Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Tetraaquabis(3-fluoropyridine-4-carboxylato- κN)zinc(II) dihydrate

Jonetha Fleming, ${ }^{\text {a }}$ Jennifer Kelley, ${ }^{\text {a }}$ LeRoy Peterson Jr, ${ }^{\text {a* }}$ Mark D. Smith ${ }^{\text {b }}$ and Hans-Conrad zur Loye ${ }^{\text {b }}$
${ }^{\text {a }}$ Chemistry Department, Francis Marion University, Florence, South Carolina 29502, USA, and ${ }^{\mathbf{b}}$ Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
Correspondence e-mail: Ipeterson@fmarion.edu

Received 1 December 2009; accepted 26 January 2010
Key indicators: single-crystal X-ray study; $T=294 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.023 ; w R$ factor $=0.065$; data-to-parameter ratio $=11.7$.

In the title compound, $\left[\mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{FNO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Zn}^{\mathrm{II}}$ atom is octahedrally coordinated in a $\mathrm{ZnO}_{4} \mathrm{~N}_{2}$ environment by two 3 -fluoropyridine-4-carboxylate (3-fpy4-cbx) ligands and four water molecules. The $\left[\mathrm{Zn}(3-\mathrm{fpy} 4-\mathrm{cbx})_{2^{-}}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ molecules form a three-dimensional network through strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and weak $\mathrm{O}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds between 3 -fpy 4 -cbx and water molecules. The crystal used for data collection was a twin, with the twin law corresponding to a 180° rotation about the real-space [001] axis. The major twin fraction refined to 0.795 (1).

Related literature

For metal-organic compounds with ligands containing both pyridyl and carboxylate donor groups, see: Ellsworth et al. (2008); Erxleben (2003); Wang et al. (2006). For specific properties exhibited by related metal-organic compounds, see: Chen et al. (2009); Evans et al. (1999); Xie et al. (2008). For typical $\mathrm{Zn}-\mathrm{O}$ and $\mathrm{Zn}-\mathrm{N}$ bond distances in similar metalorganic compounds, see: Wang et al. (2006).

Experimental

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{FNO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}} \\
& M_{r}=453.65 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=6.6042(4) \mathrm{A}
\end{aligned}
$$

$$
b=19.1953(10) \AA
$$

$$
c=6.8697(4) \AA
$$

$$
\beta=99.225(1)^{\circ}
$$

$$
V=859.61(8) \AA^{3}
$$

$Z=2$

Mo $K \alpha$ radiation
$\mu=1.51 \mathrm{~mm}^{-1}$

Data collection

Bruker SMART APEX CCD diffractometer
Absorption correction: multi-scan (TWINABS; Bruker, 2003)
$T_{\text {min }}=0.890, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.065$
$S=1.07$
1740 reflections
149 parameters
$T=294 \mathrm{~K}$
$0.28 \times 0.22 \times 0.16 \mathrm{~mm}$

1734 measured reflections 1740 independent reflections 1605 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.031$

Table 1
Selected bond lengths (\AA).

$\mathrm{Zn} 1-\mathrm{O} 3$	$2.0953(14)$	$\mathrm{Zn} 1-\mathrm{O} 4$	$2.1504(13)$
$\mathrm{Zn} 1-\mathrm{N} 1$	$2.1356(13)$		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 1^{\text {i }}$	0.83 (3)	1.86 (3)	2.6892 (18)	174 (2)
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B} \cdots 5^{\text {ii }}$	0.74 (2)	2.01 (2)	2.745 (2)	176 (2)
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O} 2^{\text {iii }}$	0.79 (3)	2.05 (3)	2.837 (2)	174 (2)
$\mathrm{O} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O}^{\text {iv }}$	0.82 (2)	1.95 (3)	2.7643 (19)	171 (3)
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2$	0.75 (3)	2.05 (3)	2.796 (2)	174 (3)
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{O}^{\text {v }}$	0.79 (2)	1.96 (3)	2.738 (2)	167 (2)
$\mathrm{O} 5-\mathrm{H} 5 B \cdots \mathrm{~F} 1^{\text {v }}$	0.79 (2)	2.55 (2)	2.9929 (17)	117.2 (18)
Symmetry codes $-x+\frac{3}{2}, y-\frac{1}{2},-z+$	(i) $-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{3}{2}$; v) $x-\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2}$; (v) $x+1, y, z$			

Data collection: SMART-NT (Bruker, 2003); cell refinement: SAINT-Plus-NT (Bruker, 2003); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Financial support from the National Science Foundation, awards CHE-0714555 and CHE-0714439, is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2018).

References

Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2003). SMART-NT, SAINT-Plus-NT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, W.-T., Liu, J.-H., Ying, S.-M., Liu, D.-S. \& Kuang, H.-M. (2009). Inorg. Chem. Commun. 12, 811-814.
Ellsworth, J. M., Smith, M. D. \& zur Loye, H.-C. (2008). Solid State Sci. 10, 1822-1834.

metal-organic compounds

Erxleben, A. (2003). Coord. Chem. Rev. 246, 203-228.
Evans, O. R., Xiong, R.-G., Wang, Z., Wong, G. K. \& Lin, W. (1999). Angew. Chem. Int. Ed. 38, 536-538.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, Z., Zhang, H., Chen, Y., Huang, C., Sun, R., Cao, Y. \& Yu, X. (2006). J. Solid State Chem. 179, 1536-1544.
Xie, Y.-M., Chen, W.-T. \& Wu, J.-H. (2008). J. Solid State Chem. 181, $1853-$ 1858.

supporting information

Acta Cryst. (2010). E66, m244-m245 [doi:10.1107/S1600536810003284]

Tetraaquabis(3-fluoropyridine-4-carboxylato- $\kappa \boldsymbol{N}$) zinc(II) dihydrate Jonetha Fleming, Jennifer Kelley, LeRoy Peterson, Mark D. Smith and Hans-Conrad zur Loye

S1. Comment

Metal-organic compounds based on multifunctional ligands that contain both pyridyl and carboxylate donor atoms have been under study in part because of their diverse coordination modes and because they may exhibit useful properties (Ellsworth et al., 2008; Erxleben, 2003). Within this context, the 3-fluoropyridine-4-carboxylate ligand (3-fpy4-cbx), has attracted our interest as a potential component for the construction of these novel materials. A further motivation is that its nonfluorinated analogue, the isonicotinate ligand (ina), has been successfully utilized to generate metal-organic frameworks having the desirable properties alluded to above (Chen et al., 2009; Evans et al., 1999; Wang et al., 2006; Xie et al.,2008). Hence, we have deemed it worthwhile to also explore the coordinatingproperties of the related 3-fpy4-cbx ligand. This ligand has the additional possibility of C-F $\cdots \mathrm{H}$ interactions, in contrast to ina. Herein, we wish to report the crystal structure of the title compound (I), which is a hydrogen bonded, three-dimensional framework.
The asymmetric unit of (I) consists of one-half of the $\left[\mathrm{Zn}(3-\mathrm{fpy} 4-\mathrm{cbx})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ complex and a lattice water. The $\mathrm{Zn}(\mathrm{II})$ atom is located on an inversion center through which the other half of the molecular complex and another lattice water are generated from the asymmetric unit, thus completing the formula unit of (I) (Fig. 1).
The $\mathrm{Zn}(\mathrm{II})$ atom resides in a distorted $\mathrm{ZnO}_{4} \mathrm{~N}_{2}$ octahedral environment. The equatorial positions are occupied by four O atoms from water molecules and the axial positions are occupied by N atoms from two 3-fpy4-cbx ligands. The $\mathrm{Zn}-\mathrm{O}$ bond distances fall within the normal range of 2.0953 (14) - 2.1504 (13) \AA (Wang et al., 2006), while the $\mathrm{Zn}-\mathrm{N}$ distances are also normal at 2.1356 (13) \AA (Wang et al., 2006). The 3-fpy4-cbx ligand is noticeably noncoplanar, with a dihedral angle of $34.2(1)^{\circ}$ between the mean planes of its carboxylate group and its pyridyl ring.
While the carboxylate group of 3-fpy4-cbx is not coordinated to $\mathrm{Zn}(\mathrm{II})$, it does assist in the assembly of the crystal structure by acting as hydrogen bond acceptors for both coordinated and lattice waters. The lattice waters are also involved in weak $\mathrm{C}-\mathrm{F} \cdots \mathrm{H}_{2} \mathrm{O}$ hydrogen bonding with the 3 -fpy4-cbx ligand. These interactions create a threedimensional, hydrogen bonded network (Table 1, Fig. 2).

S2. Experimental

An aqueous solution of sodium 3-fluoropyridine-4-carboxylate ($25 \mathrm{ml}, 2.0 \mathrm{mmol}$) was slowly added to an aqueous solution of zinc nitrate hexahydrate ($25 \mathrm{ml}, 1.0 \mathrm{mmol}$). Colorless crystals of the title compound were obtained after slow evaporation of the resulting solution under ambient conditions.

S3. Refinement

All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms bonded to carbon were placed in geometrically idealized positions and included as riding atoms: $\mathrm{C}-\mathrm{H}=0.93 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.20-2.12$ $U_{\text {eq }}(\mathrm{C})$. Oxygen-bound hydrogen atoms were located in difference Fourier maps and refined isotropically: $\mathrm{O}-\mathrm{H}=$ $0.74(2)-0.83(3) \AA$ and with $U_{\text {iso }}(\mathrm{H})=0.94-1.69 U_{\mathrm{eq}}(\mathrm{O})$.

Figure 1
The molecular complex plus lattice waters with atom-labeling scheme of (I) showing 50% probability ellipsoids for nonhydrogen atoms. All H atoms except for those of water are omitted for clarity. Hydrogen bonds are represented by dashed lines. Primed atoms are generated by the inversion symmetry operation about $\mathrm{Zn}(\mathrm{II})$, with symmetry code: $1-x, 1$ $-y, 1-z$.

Figure 2
Wireframe polyhedral view of the crystal packing in (I) showing the hydrogen bonding scheme. Hydrogen atoms except for those of water have been omitted for clarity. Hydrogen bonds are represented by dashed lines.

Tetraaquabis(3-fluoropyridine-4-carboxylato- $\kappa \mathrm{N}$)zinc(II) dihydrate

Crystal data
$\left[\mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{FNO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$

$$
M_{r}=453.65
$$

$$
\begin{aligned}
& c=6.8697(4) \AA \\
& \beta=99.225(1)^{\circ} \\
& V=859.61(8) \AA^{3} \\
& Z=2 \\
& F(000)=464 \\
& D_{\mathrm{x}}=1.753 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=6.6042$ (4) \AA

Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 7697 reflections
$\theta=3.0-25.0^{\circ}$
$\mu=1.51 \mathrm{~mm}^{-1}$

Data collection

Bruker SMART APEX CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(TWINABS; Bruker, 2003)
$T_{\min }=0.890, T_{\text {max }}=1.000$

$$
\begin{aligned}
& T=294 \mathrm{~K} \\
& \text { Block, colorless } \\
& 0.28 \times 0.22 \times 0.16 \mathrm{~mm} \\
& \\
& \\
& 1734 \text { measured reflections } \\
& 1740 \text { independent reflections } \\
& 1605 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.031 \\
& \theta_{\max }=25.0^{\circ}, \theta_{\min }=2.1^{\circ} \\
& h=-7 \rightarrow 7 \\
& k=0 \rightarrow 22 \\
& l=0 \rightarrow 8
\end{aligned}
$$

Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0427 P)^{2}+0.0969 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.28$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.19 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. R (int) value from TWINABS output.
Cell_now output:
Rotated from first domain by 179.9 degrees about reciprocal axis $-0.159-0.0011 .000$ and real axis -0.0010 .0001 .000
Twin law to convert $h k l$ from first to $-1.0000 .000-0.317$ this domain (SHELXL TWIN matrix): 0.001-1.000 0.0000.0020 .0001 .000

Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Zn1	0.5000	0.5000	0.5000	$0.02937(12)$
F1	$0.31965(16)$	$0.76809(5)$	$0.48595(19)$	$0.0515(3)$
C1	$0.4393(3)$	$0.65492(9)$	$0.4885(2)$	$0.0316(4)$
H1	0.3043	0.6403	0.4833	0.038^{*}
C2	$0.4808(2)$	$0.72491(9)$	$0.4902(2)$	$0.0299(4)$
C3	$0.6762(3)$	$0.75042(8)$	$0.4933(2)$	$0.0280(3)$
C4	$0.8278(3)$	$0.69967(9)$	$0.4946(3)$	$0.0366(4)$
H4	0.9628	0.7131	0.4932	0.044^{*}

C5	$0.7798(3)$	$0.63022(9)$	$0.4979(3)$	$0.0356(4)$
H5	0.8850	0.5978	0.5030	0.043^{*}
C6	$0.7287(3)$	$0.82734(8)$	$0.5010(3)$	$0.0340(4)$
N1	$0.5870(2)$	$0.60704(7)$	$0.4940(2)$	$0.0297(3)$
O1	$0.62449(18)$	$0.86516(6)$	$0.5953(2)$	$0.0468(3)$
O2	$0.8725(2)$	$0.84601(7)$	$0.4177(2)$	$0.0504(4)$
O3	$0.7470(2)$	$0.48608(7)$	$0.7293(2)$	$0.0401(3)$
H3A	$0.780(4)$	$0.4489(14)$	$0.789(4)$	$0.068(8)^{*}$
H3B	$0.750(3)$	$0.5121(11)$	$0.809(3)$	$0.038(6)^{*}$
O4	$0.6983(2)$	$0.47337(8)$	$0.2917(2)$	$0.0413(3)$
H4A	$0.686(4)$	$0.4385(13)$	$0.230(4)$	$0.061(8)^{*}$
H4B	$0.708(4)$	$0.5080(12)$	$0.223(4)$	$0.058(8)^{*}$
O5	$1.2370(3)$	$0.92014(7)$	$0.5293(2)$	$0.0419(3)$
H5A	$1.142(4)$	$0.8983(14)$	$0.505(4)$	$0.068(9)^{*}$
H5B	$1.340(4)$	$0.8988(11)$	$0.553(3)$	$0.047(7)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	$0.03564(18)$	$0.01479(16)$	$0.03843(19)$	$-0.00133(10)$	$0.00817(12)$	$0.00005(10)$
F1	$0.0358(6)$	$0.0230(5)$	$0.0947(9)$	$0.0041(4)$	$0.0078(6)$	$-0.0037(5)$
C1	$0.0308(8)$	$0.0223(9)$	$0.0419(10)$	$-0.0026(7)$	$0.0064(7)$	$-0.0002(7)$
C2	$0.0315(9)$	$0.0201(9)$	$0.0383(9)$	$0.0039(6)$	$0.0062(7)$	$-0.0004(6)$
C3	$0.0341(9)$	$0.0207(8)$	$0.0296(8)$	$-0.0022(6)$	$0.0058(7)$	$0.0004(6)$
C4	$0.0305(8)$	$0.0261(8)$	$0.0546(11)$	$-0.0031(7)$	$0.0114(8)$	$-0.0020(8)$
C5	$0.0324(9)$	$0.0243(8)$	$0.0511(10)$	$0.0016(7)$	$0.0095(8)$	$-0.0011(8)$
C6	$0.0363(9)$	$0.0222(9)$	$0.0418(10)$	$-0.0036(7)$	$0.0011(8)$	$0.0018(7)$
N1	$0.0362(8)$	$0.0174(7)$	$0.0364(8)$	$-0.0009(6)$	$0.0083(6)$	$0.0001(5)$
O1	$0.0422(7)$	$0.0245(6)$	$0.0735(9)$	$-0.0040(5)$	$0.0089(7)$	$-0.0150(6)$
O2	$0.0570(8)$	$0.0287(7)$	$0.0701(9)$	$-0.0123(6)$	$0.0238(7)$	$0.0029(6)$
O3	$0.0514(8)$	$0.0230(7)$	$0.0428(8)$	$0.0047(6)$	$-0.0020(6)$	$0.0005(6)$
O4	$0.0538(8)$	$0.0267(7)$	$0.0481(8)$	$-0.0046(6)$	$0.0220(6)$	$-0.0036(7)$
O5	$0.0431(8)$	$0.0273(7)$	$0.0546(9)$	$0.0025(7)$	$0.0059(7)$	$-0.0002(6)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Zn} 1-\mathrm{O} 3$	$2.0953(14)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.371(2)$
$\mathrm{Zn} 1-\mathrm{O} 3^{\mathrm{i}}$	$2.0953(14)$	$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{Zn} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.1355(13)$	$\mathrm{C} 5-\mathrm{N} 1$	$1.345(2)$
$\mathrm{Zn} 1-\mathrm{N} 1$	$2.1356(13)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{Zn} 1-\mathrm{O} 4^{\mathrm{i}}$	$2.1504(13)$	$\mathrm{C} 6-\mathrm{O} 2$	$1.238(2)$
$\mathrm{Zn} 1-\mathrm{O} 4$	$2.1504(13)$	$\mathrm{C} 6-\mathrm{O} 1$	$1.250(2)$
$\mathrm{F} 1-\mathrm{C} 2$	$1.3457(19)$	$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A}$	$0.83(3)$
$\mathrm{C} 1-\mathrm{N} 1$	$1.336(2)$	$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B}$	$0.74(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.371(2)$	$\mathrm{O} 4-\mathrm{H} 4 \mathrm{~A}$	$0.79(3)$
$\mathrm{C} 1-\mathrm{H} 1$	0.9300	$\mathrm{O} 4-\mathrm{H} 4 \mathrm{~B}$	$0.82(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.377(2)$	$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~A}$	$0.75(3)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.396(2)$	$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B}$	$0.79(2)$

C3-C6	1.516 (2)
$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{O}^{\text {i }}$	180.0
$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{N} 1^{\text {i }}$	92.42 (5)
$\mathrm{O} 3{ }^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{N} 1^{\mathrm{i}}$	87.58 (5)
$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{N} 1$	87.58 (5)
O3i-Zn1-N1	92.42 (5)
N1-Zn1-N1	180.00 (8)
$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{O} 4{ }^{\text {i }}$	90.79 (6)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Zn} 1-\mathrm{O} 4^{\text {i }}$	89.21 (6)
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 4^{\mathrm{i}}$	91.25 (5)
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{O} 4^{\text {i }}$	88.76 (5)
$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{O} 4$	89.21 (6)
O3i-Zn1-O4	90.79 (6)
N1-Zn1-O4	88.76 (5)
N1-Zn1-O4	91.24 (5)
$\mathrm{O} 4{ }^{\text {i }} \mathrm{Z} \mathrm{Zn} 1-\mathrm{O} 4$	180.0
N1-C1-C2	121.99 (16)
N1-C1-H1	119.0
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	119.0
F1-C2-C1	116.55 (14)
F1-C2-C3	121.15 (15)
C1-C2-C3	122.29 (15)
C2-C3-C4	114.90 (15)
N1-C1-C2-F1	-179.40 (14)
N1-C1-C2-C3	1.4 (3)
F1-C2-C3-C4	-179.08 (16)
C1-C2-C3-C4	0.0 (2)
F1-C2-C3-C6	2.6 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 6$	-178.23 (16)
C2-C3-C4-C5	-1.7 (2)
C6-C3-C4-C5	176.61 (16)
C3-C4-C5-N1	2.1 (3)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 6-\mathrm{O} 2$	-148.22 (17)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 6-\mathrm{O} 2$	33.6 (2)
C2-C3-C6-O1	33.4 (2)
C4-C3-C6-O1	-144.78 (17)

$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 6$	$123.74(15)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 6$	$121.34(15)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$120.75(16)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	119.6
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	119.6
$\mathrm{~N} 1-\mathrm{C} 5-\mathrm{C} 4$	$122.80(15)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{H} 5$	118.6
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	118.6
$\mathrm{O} 2-\mathrm{C} 6-\mathrm{O} 1$	$126.76(16)$
$\mathrm{O} 2-\mathrm{C} 6-\mathrm{C} 3$	$117.00(15)$
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 3$	$116.21(15)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	$117.22(15)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Zn} 1$	$117.71(11)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{Zn} 1$	$125.06(11)$
$\mathrm{Zn} 1-\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A}$	$126.1(17)$
$\mathrm{Zn} 1-\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B}$	$113.1(17)$
$\mathrm{H} 3 \mathrm{~A}-\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B}$	$104(2)$
$\mathrm{Zn} 1-\mathrm{O} 4-\mathrm{H} 4 \mathrm{~A}$	$122.5(18)$
$\mathrm{Zn} 1-\mathrm{O} 4-\mathrm{H} 4 \mathrm{~B}$	$107.5(18)$
$\mathrm{H} 4 \mathrm{~A}-\mathrm{O} 4-\mathrm{H} 4 \mathrm{~B}$	$113(3)$
$\mathrm{H} 5 \mathrm{~A}-\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B}$	$115(3)$

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	$-1.1(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{Zn} 1$	$178.06(12)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1$	$-0.6(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1-\mathrm{Zn} 1$	$-179.72(14)$
$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 1$	$-133.21(12)$
$\mathrm{O} 3 \mathrm{i}-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 1$	$46.79(12)$
$\mathrm{O} 4-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 1$	$-42.37(12)$
$\mathrm{O} 4-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 1$	$45.63(12)$
$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 5$	$-134.08(14)$
$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 5$	$136.77(14)$
$\mathrm{O} 4-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 5$	$-43.23(14)$
$\mathrm{O} 4-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 5$	

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 — \mathrm{H} 3 A \cdots \mathrm{O}^{\mathrm{ii}}$	$0.83(3)$	$1.86(3)$	$2.6892(18)$	$174(2)$
$\mathrm{O} 3-\mathrm{H} 3 B \cdots 5^{\mathrm{iii}}$	$0.74(2)$	$2.01(2)$	$2.745(2)$	$176(2)$
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O}^{\mathrm{iv}}$	$0.79(3)$	$2.05(3)$	$2.837(2)$	$174(2)$
$\mathrm{O} 4 — \mathrm{H} 4 B \cdots 5^{v}$	$0.82(2)$	$1.95(3)$	$2.7643(19)$	$171(3)$

supporting information

$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2$	$0.75(3)$	$2.05(3)$	$2.796(2)$	$174(3)$
$\mathrm{O} 5-\mathrm{H} 5 B \cdots \mathrm{O} 1^{\text {vi }}$	$0.79(2)$	$1.96(3)$	$2.738(2)$	$167(2)$
$\mathrm{O} 5 — \mathrm{H} 5 B \cdots{ }^{\text {vi }}$	$0.79(2)$	$2.55(2)$	$2.9929(17)$	$117.2(18)$

Symmetry codes: (ii) $-x+3 / 2, y-1 / 2,-z+3 / 2$; (iii) $x-1 / 2,-y+3 / 2, z+1 / 2$; (iv) $-x+3 / 2, y-1 / 2,-z+1 / 2$; (v) $x-1 / 2,-y+3 / 2, z-1 / 2$; (vi) $x+1, y, z$.

