

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Pentaaqua(acetonitrile-κN)zinc(II) 4,6-dihydroxybenzene-1,3-disulfonate trihydrate

Bu-Yun Xie, Wei Huang, Ying Zhang, Rui-Qing Yang and Yong-Rong Xie*

Key Laboratory of Jiangxi University for Functional Materials Chemistry, Department of Chemistry and Life Science, Gannan Normal University, Ganzhou, Jiangxi 341000, People's Republic of China

Correspondence e-mail: xieyr@gnnu.edu.cn

Received 8 February 2010; accepted 19 February 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.037; wR factor = 0.097; data-to-parameter ratio = 15.0.

In the title compound, $[Zn(CH_3CN)(H_2O)_5](C_6H_4O_8S_2)$. 3H₂O, the Zn^{II} ion lies on a mirror plane and is octahedrally coordinated by one acetonitrile ligand and five water molecules. The 4,6-dihydroxybenzene-1,3-disulfonate anion, acting as a counter-ion, is also located on the mirror plane. The crystal packing is stabilized by $O-H \cdots O$ hydrogen bonds, forming a three-dimensional supramolecular network.

Related literature

For general background to the design and construction of coordination compounds of benzenesulfonic acid derivatives, see: Arnold *et al.* (2001); Du *et al.* (2006); Junk & Steed (2007); Xie *et al.* (2002); Zhang *et al.* (2009). For related structures, see: Adarsh *et al.* (2008); Francis *et al.* (2003); Lu *et al.* (2008).

Experimental

. Crystal data

 $[Zn(C_2H_3N)(H_2O)_5](C_6H_4O_8S_2)-3H_2O$ $M_r = 518.80$ Orthorhombic, *Pnma* a = 12.8731 (10) Å b = 6.9972 (6) Å c = 22.9980 (17) Å

Data collection

Rigaku Mercury2 CCD diffractometer V = 2071.6 (3) Å³ Z = 4Mo K α radiation $\mu = 1.46 \text{ mm}^{-1}$ T = 296 K $0.32 \times 0.24 \times 0.16 \text{ mm}$

Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{min} = 0.661, T_{max} = 0.790$ 10992 measured reflections 2581 independent reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.097$ S = 1.022581 reflections $R_{\rm int} = 0.039$

1891 reflections with $I > 2\sigma(I)$

172 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.31$ e Å⁻³ $\Delta \rho_{min} = -0.43$ e Å⁻³

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O5−H5···O5W	0.82	1.82	2.636 (4)	172
$O6-H6\cdots O4W$	0.82	1.77	2.587 (4)	172
$O1W - H1WA \cdots O3$	0.88	2.16	2.956 (3)	151
$O1W-H1WA\cdots O6$	0.88	2.53	3.081 (3)	122
$O1W-H1WB\cdots O6W^{i}$	0.81	1.91	2.698 (3)	165
$O2W - H2WA \cdots O2^{ii}$	0.89	1.96	2.839 (3)	166
$O2W - H2WB \cdots O4^{iii}$	0.82	1.97	2.774 (3)	166
O3W−H3WA···O3 ^{iv}	0.82	2.24	2.869 (2)	134
$O4W-H4WA\cdots O2^{v}$	0.86	1.97	2.829 (3)	177
$O5W-H5WA\cdots O3^{v}$	0.86	2.09	2.927 (3)	166
O6W−H6WA···O1 ^{vi}	0.86	1.92	2.734 (4)	158
$O6W-H6WB\cdots O2^{vii}$	0.84	2.45	3.213 (4)	151

 $-x, y + \frac{1}{2}, -z + 1;$ (v) -x + 1, -y, -z + 1; (vi) $-x + \frac{1}{2}, -y + 1, z + \frac{1}{2};$ (vii) -x + 1, -y + 1, -z + 1.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported financially by the National Natural Science Foundation of China (grant No. 20861001) and the Development Program of Science and Technology of the Education Department of Jiangxi Province (20060237).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2283).

References

- Adarsh, N. N., Kumar, D. K. & Dastidar, P. (2008). CrystEngComm, 10, 1565– 1573.
- Arnold, P. J., Davies, S. C., Dilworth, J. R., Durrant, M. C., Griffiths, D. V., Hughes, D. L., Richards, R. L. & Sharpe, P. C. (2001). J. Chem. Soc. Dalton Trans. pp. 736–746.
- Du, Z.-Y., Xu, H.-B. & Mao, J.-G. (2006). Inorg. Chem. 45, 9780–9788.
- Francis, S., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2003). Acta Cryst. E59, m87–m90.
- Junk, P. C. & Steed, J. W. (2007). Inorg. Chim. Acta, 360, 1661-1668.
- Lu, Y.-G., Cheng, W., Meng, X.-R. & Hou, H.-W. (2008). J. Mol. Struct. 875, 183–188.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Xie, Y.-R., Xiong, R.-G., Xue, X., Chen, X.-T., Xue, Z.-L. & You, X.-Z. (2002). Inorg. Chem. 41, 3323–3326.
- Zhang, K.-L., Yang, B. & Ng, S. W. (2009). Acta Cryst. E65, m239-m240.

supporting information

Acta Cryst. (2010). E66, m341 [doi:10.1107/S1600536810006525]

Pentaaqua(acetonitrile-*kN*)zinc(II) 4,6-dihydroxybenzene-1,3-disulfonate trihydrate

Bu-Yun Xie, Wei Huang, Ying Zhang, Rui-Qing Yang and Yong-Rong Xie

S1. Comment

Benzenesulfonic acid derivatives have been found wide range of applications in coordination chemistry as ligands, in medicinal chemistry and materials science. There has been an increased interest in the preparation of coordination compounds of benzenesulfonic acid derivatives (Arnold *et al.*, 2001; Du *et al.*, 2006; Junk & Steed, 2007; Xie *et al.*, 2002; Zhang *et al.*, 2009). We report here the crystal structure of the title compound.

The title compound is built up of one $[Zn(C_2H_3N)(H_2O)_5]^{2+}$ cation, one uncoordinated 4,6-dihydroxybenzene-1,3-disulfonate anion and three uncoordinated water molecules (Fig.1). The distorted octahedral environment around the Zn^{II} ion consists of one acetonitrile ligand and five water molecules. The Zn—O bond distances range from 2.058 (2) to 2.096 (3) Å. The average Zn—O bond distance of 2.078 Å and the Zn—N bond distance of 2.118 (3) Å are similar to the values in other zinc complex (Adarsh *et al.*, 2008; Francis *et al.*, 2003; Lu *et al.*, 2008). The cations, anions and uncoordinated water molecules are linked into a three-dimensional supramolecular network by O—H…O hydrogen bonds (Table 1 and Fig. 2).

S2. Experimental

 $Zn(CH_3CO_2)_2$ (0.5 mmol) and 4,6-dihydroxybenzene-1,3-disulfonic acid (0.5 mmol) were dissolved in a mixed solution of water (2 ml) and acetonitrile (16 ml). Colorless block crystals of the title compound suitable for X-ray analysis were obtained by evaporation of the solvent in air (yield 63% based on Zn).

S3. Refinement

H atoms attached to C and O atoms were located in difference Fourier maps and were treated as riding on their parent atoms. The displacement parameters of all H atoms were refined isotropically.

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) x, 1/2-y, z.]

Figure 2

The crystal packing of the title compound viewed along the *b* axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

Pentaaqua(acetonitrile-*kN*)zinc(II) 4,6-dihydroxybenzene-1,3-disulfonate trihydrate

Crystal data	
$[Zn(C_2H_3N)(H_2O)_5](C_6H_4O_8S_2)\cdot 3H_2O$	F(000) = 1072
$M_r = 518.80$	$D_{\rm x} = 1.663 {\rm Mg} {\rm m}^{-3}$
Orthorhombic, Pnma	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2n	Cell parameters from 2210 reflections
a = 12.8731 (10) Å	$\theta = 2.4 - 27.6^{\circ}$
b = 6.9972 (6) Å	$\mu = 1.46 \text{ mm}^{-1}$
c = 22.9980 (17) Å	T = 296 K
V = 2071.6 (3) Å ³	Block, colourless
Z = 4	$0.32 \times 0.24 \times 0.16 \text{ mm}$
Data collection	
Rigaku Mercury2 CCD	10992 measured reflections
diffractometer	2581 independent reflections
Radiation source: fine-focus sealed tube	1891 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.039$
φ and ω scans	$\theta_{\rm max} = 27.6^\circ, \theta_{\rm min} = 2.4^\circ$
Absorption correction: multi-scan	$h = -16 \rightarrow 14$
(CrystalClear; Rigaku, 2005)	$k = -9 \rightarrow 9$
$T_{\min} = 0.661, \ T_{\max} = 0.790$	<i>l</i> = −29→29

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.097$	$w = 1/[\sigma^2(F_o^2) + (0.0457P)^2 + 0.7072P]$
S = 1.02	where $P = (F_o^2 + 2F_c^2)/3$
2581 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
172 parameters	$\Delta ho_{ m max} = 0.31 \ m e \ m \AA^{-3}$
0 restraints	$\Delta ho_{ m min}$ = -0.43 e Å ⁻³
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008)
Secondary atom site location: difference Fourier	Extinction coefficient: 0.0021 (5)
map	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Zn1	0.05196 (4)	0.2500	0.648181 (17)	0.04642 (16)
O1W	0.1416 (2)	0.0416 (4)	0.60984 (10)	0.0831 (8)
H1WB	0.1599	-0.0361	0.6336	0.117 (17)*
H1WA	0.1627	0.0469	0.5736	0.17 (2)*
O2W	-0.04689 (16)	0.0412 (3)	0.68120 (8)	0.0615 (6)
H2WB	-0.0611	-0.0355	0.6555	0.075 (11)*
H2WA	-0.0580	-0.0096	0.7164	0.122 (16)*
O3W	-0.0392 (2)	0.2500	0.57265 (12)	0.0579 (8)
H3WA	-0.0285	0.3485	0.5542	0.15 (2)*
N1	0.1330 (3)	0.2500	0.72832 (15)	0.0672 (11)
C7	0.2069 (4)	0.2500	0.8316 (2)	0.0734 (14)
H7A	0.1782	0.1343	0.8467	0.17 (2)*
H7B	0.2756	0.2500	0.8350	0.11 (2)*
C8	0.1698 (4)	0.2500	0.7727 (2)	0.0621 (12)
S1	0.49094 (8)	0.2500	0.30660 (3)	0.0414 (2)
S2	0.15787 (7)	0.2500	0.44987 (3)	0.0375 (2)
01	0.4012 (2)	0.2500	0.26982 (10)	0.0735 (10)
O2	0.55305 (17)	0.0800 (3)	0.29897 (8)	0.0669 (6)
O3	0.13088 (14)	0.0779 (3)	0.48192 (7)	0.0494 (5)
O4	0.11538 (19)	0.2500	0.39111 (10)	0.0464 (6)
O5	0.6117 (2)	0.2500	0.41697 (10)	0.0594 (8)
Н5	0.6426	0.2500	0.4482	0.044 (11)*
O6	0.3153 (2)	0.2500	0.54301 (9)	0.0527 (7)
H6	0.3605	0.2500	0.5681	0.086 (17)*
C1	0.5087 (3)	0.2500	0.42656 (13)	0.0394 (8)
C3	0.3602 (3)	0.2500	0.48999 (13)	0.0359 (8)
C4	0.2939 (3)	0.2500	0.44165 (13)	0.0351 (8)
C2	0.4660 (3)	0.2500	0.48202 (13)	0.0407 (9)
H2	0.5097	0.2500	0.5142	0.047 (10)*
C5	0.3365 (3)	0.2500	0.38655 (13)	0.0349 (8)
H5A	0.2929	0.2500	0.3543	0.028 (8)*
C6	0.4421 (3)	0.2500	0.37869 (13)	0.0357 (8)

O4W	0.4428 (2)	0.2500	0.62998 (12)	0.0598 (8)	
H4WA	0.4421	0.1514	0.6522	0.108 (16)*	
O5W	0.7285 (2)	0.2500	0.51114 (13)	0.0664 (8)	
H5WA	0.7607	0.1441	0.5160	0.108 (16)*	
O6W	0.2208 (2)	0.7500	0.67248 (12)	0.0559 (7)	
H6WB	0.2849	0.7500	0.6800	0.12 (2)*	
H6WA	0.1983	0.7500	0.7077	0.092 (18)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	<i>U</i> ³³	U^{12}	U^{13}	U^{23}
Zn1	0.0641 (3)	0.0442 (3)	0.0310 (2)	0.000	-0.00282 (19)	0.000
O1W	0.128 (2)	0.0722 (17)	0.0490 (11)	0.0344 (15)	0.0277 (12)	0.0130 (13)
O2W	0.1018 (17)	0.0502 (12)	0.0326 (9)	-0.0182 (11)	-0.0079 (9)	0.0075 (10)
O3W	0.089 (2)	0.0464 (17)	0.0386 (13)	0.000	-0.0161 (14)	0.000
N1	0.070 (3)	0.085 (3)	0.0461 (19)	0.000	-0.0087 (18)	0.000
C7	0.069 (4)	0.089 (4)	0.063 (3)	0.000	-0.022 (2)	0.000
C8	0.067 (3)	0.053 (3)	0.066 (3)	0.000	-0.018 (2)	0.000
S1	0.0572 (6)	0.0451 (5)	0.0218 (3)	0.000	0.0032 (4)	0.000
S2	0.0406 (5)	0.0411 (5)	0.0307 (4)	0.000	-0.0036 (3)	0.000
01	0.071 (2)	0.126 (3)	0.0242 (11)	0.000	-0.0051 (12)	0.000
O2	0.1018 (16)	0.0626 (14)	0.0362 (9)	0.0273 (13)	0.0188 (10)	0.0016 (10)
03	0.0521 (11)	0.0500 (12)	0.0462 (9)	-0.0103 (9)	-0.0010 (8)	0.0091 (9)
O4	0.0487 (15)	0.0545 (17)	0.0360 (12)	0.000	-0.0117 (11)	0.000
05	0.0416 (16)	0.104 (3)	0.0331 (12)	0.000	0.0003 (11)	0.000
O6	0.0467 (15)	0.087 (2)	0.0244 (10)	0.000	0.0018 (11)	0.000
C1	0.043 (2)	0.045 (2)	0.0302 (15)	0.000	0.0022 (14)	0.000
C3	0.043 (2)	0.042 (2)	0.0227 (13)	0.000	0.0014 (13)	0.000
C4	0.0396 (19)	0.0376 (19)	0.0281 (14)	0.000	-0.0030 (13)	0.000
C2	0.048 (2)	0.051 (2)	0.0232 (14)	0.000	-0.0068 (13)	0.000
C5	0.041 (2)	0.0387 (19)	0.0247 (14)	0.000	-0.0041 (13)	0.000
C6	0.050 (2)	0.0360 (19)	0.0209 (13)	0.000	-0.0003 (13)	0.000
O4W	0.085 (2)	0.0572 (19)	0.0370 (13)	0.000	-0.0126 (13)	0.000
O5W	0.0649 (19)	0.061 (2)	0.073 (2)	0.000	-0.0245 (16)	0.000
O6W	0.0485 (18)	0.071 (2)	0.0479 (15)	0.000	0.0108 (13)	0.000

Geometric parameters (Å, °)

Zn1—O1W	2.058 (2)	S2—O4	1.458 (2)	
Zn1—O2W	2.081 (2)	S2—C4	1.762 (4)	
Zn1—O3W	2.096 (3)	O5—C1	1.344 (4)	
Zn1—N1	2.118 (3)	O5—H5	0.8206	
O1W—H1WB	0.8063	O6—C3	1.349 (4)	
O1W—H1WA	0.8769	О6—Н6	0.8201	
O2W—H2WB	0.8197	C1—C2	1.389 (4)	
O2W—H2WA	0.8948	C1—C6	1.395 (4)	
O3W—H3WA	0.8204	C3—O6	1.349 (4)	
N1—C8	1.126 (5)	C3—C2	1.375 (5)	

supporting information

С7—С8	1.435 (6)	C3—C4	1.402 (4)
С7—Н7А	0.9553	C4—C5	1.381 (4)
С7—Н7В	0.8878	С2—Н2	0.9300
S1—O1	1.432 (3)	C5—C6	1.371 (5)
S1	1.444 (2)	С5—Н5А	0.9300
S1—O2	1.444 (2)	O4W—H4WA	0.8585
S1—C6	1.773 (3)	O5W—H5WA	0.8563
S2—O3 ⁱ	1.4541 (19)	O6W—H6WB	0.8433
S2—O3	1.4541 (19)	O6W—H6WA	0.8611
S2—O3	1.4541 (19)		
O1W—Zn1—O1W ⁱ	90.26 (14)	O3 ⁱ —S2—O3	111.83 (16)
O1W—Zn1—O2W ⁱ	175.32 (9)	O3 ⁱ —S2—O3	111.83 (16)
$O1W^{i}$ —Zn1— $O2W^{i}$	90.09 (10)	O3 ⁱ —S2—O4	112.35 (9)
O1W—Zn1—O2W	90.09 (10)	O3—S2—O4	112.35 (9)
O1W ⁱ —Zn1—O2W	175.32 (9)	O3—S2—O4	112.35 (9)
O2W ⁱ —Zn1—O2W	89.19 (12)	$O3^{i}$ —S2—C4	106.98 (10)
O1W—Zn1—O3W	87.63 (9)	O3—S2—C4	106.98 (10)
O1W ⁱ —Zn1—O3W	87.63 (9)	O3—S2—C4	106.98 (10)
O2W ⁱ —Zn1—O3W	87.72 (8)	O4—S2—C4	105.87 (15)
O2W—Zn1—O3W	87.72 (8)	C1—O5—H5	109.6
O1W—Zn1—N1	95.54 (10)	С3—О6—Н6	109.5
O1W ⁱ —Zn1—N1	95.54 (10)	O5—C1—C2	122.7 (3)
O2W ⁱ —Zn1—N1	89.07 (9)	O5—C1—C6	118.4 (3)
O2W—Zn1—N1	89.07 (9)	C2C1C6	118.8 (3)
O3W—Zn1—N1	175.50 (13)	O6—C3—C2	123.0 (3)
Zn1—O1W—H1WB	110.5	O6—C3—C2	123.0 (3)
Zn1—O1W—H1WA	123.4	O6—C3—C4	117.2 (3)
H1WB—O1W—H1WA	125.6	O6—C3—C4	117.2 (3)
Zn1—O2W—H2WB	109.4	C2—C3—C4	119.8 (3)
Zn1—O2W—H2WA	134.9	C5—C4—C3	119.1 (3)
H2WB—O2W—H2WA	110.9	C5—C4—S2	119.6 (2)
Zn1—O3W—H3WA	109.5	C3—C4—S2	121.3 (2)
C8—N1—Zn1	175.3 (4)	C3—C2—C1	120.9 (3)
С8—С7—Н7А	102.4	C3—C2—H2	119.5
С8—С7—Н7В	114.5	C1—C2—H2	119.5
H7A—C7—H7B	110.7	C6—C5—C4	121.0 (3)
N1	174.6 (6)	C6—C5—H5A	119.5
$O1$ — $S1$ — $O2^i$	112.01 (11)	C4—C5—H5A	119.5
O1—S1—O2	112.01 (11)	C5—C6—C1	120.3 (3)
O2 ⁱ —S1—O2	110.9 (2)	C5—C6—S1	118.3 (2)
O1—S1—C6	105.47 (16)	C1—C6—S1	121.4 (3)
O2 ⁱ —S1—C6	108.06 (10)	H6WB—O6W—H6WA	97.8
O2—S1—C6	108.06 (10)		

Symmetry code: (i) x, -y+1/2, z.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O5—H5…O5W	0.82	1.82	2.636 (4)	172
O6—H6…O4W	0.82	1.77	2.587 (4)	172
O1 <i>W</i> —H1 <i>WA</i> ···O3	0.88	2.16	2.956 (3)	151
O1 <i>W</i> —H1 <i>WA</i> ···O6	0.88	2.53	3.081 (3)	122
$O1W$ — $H1WB$ ···O $6W^{ii}$	0.81	1.91	2.698 (3)	165
O2 <i>W</i> —H2 <i>WA</i> ···O2 ⁱⁱⁱ	0.89	1.96	2.839 (3)	166
$O2W$ — $H2WB$ ···· $O4^{iv}$	0.82	1.97	2.774 (3)	166
O3 <i>W</i> —H3 <i>WA</i> ···O3 ^v	0.82	2.24	2.869 (2)	134
$O4W$ — $H4WA$ ··· $O2^{vi}$	0.86	1.97	2.829 (3)	177
O5 <i>W</i> —H5 <i>WA</i> ···O3 ^{vi}	0.86	2.09	2.927 (3)	166
O6W—H6WA····O1 ^{vii}	0.86	1.92	2.734 (4)	158
O6 <i>W</i> —H6 <i>WB</i> ⋯O2 ^{viii}	0.84	2.45	3.213 (4)	151

Hydrogen-bond geometry (Å, °)

Symmetry codes: (ii) *x*, *y*-1, *z*; (iii) -*x*+1/2, -*y*, *z*+1/2; (iv) -*x*, -*y*, -*z*+1; (v) -*x*, *y*+1/2, -*z*+1; (vi) -*x*+1, -*y*, -*z*+1; (vii) -*x*+1/2, -*y*+1, *z*+1/2; (viii) -*x*+1, -*y*+1, -*z*+1.