organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

{(1*R*,3*S*)-2-Benzyl-6,7-dimethoxy-1phenyl-1,2,3,4-tetrahydroisoguinolin-3yl}diphenylmethanol

Tricia Naicker,^a* Thavendran Govender,^b Hendrik G. Kruger^a and Glenn E.M. Maguire^a

^aSchool of Chemistry, University of KwaZulu-Natal, Durban, 4000, South Africa, and ^bSchool of Pharmacy and Pharmacology, University of KwaZulu-Natal, Durban, 4000. South Africa

Correspondence e-mail: govenderthav@ukzn.ac.za

Received 24 January 2010; accepted 9 February 2010

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.025; wR factor = 0.068; data-to-parameter ratio = 6.7.

In the title compound, C₃₇H₃₅NO₃, a precursor to novel chiral catalysts, the N-containing six-membered ring assumes a halfchair conformation. Intermolecular C-H···O hydrogen bonds link the molecules in the crystal structure.

Related literature

For the synthesis of the title compound, see: Chakka et al. (2010). For related structures, see: Aubry et al. (2006). For a related structure with the same chiral centres and configuration, see: Naicker et al. (2009). For proline diaryl alcohols, see: Diner et al. (2008); Seebach et al. (2008).

Experimental . .

Crystal data	
C37H35NO3	a = 11.9706 (5) Å
$M_r = 541.66$	b = 10.1934 (4) Å
Monoclinic, $P2_1$	c = 13.1515 (5) Å

 $\beta = 116.546 \ (2)^{\circ}$ $V = 1435.58 (10) \text{ Å}^3$ Z = 2Cu Ka radiation

Data collection

Bruker Kappa Duo APEXII
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
$T_{\min} = 0.876, T_{\max} = 0.930$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.025$	
$wR(F^2) = 0.068$	
S = 1.10	
2514 reflections	
375 parameters	
1 restraint	

H atoms treated by a mixture of independent and constrained

 $R_{\rm int} = 0.025$

 $\mu = 0.62 \text{ mm}^{-1}$

 $0.22 \times 0.14 \times 0.12 \text{ mm}$

15262 measured reflections

2514 independent reflections 2451 reflections with $I > 2\sigma(I)$

T = 173 K

refinement $\Delta \rho_{\rm max} = 0.14$ e Å⁻³ $\Delta \rho_{\rm min} = -0.12~{\rm e}~{\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -Н	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C15-H15\cdots O2^{i}$	0.95	2.44	3.385 (2)	171
Summatry and a (i) x y	- 1			

Symmetry code: (i) x, y, z - 1.

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

The authors wish to thank Dr Hong Su of the Chemistry Department of the University of Cape Town for her assistance with the crystallographic data collection and Dr M Bala of the School of Chemistry at University of KwaZulu-Natal for his assistance with preparation of this manuscript.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2135).

References

- Aubry, S., Pellet-Rostaing, S., Faure, R. & Lemaire, M. (2006). J. Heterocycl. Chem. 43, 139-148.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2006). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chakka, S. K., Andersson, P. G., Maguire, G. E. M., Kruger, H. G. & Govender, T. (2010). Eur. J. Org. Chem. pp. 972-980

Diner, P., Kjaersgaard, A., Lie, M. A. & Jorgensen, K. A. (2008). Chem. Eur. J. 14. 122-127.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Naicker, T., McKay, M., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2009). Acta Cryst. E65, 03278.

Seebach, D., Grosělj, U., Badine, D. M., Schweizer, W. B. & Beck, A. K. (2008). Helv. Chim. Acta, 91, 1999-2034

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2010). E66, o638 [doi:10.1107/S1600536810005295]

{(1*R*,3*S*)-2-Benzyl-6,7-dimethoxy-1-phenyl-1,2,3,4-tetrahydroisoquinolin-3-yl}diphenylmethanol

Tricia Naicker, Thavendran Govender, Hendrik G. Kruger and Glenn E.M. Maguire

S1. Comment

The title compound (2, Fig. 3) is a precursor in the synthesis of novel chiral ligands involving a tetrahydroisoquinoline backbone. Recently, we have reported the application of these ligands as useful catalysts for transfer hydrogenation reactions (Chakka *et al.*, 2010).

Compound 2 contains four phenyl rings and the absolute stereochemistry was confirmed to be R,S at C1 and C9 positions as shown in Fig. 1, respectively (Aubry *et al.*, 2006). The crystal packing is stabilized by intermolecular C— H···O hydrogen bonds. The H atom of methanol does not form hydrogen bonds (Table 1 & Fig. 2). According to the Cambridge structural data base this is the first tetrahydroisoquinoline derivative with diaryl substitution at the C10 position. The structure displays a *gauche* or sc (synclinal) conformation around the O3—C10—C9—N1 bond with the OH group almost over the piperidine ring with a torsion angle of -77.0 (2)°. Due to the lack of analogous structures this observation was compared to proline diaryl alcohols (Seebach *et al.*, 2008) which display a similar conformation around the exocyclic C9—C10 bond. Given the success of proline diaryl alcohols as a chiral catalyst (Diner *et al.*, 2008) this comparison is particularly useful for catalysts bearing a tetrahydroisoquinoline framework as this feature could have a significant effect on the stereocontrol of the catalyst.

We recently reported a crystal structure of a similar molecule to the title compound (Naicker *et al.*, 2009) which has an ester moiety at the C10 position and the N-containing six membered ring assumes a half boat conformation. The N-containing six membered ring in the title compound exists in a half chair conformation (see Fig. 1). A possible reason for this difference in conformation could be the introduction of large phenyl ring substituents at the C10 position. The efficiency of these tetrahydroisoquinoline catalysts is currently being tested in our laboratory.

S2. Experimental

To a solution of compound **1** (Fig. 3) (500 mg, 1.19 mmol) in THF (10 ml), freshly prepared Grignard reagent of phenyl magnesium bromide (2.17 g, 11.9 mmol) was added under a nitrogen atmosphere at ambient temperature. Completion of the reaction was monitored with TLC by quenching 0.1 ml aliquots of the reaction mixture with saturated ammonium chloride solution at 0 °C using ethyl acetate/hexane as the solvent (40 : 60 R_f 0.5). Thereafter the reaction mixture was filtered and the solvent was evaporated under reduced pressure to afford the crude product. This was purified by column chromatography using ethyl acetate/hexane (40:60) as the eluent to yield 80 % (0.52 g) pure tetrahydroisoquinoline diphenyl alcohol **2** as a white solid. ¹H NMR (600 MHz,CDCl₃, δ , p.p.m): 7.38 (d, *J* = 7.26 Hz, 2H), 7.32–7.16 (m, 9H), 6.54 (s, 1H), 6.26 (s, 1H), 5.19 (s, 1H), 3.85–3.72 (m, 6H), 3.61 (s,6H), 3.23 (dd, *J* = 5.10, 15.66 Hz, 1H), 2.98 (dd, *J* = 3.00, 15.72, Hz, 1H). Light yellow crystals suitable for X-ray diffraction were obtained by slow evaporation of **2** in dichloromethane at room temperature.

S3. Refinement

The H atom of O3 was located in difference Fourier map and freely refined. All H atoms and C atoms were positioned geometrically and refined using a riding model, with C—H = 1.00 (CH), 0.99 (CH₂), 0.98 (CH₃) and 0.93 (aromatic CH) Å. $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for other all H atoms. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Figure 1

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms have been omitted for clarity.

Figure 2

The C—H···O interactions (dotted lines) in the crystal structure of the title compound along the a axis. [Symmetry codes: i) x, y, z - 1; ii) x, y, z + 1.]

Figure 3

Reaction scheme.

{(1R,3S)-2-benzyl-6,7-dimethoxy-1-phenyl-1,2,3,4- tetrahydroisoquinolin-3-yl}diphenylmethanol

Crystal data

C₃₇H₃₅NO₃ $M_r = 541.66$ Monoclinic, P2₁ Hall symbol: P 2yb a = 11.9706 (5) Å b = 10.1934 (4) Å c = 13.1515 (5) Å $\beta = 116.546$ (2)° V = 1435.58 (10) Å³ Z = 2

Data collection

Bruker Kappa Duo APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $0.5^{\circ} \varphi$ scans and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2006) $T_{\min} = 0.876, T_{\max} = 0.930$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.068$ S = 1.102514 reflections 375 parameters 1 restraint Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 576 $D_x = 1.253 \text{ Mg m}^{-3}$ Melting point: 478 K Cu K\alpha radiation, \lambda = 1.54184 \mathbf{A} Cell parameters from 15260 reflections $\theta = 4.1-64.1^{\circ}$ $\mu = 0.62 \text{ mm}^{-1}$ T = 173 KNeedle, light-yellow $0.22 \times 0.14 \times 0.12 \text{ mm}$

15262 measured reflections 2514 independent reflections 2451 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 64.1^{\circ}, \ \theta_{min} = 4.1^{\circ}$ $h = -13 \rightarrow 13$ $k = -11 \rightarrow 11$ $l = -15 \rightarrow 15$

Hydrogen site location: difference Fourier map H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0394P)^2 + 0.1556P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.14 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.12 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL*, Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0019 (4)

Special details

Experimental. Half sphere of data collected using SAINT strategy (Bruker, 2006). Crystal to detector distance = 50 mm; combination of φ and ω scans of 0.5°, 70 s per °, 2 iterations.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso}^*/U_{\rm eq}$ х Ζ v 01 0.22854 (13) 0.26734 (16) 1.12303 (10) 0.0431(3)0.0500 (4) 02 0.04675 (14) 0.12697 (17) 0.98256 (12) O3 0.42417 (16) 0.44410 (11) 0.0404(3)0.05661 (12) H3O -0.004(3)0.362(3)0.413(2)0.075 (9)* N1 0.25806(13) 0.46610(15) 0.69414 (12) 0.0293(3)C1 0.32465 (16) 0.43732 (19) 0.81717 (14) 0.0301 (4) H1 0.036* 0.3345 0.5232 0.8571 C2 0.24903 (16) 0.34980 (18) 0.85715 (15) 0.0308 (4) C3 0.27894 (17) 0.34611 (19) 0.97314 (15) 0.0329 (4) H3 0.040* 0.3486 0.3948 1.0255 C4 0.20987 (17) 0.2737(2)1.01278 (15) 0.0346 (4) C5 0.10937 (17) 0.1980 (2) 0.0366 (4) 0.93545 (16) C6 0.08020(17)0.2006(2)0.82194 (15) 0.0348(4)0.042* H6 0.0123 0.1494 0.7702 C7 0.14841 (16) 0.27720 (19) 0.78076 (15) 0.0315 (4) 0.2823 (2) 0.65460 (15) C8 0.10892 (16) 0.0327(4)0.039* H8A 0.0316 0.3350 0.6169 H8B 0.039* 0.0906 0.1924 0.6229 C9 0.21113 (16) 0.34278(18)0.63028 (14) 0.0294(4)H9 0.035* 0.2827 0.2798 0.6612 C10 0.17522 (16) 0.35837 (19) 0.50136 (15) 0.0310(4)C11 0.16612 (15) 0.22675 (19) 0.44078 (15) 0.0307(4)C12 0.19679 (17) 0.1051(2)0.0339(4)0.49339 (15) H12 0.2266 0.0994 0.5734 0.041* C13 0.18466 (18) -0.0085(2)0.43084 (18) 0.0384 (4) H13 0.2054 -0.09100.046* 0.4683 C14 0.14278 (19) -0.0023(2)0.31498 (18) 0.0409(5)H14 -0.08020.049* 0.1338 0.2724 C15 0.11407 (19) 0.1175 (2) 0.26129 (16) 0.0434(5)H15 0.0862 0.1227 0.1815 0.052* C16 0.12580 (18) 0.2302(2)0.32337 (16) 0.0394(5)0.047* 0.3123 0.2853 H16 0.1059 C17 0.27291 (17) 0.44212 (19) 0.48694 (14) 0.0334(4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C18	0.2411 (2)	0.5509 (2)	0.41693 (18)	0.0489 (5)
H18	0.1563	0.5780	0.3789	0.059*
C19	0.3321 (3)	0.6211 (3)	0.4016 (2)	0.0626 (7)
H19	0.3091	0.6952	0.3527	0.075*
C20	0.4552 (3)	0.5837 (3)	0.4569 (2)	0.0636 (7)
H20	0.5172	0.6317	0.4463	0.076*
C21	0.4880 (2)	0.4767 (3)	0.5273 (2)	0.0553 (6)
H21	0.5729	0.4504	0.5656	0.066*
C22	0.39822 (18)	0.4074 (2)	0.54256 (18)	0.0409 (5)
H22	0.4224	0.3340	0.5923	0.049*
C23	0.45677 (16)	0.38930 (19)	0.84700 (14)	0.0314 (4)
C24	0.50143 (18)	0.2662 (2)	0.89154 (16)	0.0392 (4)
H24	0.4496	0.2076	0.9075	0.047*
C25	0.6210 (2)	0.2279 (2)	0.9130 (2)	0.0513 (5)
H25	0.6500	0.1428	0.9424	0.062*
C26	0.6982 (2)	0.3123 (3)	0.8920 (2)	0.0532 (6)
H26	0.7797	0.2852	0.9058	0.064*
C27	0.65631 (19)	0.4367 (3)	0.85060 (19)	0.0526 (6)
H27	0.7097	0.4966	0.8381	0.063*
C28	0.53601 (18)	0.4734 (2)	0.82747 (18)	0.0447 (5)
H28	0.5071	0.5583	0.7975	0.054*
C29	0.3369 (2)	0.3293 (3)	1.20594 (16)	0.0490 (5)
H29A	0.3399	0.3181	1.2811	0.074*
H29B	0.3344	0.4230	1.1885	0.074*
H29C	0.4112	0.2896	1.2055	0.074*
C30	-0.0409(2)	0.0329 (3)	0.9135 (2)	0.0639(7)
H30A	-0.0784	-0.0106	0.9573	0.096*
H30B	0.0012	-0.0324	0.8880	0.096*
H30C	-0.1064	0.0765	0.8473	0.096*
C31	0.16184 (17)	0.5677 (2)	0.67155 (17)	0.0359 (4)
H31A	0.1115	0.5449	0.7117	0.043*
H31B	0.1052	0.5709	0.5891	0.043*
C32	0.22097 (17)	0.7003 (2)	0.71081 (16)	0.0391 (5)
C33	0.1997 (2)	0.7730 (3)	0.7892 (2)	0.0552 (6)
H33	0.1479	0.7391	0.8206	0.066*
C34	0.2552 (3)	0.8977 (3)	0.8222 (2)	0.0750 (9)
H34	0.2416	0.9479	0.8765	0.090*
C35	0.3287 (3)	0.9462 (3)	0.7760 (2)	0.0765 (9)
H35	0.3647	1.0310	0.7973	0.092*
C36	0.3507 (2)	0.8743 (3)	0.6998 (2)	0.0637 (7)
H36	0.4025	0.9088	0.6686	0.076*
C37	0.2985 (2)	0.7520 (2)	0.66755 (19)	0.0495 (5)
H37	0.3156	0.7021	0.6151	0.059*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0513 (8)	0.0493 (8)	0.0319 (6)	-0.0119 (7)	0.0214 (6)	-0.0048 (6)

O2	0.0593 (9)	0.0570 (10)	0.0414 (7)	-0.0261 (8)	0.0294 (7)	-0.0056 (7)
O3	0.0328 (7)	0.0446 (8)	0.0367 (7)	0.0091 (7)	0.0094 (5)	0.0015 (7)
N1	0.0304 (7)	0.0272 (8)	0.0309 (7)	-0.0005 (6)	0.0143 (6)	0.0002 (6)
C1	0.0332 (9)	0.0264 (9)	0.0315 (8)	-0.0034 (8)	0.0154 (7)	-0.0028 (8)
C2	0.0342 (9)	0.0278 (9)	0.0335 (9)	-0.0016 (8)	0.0179 (7)	-0.0032 (8)
C3	0.0372 (9)	0.0308 (10)	0.0325 (8)	-0.0048 (8)	0.0171 (7)	-0.0061 (8)
C4	0.0431 (10)	0.0336 (10)	0.0317 (8)	-0.0012 (9)	0.0209 (8)	-0.0022 (8)
C5	0.0419 (10)	0.0360 (11)	0.0384 (9)	-0.0066 (9)	0.0239 (8)	-0.0022 (9)
C6	0.0363 (9)	0.0347 (10)	0.0359 (9)	-0.0082 (8)	0.0185 (8)	-0.0058 (8)
C7	0.0341 (9)	0.0292 (9)	0.0348 (9)	-0.0022 (8)	0.0184 (7)	-0.0037 (8)
C8	0.0340 (9)	0.0334 (10)	0.0324 (9)	-0.0038 (8)	0.0164 (7)	-0.0041 (8)
C9	0.0306 (8)	0.0272 (9)	0.0320 (9)	0.0002 (7)	0.0153 (7)	-0.0010 (7)
C10	0.0299 (9)	0.0320 (10)	0.0321 (9)	0.0035 (8)	0.0146 (7)	0.0032 (8)
C11	0.0274 (8)	0.0360 (10)	0.0326 (9)	-0.0043 (8)	0.0169 (7)	-0.0012 (8)
C12	0.0354 (9)	0.0362 (10)	0.0313 (9)	0.0015 (8)	0.0160 (7)	-0.0006 (8)
C13	0.0367 (10)	0.0337 (11)	0.0480 (11)	0.0005 (8)	0.0218 (9)	-0.0014 (9)
C14	0.0415 (10)	0.0444 (12)	0.0462 (11)	-0.0106 (9)	0.0281 (9)	-0.0145 (9)
C15	0.0504 (11)	0.0527 (13)	0.0334 (9)	-0.0138 (11)	0.0245 (9)	-0.0082 (10)
C16	0.0465 (10)	0.0420 (12)	0.0331 (9)	-0.0069 (9)	0.0208 (8)	0.0017 (9)
C17	0.0421 (10)	0.0290 (10)	0.0332 (8)	-0.0022 (8)	0.0206 (8)	-0.0022 (8)
C18	0.0616 (13)	0.0418 (12)	0.0446 (11)	0.0023 (11)	0.0248 (10)	0.0105 (10)
C19	0.100 (2)	0.0388 (13)	0.0616 (14)	-0.0096 (14)	0.0470 (14)	0.0111 (12)
C20	0.0764 (18)	0.0510 (16)	0.0845 (18)	-0.0174 (13)	0.0548 (15)	0.0012 (14)
C21	0.0490 (12)	0.0551 (15)	0.0755 (16)	-0.0087 (12)	0.0401 (12)	-0.0028 (13)
C22	0.0422 (10)	0.0355 (11)	0.0525 (11)	0.0002 (9)	0.0278 (9)	0.0036 (9)
C23	0.0319 (9)	0.0327 (10)	0.0274 (8)	-0.0035 (8)	0.0113 (7)	-0.0033 (7)
C24	0.0394 (10)	0.0300 (10)	0.0444 (10)	-0.0043 (9)	0.0154 (8)	-0.0038 (9)
C25	0.0447 (11)	0.0395 (12)	0.0604 (13)	0.0066 (10)	0.0151 (10)	-0.0008 (10)
C26	0.0353 (10)	0.0587 (16)	0.0612 (14)	0.0057 (11)	0.0174 (10)	-0.0032 (12)
C27	0.0374 (11)	0.0624 (16)	0.0598 (13)	-0.0038 (11)	0.0233 (10)	0.0089 (13)
C28	0.0377 (10)	0.0435 (12)	0.0524 (11)	-0.0004 (9)	0.0197 (9)	0.0118 (10)
C29	0.0525 (12)	0.0600 (14)	0.0337 (10)	-0.0104 (11)	0.0185 (9)	-0.0055 (10)
C30	0.0733 (16)	0.0710 (18)	0.0550 (13)	-0.0382 (15)	0.0354 (12)	-0.0082 (13)
C31	0.0318 (9)	0.0307 (10)	0.0434 (10)	0.0024 (8)	0.0152 (8)	-0.0016 (8)
C32	0.0346 (9)	0.0282 (10)	0.0416 (10)	0.0059 (8)	0.0057 (8)	0.0012 (9)
C33	0.0553 (13)	0.0428 (13)	0.0526 (12)	0.0115 (11)	0.0108 (10)	-0.0074 (11)
C34	0.093 (2)	0.0450 (16)	0.0549 (14)	0.0174 (15)	0.0041 (14)	-0.0155 (12)
C35	0.0830 (19)	0.0335 (14)	0.0658 (16)	-0.0077 (13)	-0.0091 (14)	0.0039 (13)
C36	0.0584 (14)	0.0397 (13)	0.0640 (15)	-0.0079 (11)	0.0014 (11)	0.0134 (12)
C37	0.0462 (11)	0.0364 (12)	0.0537 (12)	0.0007 (10)	0.0113 (9)	0.0092 (10)

Geometric parameters (Å, °)

01—C4	1.366 (2)	C18—C19	1.392 (3)	
O1—C29	1.416 (3)	C18—H18	0.9500	
O2—C5	1.373 (2)	C19—C20	1.374 (4)	
O2—C30	1.412 (3)	C19—H19	0.9500	
O3—C10	1.441 (2)	C20—C21	1.370 (4)	

O3—H3O	0.91 (3)	С20—Н20	0.9500
N1—C9	1.476 (2)	C21—C22	1.373 (3)
N1—C31	1.477 (2)	C21—H21	0.9500
N1—C1	1.479 (2)	С22—Н22	0.9500
C1—C2	1.522 (2)	C23—C28	1.385 (3)
C1—C23	1.530 (2)	C23—C24	1.387 (3)
C1—H1	1.0000	C24—C25	1.386 (3)
C2—C7	1.388 (3)	C24—H24	0.9500
C2—C3	1.403 (2)	C25—C26	1.378 (3)
C3—C4	1.373 (3)	С25—Н25	0.9500
С3—Н3	0.9500	C26—C27	1.382 (4)
C4—C5	1.408 (3)	С26—Н26	0.9500
C5—C6	1.373 (3)	C27—C28	1.384 (3)
C6—C7	1.402 (3)	С27—Н27	0.9500
С6—Н6	0.9500	C28—H28	0.9500
C7—C8	1.509 (2)	С29—Н29А	0.9800
C8—C9	1.526 (2)	С29—Н29В	0.9800
C8—H8A	0.9900	С29—Н29С	0.9800
C8—H8B	0.9900	С30—Н30А	0.9800
C9—C10	1.560 (2)	С30—Н30В	0.9800
С9—Н9	1.0000	С30—Н30С	0.9800
C10—C17	1.527 (3)	C31—C32	1.506 (3)
C10—C11	1.539 (3)	С31—Н31А	0.9900
C11—C12	1.387 (3)	C31—H31B	0.9900
C11—C16	1.397 (3)	C32—C33	1.382 (3)
C12—C13	1.390 (3)	C32—C37	1.391 (3)
C12—H12	0.9500	C33—C34	1.410 (4)
C13—C14	1.376 (3)	С33—Н33	0.9500
С13—Н13	0.9500	C34—C35	1.365 (5)
C14—C15	1.375 (3)	С34—Н34	0.9500
C14—H14	0.9500	C35—C36	1.360 (4)
C15—C16	1.379 (3)	С35—Н35	0.9500
С15—Н15	0.9500	C36—C37	1.373 (3)
C16—H16	0.9500	С36—Н36	0.9500
C17—C18	1.382 (3)	С37—Н37	0.9500
C17—C22	1.389 (3)		
C4—O1—C29	117.08 (15)	C17—C18—C19	120.6 (2)
C5—O2—C30	117.80 (15)	C17—C18—H18	119.7
С10—О3—НЗО	108 (2)	C19—C18—H18	119.7
C9—N1—C31	114.74 (13)	C20—C19—C18	120.3 (2)
C9—N1—C1	109.60 (14)	С20—С19—Н19	119.8
C31—N1—C1	110.47 (14)	C18—C19—H19	119.8
N1—C1—C2	112.41 (14)	C21—C20—C19	119.6 (2)
N1—C1—C23	109.51 (13)	C21—C20—H20	120.2
C2—C1—C23	115.48 (15)	С19—С20—Н20	120.2
N1—C1—H1	106.3	C20—C21—C22	120.2 (2)
C2—C1—H1	106.3	C20-C21-H21	119.9

С23—С1—Н1	106.3	C22—C21—H21	119.9
C7—C2—C3	119.34 (16)	C21—C22—C17	121.5 (2)
C7—C2—C1	121.35 (15)	C21—C22—H22	119.2
C3—C2—C1	119.28 (16)	C17—C22—H22	119.2
C4—C3—C2	121.52 (17)	C28—C23—C24	118.13 (18)
С4—С3—Н3	119.2	C28—C23—C1	118.02 (17)
С2—С3—Н3	119.2	C24—C23—C1	123.85 (17)
Q1—C4—C3	125.99 (17)	C25—C24—C23	120.6 (2)
01	114.97 (16)	C25—C24—H24	119.7
C_{3} — C_{4} — C_{5}	119.04 (16)	C_{23} C_{24} H_{24}	119.7
C6-C5-O2	125 18 (17)	$C_{26} = C_{25} = C_{24}$	120.5(2)
C6-C5-C4	119.63 (16)	$C_{26} = C_{25} = H_{25}$	119.7
0° C5 C4	115.18 (16)	$C_{20} = C_{25} = H_{25}$	119.7
C_{2}	113.10(10) 121.47(17)	$C_{24} = C_{25} = H_{25}$	119.7 110.6(2)
$C_{5} = C_{6} = C_{7}$	121.47 (17)	$C_{25} = C_{26} = C_{27}$	119.0 (2)
C_{3}	119.5	$C_{23} = C_{20} = H_{20}$	120.2
$C^{2} = C^{2} = C^{2}$	119.5	$C_2/-C_20-H_20$	120.2
$C_2 - C_7 - C_6$	118.96 (16)	$C_{26} = C_{27} = C_{28}$	119.6 (2)
$C_2 = C_1 = C_8$	121.43 (16)	$C_{20} = C_{27} = H_{27}$	120.2
	119.58 (15)	C28—C27—H27	120.2
C7—C8—C9	110.96 (14)	C27—C28—C23	121.6 (2)
С7—С8—Н8А	109.4	С27—С28—Н28	119.2
С9—С8—Н8А	109.4	C23—C28—H28	119.2
С7—С8—Н8В	109.4	O1—C29—H29A	109.5
С9—С8—Н8В	109.4	O1—C29—H29B	109.5
H8A—C8—H8B	108.0	H29A—C29—H29B	109.5
N1—C9—C8	111.20 (14)	O1—C29—H29C	109.5
N1-C9-C10	112.43 (15)	H29A—C29—H29C	109.5
C8—C9—C10	114.31 (14)	H29B—C29—H29C	109.5
N1—C9—H9	106.1	O2—C30—H30A	109.5
С8—С9—Н9	106.1	O2—C30—H30B	109.5
С10—С9—Н9	106.1	H30A—C30—H30B	109.5
O3—C10—C17	107.77 (15)	O2—C30—H30C	109.5
O3—C10—C11	108.05 (14)	H30A—C30—H30C	109.5
C17—C10—C11	107.71 (14)	H30B—C30—H30C	109.5
O3-C10-C9	110.11 (14)	N1-C31-C32	110.84 (14)
C17—C10—C9	109.74 (14)	N1-C31-H31A	109.5
$C_{11} - C_{10} - C_{9}$	113 28 (15)	C_{32} C_{31} H_{31A}	109.5
C_{12} C_{11} C_{16}	117.22 (18)	N1_C31_H31B	109.5
C_{12} C_{11} C_{10}	125 39 (15)	C_{32} C_{31} H_{31B}	109.5
C16-C11-C10	123.37(13) 117.37(17)	$H_{31} = C_{31} = H_{31} B$	109.5
C_{11} C_{12} C_{13}	121.01 (16)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.1 118.8(2)
$C_{11} = C_{12} = C_{13}$	110.5	$C_{33} = C_{32} = C_{37}$	110.0(2)
$C_{11} = C_{12} = H_{12}$	119.5	$C_{33} = C_{32} = C_{31}$	121.4(2)
C_{13} $-C_{12}$ $-C_{12}$ C_{12}	117.3	$C_{37} - C_{32} - C_{31}$	117.00(19)
C14 - C13 - C12	120.40 (19)	$C_{22} = C_{23} = C_{24}$	119.0 (3)
C12 C12 H12	119.8	C_{24} C_{22} H_{22}	120.2
C12 - C13 - H13	119.8	C34—C33—H33	120.2
C13 - C14 - C15	119.53 (19)	C35-C34-C33	119.9 (3)
C13-C14-H14	120.2	C35—C34—H34	120.1

C15—C14—H14	120.2	C33—C34—H34	120.1
C14-C15-C16	119 97 (17)	$C_{36} - C_{35} - C_{34}$	120.6 (3)
C14-C15-H15	120.0	C36—C35—H35	119 7
C16—C15—H15	120.0	C34—C35—H35	119.7
C_{15} C_{16} C_{11}	121.8 (2)	C_{35} — C_{36} — C_{37}	1204(3)
C_{15} C_{16} H_{16}	119.1	C35—C36—H36	119.8
$C_{11} - C_{16} - H_{16}$	119.1	C37—C36—H36	119.8
C18 - C17 - C22	117.82 (18)	$C_{36} - C_{37} - C_{32}$	120.8 (3)
C18 - C17 - C10	122 22 (17)	$C_{36} = C_{37} = H_{37}$	119.6
C^{22} C^{17} C^{10}	122.22(17) 119 94 (17)	C_{32} C_{37} H_{37}	119.6
022 017 010	119.94 (17)	032 037 1137	119.0
C9—N1—C1—C2	-49.61 (18)	C16—C11—C12—C13	-1.6(3)
C31—N1—C1—C2	77.77 (18)	C10-C11-C12-C13	179.67 (18)
C9—N1—C1—C23	80.17 (17)	C11—C12—C13—C14	0.6 (3)
C31—N1—C1—C23	-152.45 (15)	C12—C13—C14—C15	0.7 (3)
N1—C1—C2—C7	17.4 (2)	C13—C14—C15—C16	-0.8 (3)
C23—C1—C2—C7	-109.28 (19)	C14—C15—C16—C11	-0.2(3)
N1—C1—C2—C3	-160.34 (16)	C12—C11—C16—C15	1.4 (3)
C23—C1—C2—C3	73.0 (2)	C10—C11—C16—C15	-179.74 (17)
C7—C2—C3—C4	-0.9(3)	O3—C10—C17—C18	-7.7 (2)
C1—C2—C3—C4	176.84 (17)	C11—C10—C17—C18	108.7 (2)
C29—O1—C4—C3	-7.4 (3)	C9—C10—C17—C18	-127.62 (19)
C29—O1—C4—C5	172.86 (19)	O3—C10—C17—C22	174.30 (16)
C2—C3—C4—O1	-177.54 (18)	C11—C10—C17—C22	-69.3 (2)
C2—C3—C4—C5	2.2 (3)	C9—C10—C17—C22	54.4 (2)
C30—O2—C5—C6	11.0 (3)	C22—C17—C18—C19	1.2 (3)
C30—O2—C5—C4	-169.7 (2)	C10—C17—C18—C19	-176.8 (2)
O1—C4—C5—C6	178.01 (18)	C17—C18—C19—C20	-0.6 (4)
C3—C4—C5—C6	-1.8 (3)	C18—C19—C20—C21	0.0 (4)
O1—C4—C5—O2	-1.3 (3)	C19—C20—C21—C22	-0.1 (4)
C3—C4—C5—O2	178.95 (18)	C20—C21—C22—C17	0.7 (3)
O2—C5—C6—C7	179.27 (19)	C18—C17—C22—C21	-1.3 (3)
C4—C5—C6—C7	0.0 (3)	C10-C17-C22-C21	176.81 (19)
C3—C2—C7—C6	-0.8 (3)	N1-C1-C23-C28	61.0 (2)
C1—C2—C7—C6	-178.51 (17)	C2-C1-C23-C28	-170.93 (16)
C3—C2—C7—C8	177.34 (17)	N1-C1-C23-C24	-118.47 (18)
C1—C2—C7—C8	-0.4 (3)	C2-C1-C23-C24	9.6 (2)
C5—C6—C7—C2	1.2 (3)	C28—C23—C24—C25	-1.6 (3)
C5—C6—C7—C8	-176.95 (18)	C1—C23—C24—C25	177.84 (18)
C2—C7—C8—C9	15.5 (2)	C23—C24—C25—C26	1.0 (3)
C6—C7—C8—C9	-166.40 (17)	C24—C25—C26—C27	0.9 (4)
C31—N1—C9—C8	-57.74 (19)	C25—C26—C27—C28	-2.0 (4)
C1—N1—C9—C8	67.21 (17)	C26—C27—C28—C23	1.4 (4)
C31—N1—C9—C10	71.89 (18)	C24—C23—C28—C27	0.4 (3)
C1—N1—C9—C10	-163.16 (14)	C1-C23-C28-C27	-179.1 (2)
C7—C8—C9—N1	-48.4 (2)	C9—N1—C31—C32	-162.95 (15)
C7—C8—C9—C10	-177.03 (16)	C1—N1—C31—C32	72.56 (19)
N1—C9—C10—O3	-77.04 (18)	N1—C31—C32—C33	-122.4 (2)

C8—C9—C10—O3	51.0 (2)	N1-C31-C32-C37	57.8 (2)
N1—C9—C10—C17	41.44 (19)	C37—C32—C33—C34	0.8 (3)
C8—C9—C10—C17	169.44 (15)	C31—C32—C33—C34	-178.93 (19)
N1—C9—C10—C11	161.84 (14)	C32—C33—C34—C35	0.5 (4)
C8—C9—C10—C11	-70.15 (19)	C33—C34—C35—C36	-1.2 (4)
O3—C10—C11—C12	-127.94 (18)	C34—C35—C36—C37	0.5 (4)
C17—C10—C11—C12	115.89 (18)	C35—C36—C37—C32	0.9 (3)
C9—C10—C11—C12	-5.7 (2)	C33—C32—C37—C36	-1.6 (3)
O3—C10—C11—C16	53.3 (2)	C31—C32—C37—C36	178.20 (18)
C17—C10—C11—C16	-62.88 (19)	O3—C10—C9—N1	-77.04 (18)
C9—C10—C11—C16	175.57 (15)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C15—H15…O2 ⁱ	0.95	2.44	3.385 (2)	171

Symmetry code: (i) x, y, z-1.