)	0.02661 (6)
01	1.09459 (9)	0.30832 (8)	0.16894 (6)	0.0200 (3)
O2	0.70336 (9)	0.24821 (9)	0.13087 (6)	0.0179 (2)
H2	0.6433	0.2667	0.1368	0.027*
N1	0.54575 (10)	0.37440 (11)	0.15453 (7)	0.0183 (3)
C1	0.92349 (13)	0.21144 (12)	0.11745 (8)	0.0149 (3)
C2	0.86920 (13)	0.11576 (12)	0.09563 (8)	0.0168 (3)
H2A	0.7898	0.1137	0.0814	0.020*
C3	0.92691 (13)	0.01955 (12)	0.09339 (8)	0.0155 (3)
C4	0.86996 (13)	-0.07937 (12)	0.06968 (9)	0.0180 (3)
H4	0.7908	-0.0835	0.0566	0.022*
C5	0.92952 (14)	-0.16813 (13)	0.06576 (9)	0.0187 (4)
C6	1.04680 (14)	-0.16596 (13)	0.08397 (9)	0.0197 (4)
H6	1.0862	-0.2291	0.0802	0.024*
C7	1.10257 (13)	-0.07195 (13)	0.10705 (9)	0.0189 (4)
H7	1.1816	-0.0699	0.1194	0.023*
C8	1.04561 (13)	0.02292 (13)	0.11305 (8)	0.0154 (3)
С9	1.10209 (13)	0.12096 (13)	0.13816 (8)	0.0167 (3)
Н9	1.1815	0.1241	0.1524	0.020*
C10	1.04431 (13)	0.21130 (12)	0.14228 (9)	0.0161 (3)
C11	1.21478 (13)	0.31054 (13)	0.19889 (10)	0.0248 (4)
H11A	1.2438	0.2567	0.2413	0.037*
H11B	1.2410	0.3815	0.2210	0.037*
H11C	1.2420	0.2949	0.1549	0.037*
C12	0.86391 (13)	0.31938 (12)	0.10741 (9)	0.0153 (3)

H12	0.9250	0.3732	0.1311	0.018*
C13	0.81297 (13)	0.34627 (13)	0.01755 (9)	0.0156 (3)
C14	0.86628 (13)	0.42324 (12)	-0.01233 (9)	0.0185 (3)
H14	0.9311	0.4582	0.0236	0.022*
C15	0.82752 (14)	0.45026 (13)	-0.09287 (9)	0.0221 (4)
H15	0.8658	0.5027	-0.1121	0.027*
C16	0.73263 (14)	0.40062 (13)	-0.14546 (9)	0.0226 (4)
H16	0.7051	0.4193	-0.2009	0.027*
C17	0.67777 (14)	0.32337 (13)	-0.11695 (9)	0.0229 (4)
H17	0.6125	0.2892	-0.1529	0.028*
C18	0.71826 (14)	0.29622 (13)	-0.03610 (9)	0.0200 (4)
H18	0.6809	0.2427	-0.0171	0.024*
C19	0.78158 (13)	0.33436 (12)	0.15313 (9)	0.0152 (3)
C20	0.84763 (13)	0.33288 (12)	0.24544 (9)	0.0165 (3)
C21	0.93020 (13)	0.41240 (13)	0.28752 (9)	0.0185 (3)
C22	0.96876 (14)	0.49707 (13)	0.25033 (10)	0.0226 (4)
H22	0.9379	0.5042	0.1934	0.027*
C23	1.04865 (15)	0.56833 (14)	0.29379 (10)	0.0298 (4)
H23	1.0728	0.6229	0.2665	0.036*
C24	1.09580 (15)	0.56233 (15)	0.37820 (10)	0.0330 (5)
H24	1.1507	0.6128	0.4080	0.040*
C25	1.06141 (15)	0.48290 (15)	0.41645 (10)	0.0290(4)
H25	1.0932	0.4784	0.4735	0.035*
C26	0.97938 (14)	0.40671 (14)	0.37352 (9)	0.0213 (4)
C27	0.94584 (14)	0.32554 (13)	0.41524 (9)	0.0231 (4)
H27	0.9772	0.3231	0.4724	0.028*
C28	0.86905 (14)	0.25075 (14)	0.37456 (9)	0.0231 (4)
H28	0.8481	0.1956	0.4032	0.028*
C29	0.82034 (14)	0 25491 (13)	0 28971 (9)	0.020
H29	0 7669	0 2019	0.2623	0.024*
C30	0 71441 (13)	0.43988(13)	0 12888 (9)	0.0192(4)
H30A	0.7680	0 5004	0.1402	0.023*
H30B	0.6716	0 4389	0.0702	0.023*
C31	0.63248(13)	0.45846 (13)	0 17306 (9)	0.020 (4)
H31A	0.6748	0.4598	0.2318	0.024*
H31R	0.5956	0.5289	0.1573	0.024
C32	0.5550	0.32331 (16)	0.07646 (9)	0.024 0.0297 (4)
H32A	0.4016	0.3344	0.0646	0.0257 (4)
H32R	0.4885	0.3074	0.0342	0.045*
H32C	0.4885	0.3974	0.0342	0.045*
C33	0.7177 0 40847 (15)	0.36708 (15)	0.0704	0.0700 (4)
	0.4647	0.30730 (13)	0.21/9/(10)	0.0299 (4)
1133A 1122D	0.404/	0.4509	0.2220	0.045*
1133D 1122C	0.3362	0.3300	0.2092	0.045*
пээс	0.4400	0.5121	0.2040	0.045*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	<i>U</i> ³³	U^{12}	U^{13}	U^{23}
Br1	0.02826 (10)	0.01699 (10)	0.03531 (11)	-0.00165 (8)	0.01222 (8)	-0.00535 (8)
O1	0.0141 (6)	0.0170 (6)	0.0266 (6)	-0.0019 (5)	0.0043 (5)	-0.0017 (5)
O2	0.0150 (6)	0.0170 (6)	0.0236 (6)	-0.0014 (5)	0.0094 (5)	-0.0025 (5)
N1	0.0148 (7)	0.0228 (8)	0.0176 (6)	0.0014 (6)	0.0061 (5)	-0.0020 (6)
C1	0.0155 (8)	0.0185 (9)	0.0117 (7)	0.0017 (7)	0.0060 (6)	0.0009 (6)
C2	0.0150 (8)	0.0199 (9)	0.0157 (7)	-0.0003 (7)	0.0057 (6)	-0.0008 (7)
C3	0.0185 (8)	0.0170 (9)	0.0116 (7)	0.0018 (7)	0.0060 (6)	0.0012 (7)
C4	0.0162 (8)	0.0166 (9)	0.0206 (8)	0.0018 (7)	0.0058 (6)	0.0029 (7)
C5	0.0239 (9)	0.0169 (9)	0.0158 (8)	-0.0010 (7)	0.0076 (7)	-0.0016 (7)
C6	0.0244 (9)	0.0187 (9)	0.0182 (8)	0.0065 (7)	0.0104 (7)	0.0020 (7)
C7	0.0154 (8)	0.0238 (9)	0.0183 (8)	0.0043 (7)	0.0070 (6)	0.0031 (7)
C8	0.0187 (8)	0.0179 (9)	0.0102 (7)	0.0029 (7)	0.0059 (6)	0.0027 (7)
C9	0.0120 (8)	0.0212 (9)	0.0169 (7)	0.0003 (7)	0.0052 (6)	0.0023 (7)
C10	0.0166 (8)	0.0186 (9)	0.0129 (7)	-0.0021 (7)	0.0051 (6)	0.0008 (7)
C11	0.0157 (8)	0.0244 (10)	0.0292 (9)	-0.0039 (8)	0.0018 (7)	0.0036 (8)
C12	0.0142 (8)	0.0151 (9)	0.0163 (7)	-0.0017 (7)	0.0051 (6)	-0.0014 (7)
C13	0.0174 (8)	0.0137 (8)	0.0179 (8)	0.0033 (7)	0.0089 (6)	-0.0012 (7)
C14	0.0198 (9)	0.0149 (8)	0.0209 (8)	-0.0005 (7)	0.0074 (7)	-0.0013 (7)
C15	0.0267 (9)	0.0176 (9)	0.0244 (9)	0.0026 (8)	0.0120 (7)	0.0057 (7)
C16	0.0310 (10)	0.0214 (9)	0.0159 (8)	0.0078 (8)	0.0091 (7)	0.0023 (7)
C17	0.0226 (9)	0.0234 (10)	0.0192 (8)	0.0010 (7)	0.0031 (7)	-0.0030 (7)
C18	0.0205 (9)	0.0192 (9)	0.0213 (8)	-0.0021 (7)	0.0085 (7)	-0.0009 (7)
C19	0.0158 (8)	0.0127 (8)	0.0178 (7)	-0.0016 (7)	0.0067 (6)	-0.0012 (7)
C20	0.0172 (8)	0.0155 (8)	0.0189 (8)	0.0036 (7)	0.0090 (7)	-0.0008 (7)
C21	0.0188 (9)	0.0185 (9)	0.0197 (8)	0.0021 (7)	0.0087 (7)	-0.0028 (7)
C22	0.0264 (9)	0.0194 (9)	0.0233 (8)	-0.0022 (8)	0.0103 (7)	-0.0045 (8)
C23	0.0333 (11)	0.0245 (10)	0.0347 (10)	-0.0084 (9)	0.0158 (8)	-0.0072 (9)
C24	0.0290 (10)	0.0348 (12)	0.0334 (10)	-0.0101 (9)	0.0088 (8)	-0.0138 (9)
C25	0.0246 (10)	0.0361 (11)	0.0233 (9)	-0.0007 (9)	0.0047 (7)	-0.0083 (8)
C26	0.0189 (9)	0.0233 (9)	0.0222 (8)	0.0039 (8)	0.0079 (7)	-0.0046 (7)
C27	0.0243 (9)	0.0281 (10)	0.0171 (8)	0.0060 (8)	0.0075 (7)	-0.0008 (7)
C28	0.0290 (10)	0.0224 (10)	0.0219 (8)	0.0057 (8)	0.0139 (7)	0.0062 (8)
C29	0.0212 (9)	0.0169 (9)	0.0225 (8)	0.0019 (8)	0.0095 (7)	-0.0002 (7)
C30	0.0198 (9)	0.0168 (9)	0.0227 (8)	0.0016 (7)	0.0098 (7)	0.0026 (7)
C31	0.0213 (9)	0.0160 (9)	0.0225 (8)	0.0032 (7)	0.0077 (7)	-0.0014 (7)
C32	0.0234 (10)	0.0404 (12)	0.0210 (8)	0.0028 (9)	0.0026 (7)	-0.0052 (8)
C33	0.0299 (10)	0.0354 (11)	0.0307 (10)	-0.0008(9)	0.0185 (8)	-0.0008(9)

Geometric parameters (Å, °)

Br1—C5	1.9063 (16)	C16—C17	1.389 (2)	
O1—C10	1.3746 (18)	C16—H16	0.9500	
01—C11	1.4285 (19)	C17—C18	1.385 (2)	
O2—C19	1.4235 (18)	C17—H17	0.9500	
O2—H2	0.8400	C18—H18	0.9500	

N1—C33	1.457 (2)	C19—C30	1.547 (2)
N1—C32	1.4686 (19)	C19—C20	1.554 (2)
N1—C31	1.473 (2)	C20—C29	1.373 (2)
C1—C2	1.367 (2)	C20—C21	1.446 (2)
C1-C10	1440(2)	$C_{21} - C_{22}$	1 424 (2)
C1 $C12$	1.710(2) 1.527(2)	C_{21} C_{26}	1.121(2) 1.432(2)
$C_1 = C_1 Z_2$	1.327(2) 1.417(2)	$C_{21} = C_{20}$	1.432(2)
$C_2 = C_3$	1.417(2)	C22—C25	1.303(2)
C2—H2A	0.9500	C22—H22	0.9500
C3—C4	1.420 (2)	C23—C24	1.405 (2)
C3—C8	1.424 (2)	С23—Н23	0.9500
C4—C5	1.359 (2)	C24—C25	1.361 (2)
C4—H4	0.9500	C24—H24	0.9500
C5—C6	1.409 (2)	C25—C26	1.418 (2)
C6—C7	1.359 (2)	С25—Н25	0.9500
С6—Н6	0.9500	C26—C27	1.410 (2)
С7—С8	1.414 (2)	C27—C28	1.359 (2)
С7—Н7	0.9500	С27—Н27	0.9500
C8—C9	1.411 (2)	C28—C29	1.412 (2)
C9—C10	1 364 (2)	C28—H28	0.9500
C9—H9	0.9500	C29_H29	0.9500
C11_H11A	0.9800	C_{20} C_{30} C_{31}	1.529(2)
	0.9800	C_{30} H_{30A}	0.0000
	0.9800	C20 1120D	0.9900
	0.9800	C30—H30B	0.9900
	1.532 (2)	C31—H3IA	0.9900
C12—C19	1.548 (2)	С31—Н31В	0.9900
C12—H12	1.0000	C32—H32A	0.9800
C13—C14	1.387 (2)	C32—H32B	0.9800
C13—C18	1.390 (2)	C32—H32C	0.9800
C14—C15	1.380 (2)	С33—Н33А	0.9800
C14—H14	0.9500	С33—Н33В	0.9800
C15—C16	1.383 (2)	С33—Н33С	0.9800
C15—H15	0.9500		
C10—O1—C11	116.76 (12)	C17—C18—H18	119.6
C19—O2—H2	109.5	C13—C18—H18	119.6
$C_{33} = N_1 = C_{32}$	110.09(13)	02-C19-C30	107.83 (12)
C_{33} N1 C_{31}	110.09(13) 110.41(12)	02 - C19 - C12	107.09(12) 107.39(12)
C_{22} N1 C_{21}	110.41(12) 111.28(12)	$C_{2}^{2} = C_{1}^{2} = C_{1}^{2}$	107.57(12)
C_{2} C_{1} C_{10}	111.56 (15)	$C_{30} = C_{19} = C_{12}$	111.30(12)
$C_2 = C_1 = C_{10}$	117.52 (14)	02-019-020	110.23(12)
	124.14 (14)	C30—C19—C20	109.96 (12)
C10—C1—C12	117.89 (14)	C12—C19—C20	109.89 (12)
C1—C2—C3	122.47 (15)	C29—C20—C21	118.51 (14)
C1—C2—H2A	118.8	C29—C20—C19	117.48 (14)
C3—C2—H2A	118.8	C21—C20—C19	123.89 (13)
C2—C3—C4	122.25 (14)	C22—C21—C26	116.13 (14)
C2—C3—C8	118.84 (14)	C22—C21—C20	125.29 (14)
C4—C3—C8	118.87 (14)	C26—C21—C20	118.58 (14)
C5—C4—C3	119.48 (15)	C23—C22—C21	122.18 (15)

C5—C4—H4	120.3	C23—C22—H22	118.9
$C_3 - C_4 - H_4$	120.3	C_{21} C_{22} H_{22}	118.9
C4-C5-C6	122.5	C^{22} C^{23} C^{24}	121 17 (17)
C4-C5-Br1	120.34(13)	$C_{22} = C_{23} = H_{23}$	119.4
C6-C5-Br1	117.25(12)	$C_{22} = C_{23} = H_{23}$	119.4
C_{0}	117.25 (12)	$C_{24} = C_{23} = H_{23}$	119.4
C7 C6 H6	120.6	$C_{25} = C_{24} = C_{25}$	120.6
$C_{1} = C_{0} = H_{0}$	120.0	$C_{23} = C_{24} = H_{24}$	120.0
C_{5}	120.0	$C_{23} = C_{24} = 1124$	120.0 121.82(16)
C6 C7 H7	121.50 (15)	$C_{24} = C_{25} = C_{20}$	121.85 (10)
C° C^{-} U^{-} U^{-}	119.5	$C_{24} = C_{25} = H_{25}$	119.1
$C_{0} = C_{1} = H_{1}$	119.5	$C_{20} = C_{23} = H_{23}$	119.1
$C_{2} = C_{3} = C_{1}$	122.44 (14)	$C_2/-C_{20}-C_{23}$	120.21(15)
$C_{2} = C_{3}$	118.04 (14)	$C_2/-C_{26}-C_{21}$	119.88 (15)
C/-C8-C3	118.93 (15)	$C_{25} = C_{26} = C_{21}$	119.91 (15)
C10-C9-C8	120.90 (15)	C28—C27—C26	120.68 (15)
С10—С9—Н9	119.5	С28—С27—Н27	119.7
С8—С9—Н9	119.5	С26—С27—Н27	119.7
C9—C10—O1	123.80 (14)	C27—C28—C29	120.08 (15)
C9—C10—C1	121.41 (15)	С27—С28—Н28	120.0
O1—C10—C1	114.79 (13)	C29—C28—H28	120.0
01—C11—H11A	109.5	C20—C29—C28	122.26 (15)
O1—C11—H11B	109.5	С20—С29—Н29	118.9
H11A—C11—H11B	109.5	С28—С29—Н29	118.9
O1—C11—H11C	109.5	C31—C30—C19	113.34 (13)
H11A—C11—H11C	109.5	С31—С30—Н30А	108.9
H11B—C11—H11C	109.5	С19—С30—Н30А	108.9
C1—C12—C13	108.90 (12)	С31—С30—Н30В	108.9
C1—C12—C19	116.47 (12)	С19—С30—Н30В	108.9
C13—C12—C19	113.99 (13)	H30A—C30—H30B	107.7
C1—C12—H12	105.5	N1—C31—C30	111.68 (13)
C13—C12—H12	105.5	N1—C31—H31A	109.3
C19—C12—H12	105.5	С30—С31—Н31А	109.3
C14—C13—C18	118.16 (14)	N1—C31—H31B	109.3
C14—C13—C12	117.94 (14)	С30—С31—Н31В	109.3
C18—C13—C12	123.88 (14)	H31A—C31—H31B	107.9
C15—C14—C13	121.63 (15)	N1—C32—H32A	109.5
C15—C14—H14	119.2	N1—C32—H32B	109.5
C13—C14—H14	119.2	H32A—C32—H32B	109.5
C14-C15-C16	119 64 (15)	N1 - C32 - H32C	109.5
C14—C15—H15	120.2	H32A—C32—H32C	109.5
C16—C15—H15	120.2	H32B-C32-H32C	109.5
C_{15} C_{16} C_{17}	119.78 (15)	N1-C33-H33A	109.5
$C_{15} = C_{16} = H_{16}$	120.1	N1-C33-H33B	109.5
C17 C16 H16	120.1	H33A C33 H33B	109.5
C18 - C17 - C16	110 07 (15)	N1_C33_H32C	109.5
$C_{10} = C_{17} = C_{10}$	120.0	$H_{1} = C_{2} = H_{2} = C_{2}$	109.5
$C_{10} - C_{17} - H_{17}$	120.0	$H_{22} = C_{22} = H_{22} = C_{22}$	109.5
$C_{10} - C_{17} - C_{18} - C_{12}$	120.0	пээв—Сээ—пээС	109.3
U1/-U18-U13	120.81 (15)		

C10-C1-C2-C3	-2.8 (2)	C14—C13—C18—C17	-0.6 (2)
C12—C1—C2—C3	169.34 (13)	C12-C13-C18-C17	-178.95 (15)
C1—C2—C3—C4	-179.16 (14)	C1—C12—C19—O2	-54.08 (16)
C1—C2—C3—C8	-1.3 (2)	C13—C12—C19—O2	74.07 (16)
C2—C3—C4—C5	177.46 (14)	C1—C12—C19—C30	-171.99 (12)
C8—C3—C4—C5	-0.4 (2)	C13—C12—C19—C30	-43.84 (17)
C3—C4—C5—C6	-0.4 (2)	C1—C12—C19—C20	65.83 (17)
C3—C4—C5—Br1	-179.92 (10)	C13—C12—C19—C20	-166.02 (12)
C4—C5—C6—C7	0.7 (2)	O2—C19—C20—C29	-1.59 (19)
Br1-C5-C6-C7	-179.83 (11)	C30-C19-C20-C29	117.16 (15)
C5—C6—C7—C8	0.0 (2)	C12—C19—C20—C29	-119.75 (15)
C6—C7—C8—C9	178.93 (14)	O2-C19-C20-C21	-177.43 (13)
C6—C7—C8—C3	-0.8 (2)	C30-C19-C20-C21	-58.69 (18)
C2—C3—C8—C9	3.3 (2)	C12-C19-C20-C21	64.40 (18)
C4—C3—C8—C9	-178.72 (13)	C29—C20—C21—C22	178.94 (15)
C2—C3—C8—C7	-176.94 (13)	C19—C20—C21—C22	-5.3 (2)
C4—C3—C8—C7	1.0 (2)	C29—C20—C21—C26	-0.4 (2)
C7—C8—C9—C10	179.15 (14)	C19—C20—C21—C26	175.44 (14)
C3—C8—C9—C10	-1.1 (2)	C26—C21—C22—C23	0.6 (2)
C8—C9—C10—O1	177.60 (13)	C20-C21-C22-C23	-178.76 (16)
C8—C9—C10—C1	-3.2 (2)	C21—C22—C23—C24	-1.0 (3)
C11—O1—C10—C9	-4.5 (2)	C22—C23—C24—C25	0.8 (3)
C11-O1-C10-C1	176.23 (13)	C23—C24—C25—C26	-0.2 (3)
C2-C1-C10-C9	5.1 (2)	C24—C25—C26—C27	-179.99 (17)
C12—C1—C10—C9	-167.56 (13)	C24—C25—C26—C21	-0.2 (3)
C2-C1-C10-O1	-175.57 (12)	C22—C21—C26—C27	179.84 (15)
C12-C1-C10-O1	11.76 (19)	C20-C21-C26-C27	-0.8 (2)
C2—C1—C12—C13	-69.92 (18)	C22—C21—C26—C25	0.0 (2)
C10-C1-C12-C13	102.23 (15)	C20—C21—C26—C25	179.38 (15)
C2—C1—C12—C19	60.67 (19)	C25—C26—C27—C28	-178.59 (16)
C10—C1—C12—C19	-127.18 (15)	C21—C26—C27—C28	1.6 (2)
C1—C12—C13—C14	-105.02 (16)	C26—C27—C28—C29	-1.2 (2)
C19—C12—C13—C14	123.06 (15)	C21—C20—C29—C28	0.8 (2)
C1—C12—C13—C18	73.29 (18)	C19—C20—C29—C28	-175.28 (14)
C19—C12—C13—C18	-58.6 (2)	C27—C28—C29—C20	0.0 (2)
C18—C13—C14—C15	0.0 (2)	O2—C19—C30—C31	62.77 (16)
C12—C13—C14—C15	178.37 (14)	C12—C19—C30—C31	-179.59 (13)
C13—C14—C15—C16	0.6 (2)	C20-C19-C30-C31	-57.44 (17)
C14—C15—C16—C17	-0.6 (2)	C33—N1—C31—C30	157.51 (13)
C15—C16—C17—C18	-0.1 (2)	C32—N1—C31—C30	-79.86 (16)
C16—C17—C18—C13	0.7 (2)	C19—C30—C31—N1	-62.24 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O2—H2…N1	0.84	1.93	2.6988 (17)	151