metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diaquabis(5-carboxy-2-propyl-1*H*imidazole-4-carboxylato- $\kappa^2 N^3$, O^4)nickel(II) *N*,*N*-dimethylformamide disolvate

Shi-Jie Li,^a Jian-Bin Yan,^a Wen-Dong Song,^b* Hao Wang^a and Dong-Liang Miao^a

^aCollege of Food Science and Technology, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China, and ^bCollege of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China Correspondence e-mail: songwd60@163.com

Received 22 January 2010; accepted 6 February 2010

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.008 Å; disorder in main residue; R factor = 0.048; wR factor = 0.133; data-to-parameter ratio = 12.6.

In the title complex, $[Ni(C_8H_9N_2O_4)_2(H_2O)_2]\cdot 2C_3H_7NO$, the Ni^{II} atom is six-coordinated by two *N*,*O*-bidentate 5-carboxy-2-propyl-1*H*-imidazole-4-carboxylate ligands and two water molecules in a distorted octahedral environment. The methyl C and H atoms of the two ligands are disordered over two sets of sites in 0.74 (2):0.26 (2) and 0.57 (8):0.43 (8) ratios. A supramolecular network is stabilized by intra- and intermolecular N-H···O and O-H···O hydrogen bonds involving the ligands, coordinated water molecules and dimethylformamide solvent molecules.

Related literature

For the structures of related 2-propyl-1H-imidazole-4,5-dicarboxylate complexes, see: Song *et al.* (2010); Yan *et al.* (2010).

Experimental

Crystal data

$Ni(C_8H_9N_2O_4)_2(H_2O)_2] \cdot 2C_3H_7NO$	a = 16.3574 (12) Å
$M_r = 635.26$	b = 9.5246 (7) Å
Orthorhombic, <i>Pna</i> 2 ₁	c = 18.7700 (13) Å

 $V = 2924.3 (4) \text{ Å}^3$ Z = 4Mo *K*\alpha radiation

Data collection

Rigaku/MSC Mercury CCD diffractometer Absorption correction: multi-scan (*REQAB*; Jacobson, 1998) $T_{\rm min} = 0.805, T_{\rm max} = 0.880$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.133$ S = 1.035064 reflections 403 parameters 1 restraint $\mu = 0.73 \text{ mm}^{-1}$ T = 273 K $0.31 \times 0.24 \times 0.18 \text{ mm}$

14413 measured reflections 5064 independent reflections 3663 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.063$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.37 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.36 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 2344 Friedel pairs Flack parameter: 0.01 (2)

Table 1Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3-H1···O2	1.05 (6)	1.42 (6)	2.474 (6)	176 (5)
O7−H7···O6	0.82	1.67	2.479 (6)	169
$N2-H2\cdots O10^{i}$	0.86	1.93	2.780 (6)	171
N4-H4···O9	0.86	1.94	2.788 (6)	171
$O1W - H1W \cdot \cdot \cdot O8^{ii}$	0.85	1.96	2.782 (5)	162
$O1W - H2W \cdot \cdot \cdot O10^{iii}$	0.85	1.92	2.757 (6)	168
$O2W - H3W \cdots O4^{iv}$	0.85	1.96	2.794 (5)	166
$O2W - H4W \cdots O9^{v}$	0.85	1.98	2.800 (6)	163
	1 1	(**) 1	() 1	(1) 1.1

Symmetry codes: (i) $x - \frac{1}{2}, -y - \frac{1}{2}, z - 1$; (ii) x, y - 1, z; (iii) x, y, z - 1; (iv) x, y + 1, z; (v) $x - \frac{1}{2}, -y + \frac{1}{2}, z$.

Data collection: *CrystalStructure* (Rigaku/MSC, 2002); cell refinement: *CrystalStructure*; data reduction: *CrystalStructure*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPII* (Johnson, 1976) and *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge Guang Dong Ocean University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2277).

References

Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Flack, H. D. (1983). Acta Cryst. A39, 876–881.

- Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138, Oak Ridge National Laboratory, Tennessee, USA.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Song, W.-D., Yan, J.-B., Li, S.-J., Miao, D.-L. & Li, X.-F. (2010). Acta Cryst. E66, m53.
- Yan, J.-B., Li, S.-J., Song, W.-D., Wang, H. & Miao, D.-L. (2010). Acta Cryst. E66, m99.

supporting information

Acta Cryst. (2010). E66, m280 [doi:10.1107/S1600536810004691]

Diaquabis(5-carboxy-2-propyl-1*H*-imidazole-4-carboxylato- $\kappa^2 N^3$, O^4)nickel(II) *N*,*N*-dimethylformamide disolvate

Shi-Jie Li, Jian-Bin Yan, Wen-Dong Song, Hao Wang and Dong-Liang Miao

S1. Comment

2-Propyl-1*H*-imidazole-4,5-dicarboxylate ligand with efficient N,*O*-donors has been used to obtain new metal–organic complexes, such as poly[diaquabis(5-carboxy-2-propyl-1*H*-imidazole-4-carboxylato- $\kappa^3 N^3$, O^4 , O^5)calcium(II)] (Song *et al.*, 2010) and [diaquabis(5-carboxy-2-propyl-1*H*-imidazole-4-carboxylato- $\kappa^2 N^3$, O^4)manganese(II)] *N*,*N*-dimethyl-formamide (Yan *et al.*, 2010). In this paper, we report the synthesis and structure of a new nickel(II) complex obtained under hydrothermal conditions.

As illustrated in Fig. 1, the title complex molecule is composed of one Ni^{II} ion, two mono-deprotonated 2-propyl-1*H*imidazole-4,5-dicarboxylate ligands, two coordinated water molecules and two dimethylformamide solvent molecules. The Ni^{II} atom exhibits a slightly distorted octahedral coordination geometry, defined by two N,*O*-bidentate ligands and two water molecules. In the crystal structure, the complex molecules and dimethylformamide solvent molecules are linked by N—H···O and O—H···O hydrogen bonds (Table 1) into a two-dimensional supramolecular structure parallel to (0 0 1) (Fig. 2). The methyl C and H atoms of the two ligands are disordered over two sites in raios of 0.74 (2):0.26 (2) and 0.57 (8):0.43 (8).

S2. Experimental

A mixture of $Ni(CH_3CO_2)_2$ (0.5 mmol, 0.06 g) and 2-propyl-1*H*-imidazole-4,5-dicarboxylic acid (0.5 mmol, 0.99 g) in 15 ml of dimethylformamide solution was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated at 433 K for 4 d. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

S3. Refinement

C- and N-bound H atoms were placed at calculated positions and treated as riding on the parent atoms, with C—H = 0.93 (CH), 0.97 (CH₂) and 0.96 (CH₃) Å and N—H = 0.86 Å and with $U_{iso}(H) = 1.2(1.5 \text{ for methyl})U_{eq}(C,N)$. The water H atoms were located in a difference map and refined as riding, with O—H = 0.85 Å and $U_{iso}(H) = 1.5U_{eq}(O)$. H atoms of carboxyl groups were located in a difference map, and one H atom (H3) was refined isotropically and the other (H7) was refined as riding with O—H = 0.82 Å and $U_{iso}(H) = 1.5U_{eq}(O)$.

Molecular structure of the title compound, showing the 30% probability displacement ellipsoids.

Figure 2

A view of the two-dimensional network constructed by N—H…O and O—H…O hydrogen bonding interactions (dashed lines).

Diaquabis(5-carboxy-2-propyl-1*H*-imidazole-4-carboxylato- $\kappa^2 N^3$, O^4)nickel(II) *N*, *N*-dimethylformamide disolvate

Crystal data	
$[Ni(C_{8}H_{9}N_{2}O_{4})_{2}(H_{2}O)_{2}] \cdot 2C_{3}H_{7}NO$	F(000) = 1336
$M_{r} = 635.26$	$D_x = 1.443 \text{ Mg m}^{-3}$
Orthorhombic, <i>Pna</i> 2 ₁	Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$
Hall symbol: P 2c -2n	Cell parameters from 3420 reflections
a = 16.3574 (12) Å	$\theta = 3.3-27.4^{\circ}$
b = 9.5246 (7) Å	$\mu = 0.73 \text{ mm}^{-1}$
c = 18.7700 (13) Å	T = 273 K
$V = 2924.3 (4) \text{ Å}^{3}$	Block, green
Z = 4	$0.31 \times 0.24 \times 0.18 \text{ mm}$
Data collection	
Rigaku/MSC Mercury CCD	ω scans
diffractometer	Absorption correction: multi-scan
Radiation source: fine-focus sealed tube	(REQAB; Jacobson, 1998)
Graphite monochromator	$T_{\min} = 0.805, T_{\max} = 0.880$

14413 measured reflections	$\theta_{\rm max} = 25.2^\circ, \ \theta_{\rm min} = 2.2^\circ$
5064 independent reflections	$h = -15 \rightarrow 19$
3663 reflections with $I > 2\sigma(I)$	$k = -10 \rightarrow 11$
$R_{\rm int} = 0.063$	$l = -22 \rightarrow 22$
Refinement	

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H atoms treated by a mixture of independent
$wR(F^2) = 0.133$	and constrained refinement
S = 1.03	$w = 1/[\sigma^2(F_o^2) + (0.0549P)^2 + 0.3624P]$
5064 reflections	where $P = (F_o^2 + 2F_c^2)/3$
403 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
1 restraint	$\Delta ho_{ m max} = 0.37 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$
direct methods	Absolute structure: Flack (1983), 2344 Friedel
Secondary atom site location: difference Fourier	pairs
map	Absolute structure parameter: 0.01 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Ni1	0.10751 (4)	0.00168 (7)	0.09532 (6)	0.03620 (17)	
N1	0.0395 (3)	-0.1796 (4)	0.0878 (2)	0.0372 (10)	
N2	-0.0320 (3)	-0.3724 (4)	0.0753 (2)	0.0406 (12)	
H2	-0.0680	-0.4303	0.0594	0.049*	
N3	0.1752 (3)	0.1835 (4)	0.1021 (2)	0.0365 (9)	
N4	0.2477 (3)	0.3758 (4)	0.1143 (2)	0.0390 (12)	
H4	0.2833	0.4340	0.1306	0.047*	
N5	0.3912 (3)	0.7166 (5)	0.2536 (3)	0.0498 (12)	
N6	0.3277 (3)	0.2034 (5)	0.9330 (3)	0.0501 (12)	
O1	0.1630 (2)	-0.1165 (3)	0.1768 (2)	0.0469 (10)	
O2	0.1603 (3)	-0.3285 (4)	0.2279 (2)	0.0554 (11)	
O3	0.0825 (3)	-0.5493 (4)	0.2133 (2)	0.0573 (11)	
O4	-0.0164 (3)	-0.6333 (4)	0.1436 (3)	0.0591 (12)	
05	0.0526 (2)	0.1182 (3)	0.0127 (2)	0.0468 (10)	
O6	0.0577 (3)	0.3260 (4)	-0.0417 (2)	0.0531 (10)	
O7	0.1355 (3)	0.5476 (5)	-0.0274 (2)	0.0598 (12)	
H7	0.1149	0.4704	-0.0345	0.090*	
08	0.2317 (3)	0.6357 (4)	0.0427 (2)	0.0569 (11)	
O9	0.3702 (2)	0.5395 (4)	0.1757 (3)	0.0588 (11)	
O10	0.3442 (2)	0.0345 (4)	1.0158 (3)	0.0612 (12)	
O1W	0.1905 (2)	-0.0835 (4)	0.0234 (2)	0.0487 (10)	
H1W	0.1925	-0.1726	0.0256	0.073*	
H2W	0.2379	-0.0513	0.0145	0.073*	
O2W	0.0247 (2)	0.0860 (4)	0.1677 (2)	0.0487 (10)	
H3W	0.0187	0.1712	0.1553	0.073*	
H4W	-0.0204	0.0436	0.1612	0.073*	
C1	0.0669 (3)	-0.2786 (5)	0.1358 (3)	0.0350 (12)	
C2	0.0221 (3)	-0.3993 (5)	0.1284 (3)	0.0342 (12)	

C3	-0.0202 (3)	-0.2402 (5)	0.0517 (3)	0.0390 (13)	
C4	0.1346 (4)	-0.2387 (6)	0.1836 (3)	0.0416 (13)	
C5	0.0282 (4)	-0.5373 (5)	0.1632 (3)	0.0469 (14)	
C6	-0.0674 (4)	-0.1725 (6)	-0.0067 (3)	0.0556 (16)	
H6A	-0.0729	-0.0731	0.0035	0.067*	
H6B	-0.1218	-0.2126	-0.0081	0.067*	
C7	-0.0265 (6)	-0.1908 (10)	-0.0809 (4)	0.097 (3)	
H7A	-0.0490	-0.1214	-0.1133	0.116*	0.744 (18)
H7B	0.0316	-0.1722	-0.0763	0.116*	0.744 (18)
H7′A	0.0113	-0.1125	-0.0843	0.116*	0.256 (18)
H7′B	0.0076	-0.2734	-0.0753	0.116*	0.256 (18)
C8	-0.0374(9)	-0.3302(15)	-0.1122 (7)	0.107 (5)	0.744 (18)
H8A	-0.0056	-0.3974	-0.0859	0.160*	0.744 (18)
H8B	-0.0196	-0.3289	-0.1609	0.160*	0.744 (18)
H8C	-0.0941	-0.3558	-0.1102	0.160*	0.744 (18)
C8′	-0.064(3)	-0.209(4)	-0.154(2)	0.112 (17)	0.256 (18)
H8'1	-0.0230	-0.2402	-0.1867	0.168*	0.256 (18)
H8'2	-0.0862	-0.1212	-0.1697	0.168*	0.256 (18)
H8'3	-0.1070	-0.2778	-0.1514	0.168*	0.256 (18)
C9	0 1496 (3)	0.2789(5)	0.0522 (3)	0.0341(12)	0.200 (10)
C10	0.1940(3)	0.4013(5)	0.0522(3) 0.0583(3)	0.0370(12)	
C11	0.2348(3)	0.2449(5)	0.1388(3)	0.0405(13)	
C12	0.0820(4)	0.2391(5)	0.0046(3)	0.0397(12)	
C13	0.1883(4)	0.5381(5)	0.0228(3)	0.0397(12) 0.0444(13)	
C14	0.1009(1) 0.2779(4)	0.1856 (6)	0.0220(3) 0.2005(3)	0.0566(17)	
H14A	0.3364	0 1909	0.1926	0.068*	
H14B	0.2633	0.0874	0.2057	0.068*	
C15	0.2557(7)	0.2659(11)	0.2007	0.108(3)	
H15A	0.2523	0.3657	0.2602	0.130*	0.43(8)
H15B	0.2029	0.2348	0.2872	0.130*	0.43(8)
H15C	0.2922	0.3459	0.2735	0.130*	0.57(8)
H15D	0.2922	0.3024	0.2654	0.130*	0.57(8)
C16	0.2000	0.239(7)	0.2051	0.130 0.110(14)	0.37(0) 0.43(8)
H16A	0.3189	0.1423	0.3402	0.165*	0.43(8)
H16R	0.3094	0.2972	0.3672	0.165*	0.43(8)
H16C	0.3732	0.2572	0.3075	0.165*	0.43(8)
C16'	0.3752 0.280 (3)	0.190 (4)	0.3375(17)	0.109 (10)	0.43 (8)
H16D	0.3303	0.1300	0.3295	0.163*	0.57(8)
H16E	0.2381	0.1259	0.3510	0.163*	0.57(8)
H16E	0.2885	0.1239	0.3750	0.163*	0.57(8)
C17	0.3560 (4)	0.6586 (6)	0.1975 (3)	0.105 0.0492 (15)	0.57 (0)
H17	0.3177	0.0588 (0)	0.1778	0.059*	
C18	0.3694 (6)	0.8590 (7)	0.1720 0.2739 (4)	0.039	
H18A	0.3338	0.8985	0.2386	0.125*	
H18R	0.3338	0.0205	0.2500	0.125	
HISC	0.3421	0.8577	0.2774	0.125	
C19	0.3721 0.4482 (5)	0.6377	0.3192 0.2966 (4)	0.123 0.080(2)	
U19 H10A	0.4647	0.0420 (9)	0.2358	0.000 (2)	
	V.TVT/	V. / V/V	0.5550	$V \cdot 1 \Delta V$	

H19B	0.4952	0.6183	0.2685	0.120*	
H19C	0.4232	0.5585	0.3145	0.120*	
C20	0.3618 (4)	0.1489 (6)	0.9896 (3)	0.0545 (16)	
H20	0.4026	0.2009	1.0119	0.065*	
C21	0.3507 (6)	0.3432 (7)	0.9072 (4)	0.083 (3)	
H21A	0.3884	0.3854	0.9401	0.125*	
H21B	0.3027	0.4007	0.9034	0.125*	
H21C	0.3761	0.3349	0.8613	0.125*	
C22	0.2656 (5)	0.1276 (8)	0.8942 (4)	0.076 (2)	
H22A	0.2694	0.0294	0.9052	0.113*	
H22B	0.2734	0.1412	0.8440	0.113*	
H22C	0.2126	0.1618	0.9077	0.113*	
H1	0.115 (4)	-0.456 (7)	0.222 (3)	0.050 (16)*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Ni1	0.0388 (3)	0.0225 (3)	0.0473 (3)	-0.0047 (2)	-0.0047 (3)	0.0025 (2)
N1	0.036 (2)	0.032 (2)	0.044 (3)	-0.0005 (18)	-0.006 (2)	0.005 (2)
N2	0.040 (3)	0.027 (2)	0.055 (3)	-0.007 (2)	-0.001 (2)	-0.0057 (19)
N3	0.039 (2)	0.0246 (19)	0.046 (2)	-0.0044 (18)	-0.004 (2)	-0.001 (2)
N4	0.040 (3)	0.030 (2)	0.048 (3)	-0.010 (2)	0.002 (2)	-0.0043 (19)
N5	0.050 (3)	0.040 (3)	0.059 (3)	-0.004 (2)	0.007 (3)	-0.009(2)
N6	0.051 (3)	0.043 (3)	0.057 (3)	-0.003 (2)	0.001 (3)	0.004 (2)
01	0.052 (2)	0.030 (2)	0.058 (2)	-0.0088 (18)	-0.014 (2)	0.0028 (19)
O2	0.065 (3)	0.045 (2)	0.056 (2)	0.000 (2)	-0.020 (2)	0.0156 (19)
O3	0.067 (3)	0.039 (2)	0.066 (3)	-0.002 (2)	-0.004 (3)	0.016 (2)
O4	0.054 (3)	0.028 (2)	0.095 (4)	-0.0086 (19)	0.011 (2)	0.006 (2)
05	0.049 (2)	0.033 (2)	0.059 (2)	-0.0060 (17)	-0.013 (2)	0.0011 (19)
06	0.062 (3)	0.046 (2)	0.051 (2)	-0.001 (2)	-0.012 (2)	0.0124 (19)
O7	0.068 (3)	0.043 (2)	0.069 (3)	-0.002 (2)	-0.002 (3)	0.020 (2)
08	0.056 (3)	0.028 (2)	0.086 (3)	-0.0050 (19)	0.002 (2)	0.008 (2)
09	0.043 (2)	0.053 (3)	0.080 (3)	-0.0041 (19)	-0.005 (2)	-0.016 (2)
O10	0.048 (3)	0.048 (2)	0.088 (3)	-0.0001 (19)	-0.007 (2)	0.023 (2)
O1W	0.049 (2)	0.032 (2)	0.066 (3)	-0.0044 (18)	0.006 (2)	-0.0012 (18)
O2W	0.053 (3)	0.0281 (19)	0.065 (3)	-0.0043 (18)	0.003 (2)	-0.0001 (18)
C1	0.037 (3)	0.029 (3)	0.039 (3)	-0.002 (2)	-0.001 (3)	0.006 (2)
C2	0.033 (3)	0.027 (2)	0.043 (3)	0.001 (2)	0.009 (2)	0.002 (2)
C3	0.041 (3)	0.027 (3)	0.049 (3)	0.000 (2)	-0.003 (3)	0.001 (2)
C4	0.042 (4)	0.036 (3)	0.046 (3)	0.000 (3)	-0.005 (3)	0.003 (3)
C5	0.054 (4)	0.029 (3)	0.058 (4)	0.001 (3)	0.013 (3)	0.006 (3)
C6	0.057 (4)	0.048 (3)	0.062 (4)	-0.010 (3)	-0.014 (3)	0.007 (3)
C7	0.111 (7)	0.105 (7)	0.074 (6)	0.009 (5)	-0.011 (5)	0.011 (5)
C8	0.118 (11)	0.112 (11)	0.090 (9)	0.029 (8)	-0.025 (8)	-0.022 (8)
C8′	0.14 (4)	0.10 (3)	0.10 (3)	0.01 (3)	-0.03 (3)	0.00 (2)
C9	0.035 (3)	0.026 (3)	0.041 (3)	-0.002 (2)	0.004 (2)	-0.003 (2)
C10	0.039 (3)	0.027 (3)	0.044 (3)	0.000 (2)	0.002 (3)	-0.002 (2)
C11	0.042 (4)	0.033 (3)	0.046 (3)	-0.002 (2)	-0.004 (3)	-0.004 (3)

C12	0.043 (3)	0.031 (3)	0.045 (3)	0.004 (3)	0.001 (3)	-0.002 (3)
C13	0.040 (3)	0.033 (3)	0.061 (4)	0.002 (3)	0.010 (3)	0.004 (3)
C14	0.065 (4)	0.042 (3)	0.063 (4)	-0.009 (3)	-0.016 (3)	0.010 (3)
C15	0.124 (8)	0.124 (8)	0.077 (6)	0.011 (7)	-0.019 (6)	0.022 (6)
C16	0.13 (3)	0.12 (3)	0.081 (18)	0.00(2)	-0.03 (2)	0.026 (18)
C16′	0.13 (3)	0.11 (2)	0.081 (14)	-0.005 (15)	-0.005 (16)	0.001 (13)
C17	0.041 (3)	0.041 (3)	0.066 (4)	0.005 (3)	0.001 (3)	-0.001 (3)
C18	0.119 (7)	0.047 (4)	0.084 (5)	0.002 (4)	0.009 (5)	-0.012 (4)
C19	0.071 (5)	0.092 (6)	0.078 (5)	0.013 (5)	0.000 (5)	-0.021 (4)
C20	0.039 (3)	0.057 (4)	0.068 (4)	0.003 (3)	-0.006 (3)	0.001 (3)
C21	0.119 (8)	0.051 (4)	0.081 (5)	-0.008(4)	0.009 (5)	0.018 (4)
C22	0.080 (5)	0.093 (5)	0.054 (4)	-0.027 (4)	-0.014 (4)	0.021 (4)

Geometric parameters (Å, °)

Ni1—N1	2 059 (4)	C7 C9/	
	2.037 (4)	$C / - C \delta'$	1.51 (4)
Ni1—N3	2.059 (4)	С7—Н7А	0.9700
Ni1—O1W	2.079 (4)	С7—Н7В	0.9700
Ni1—O2W	2.080 (4)	С7—Н7'А	0.9700
Ni1—O1	2.104 (4)	С7—Н7′В	0.9700
Ni1—O5	2.109 (4)	С8—Н7′В	1.1455
N1—C3	1.321 (7)	C8—H8A	0.9600
N1—C1	1.379 (6)	C8—H8B	0.9600
N2—C3	1.349 (7)	C8—H8C	0.9600
N2—C2	1.357 (7)	C8′—H8′1	0.9600
N2—H2	0.8600	C8′—H8′2	0.9600
N3—C11	1.331 (7)	C8′—H8′3	0.9600
N3—C9	1.371 (6)	C9—C10	1.378 (7)
N4	1.345 (6)	C9—C12	1.471 (8)
N4	1.391 (7)	C10—C13	1.467 (7)
N4—H4	0.8600	C11—C14	1.468 (8)
N5-C17	1.321 (8)	C14—C15	1.555 (11)
N5-C19	1.420 (9)	C14—H14A	0.9700
N5-C18	1.454 (8)	C14—H14B	0.9700
N6—C20	1.307 (7)	C15—C16′	1.51 (3)
N6—C22	1.443 (8)	C15—C16	1.52 (4)
N6-C21	1.466 (8)	C15—H15A	0.9700
O1—C4	1.259 (6)	C15—H15B	0.9700
O2—C4	1.265 (6)	C15—H15C	0.9700
O3—C5	1.300 (7)	C15—H15D	0.9700
O3—H1	1.05 (6)	C16—H16A	0.9600
O4—C5	1.226 (7)	C16—H16B	0.9600
O5—C12	1.258 (6)	C16—H16C	0.9600
O6—C12	1.263 (6)	C16'—H16D	0.9600
O7—C13	1.281 (7)	C16'—H16E	0.9600
O7—H7	0.8200	C16'—H16F	0.9600
O8—C13	1.229 (7)	C17—H17	0.9300
O9—C17	1.228 (6)	C18—H18A	0.9600

O10—C20	1.230(7)	C18—H18B	0.9600
O1W—H1W	0.8500	C18—H18C	0.9600
O1W—H2W	0.8500	C19—H19A	0.9600
O2W—H3W	0.8501	C19—H19B	0.9600
O2W—H4W	0.8500	C19—H19C	0.9600
C1—C2	1.370 (7)	C20—H20	0.9300
C1—C4	1.474 (8)	C21—H21A	0.9600
C^2 — C^5	1.471(7)	C21—H21B	0.9600
C_{3}	1.171(7) 1 487 (7)	C21—H21C	0.9600
C6—C7	1.555 (10)	C22_H22A	0.9600
С6—Н6А	0.9700	C22_H22B	0.9600
C6—H6B	0.9700	C22_H22C	0.9600
	1.462(14)	022-11220	0.9000
0/08	1.403 (14)		
N1—Ni1—N3	179.6 (2)	С7—С8—Н8С	109.5
N1—Ni1—O1W	88.90 (16)	C7—C8′—H8′1	109.5
N3—Ni1—O1W	91.00 (16)	C7—C8′—H8′2	109.5
N1—Ni1—O2W	90.96 (16)	H8'1—C8'—H8'2	109.5
N3—Ni1—O2W	89.13 (16)	C7—C8′—H8′3	109.5
O1W—Ni1—O2W	179.68 (18)	H8'1—C8'—H8'3	109.5
N1—Ni1—O1	80.44 (15)	H8'2—C8'—H8'3	109.5
N3—Ni1—O1	99.99 (16)	N3—C9—C10	110.0 (5)
01W Ni1 -01	88 97 (14)	$N_3 - C_9 - C_{12}$	118.2 (4)
02W—Ni1—O1	90.72 (16)	C10-C9-C12	131.7(5)
N1—Ni1—O5	99.23 (15)	C9 - C10 - N4	1044(4)
N3Ni105	80.33 (15)	C9 - C10 - C13	132.8(5)
01W Ni1 05	90.31 (16)	N4-C10-C13	132.6(5)
O^2W Nil O^5	90.00 (15)	$N_{4} = C_{10} = C_{13}$ $N_{3} = C_{11} = N_{4}$	122.0(5)
01 Nil 05	90.00(13) 170 21 (17)	$N_3 = C_{11} = N_4$	110.2(3) 126.3(5)
C_{1} N1 C_{1}	1/9.21(17) 106.1(4)	$N_{4} = C_{11} = C_{14}$	120.3(5) 123.4(5)
$C_3 = N_1 = C_1$	100.1(4) 142.2(4)	$N_{4} = C_{11} = C_{14}$	123.4(3)
C_{1} N1 N:1	143.2(4)	05 - 012 - 00	124.2(3)
$C_1 = N_1 = N_1$	110.7(3)	05-012-09	110.8(3)
$C_3 = N_2 = C_2$	106.9 (4)	00-012-07	119.0(3)
$C_3 = N_2 = H_2$	125.0	08 - 013 - 07	124.1(3)
$C_2 = N_2 = H_2$	125.0	08 - C13 - C10	119.8 (5)
C11 = N3 = C9	106.7 (4)	0/C13C10	110.1 (5)
C11 - N3 - N11	142.7 (4)		111.1 (5)
C9—N3—N11	110.6 (3)	CII—CI4—HI4A	109.4
CII—N4—CI0	108.7 (4)	C15—C14—H14A	109.4
C11—N4—H4	125.6	C11—C14—H14B	109.4
C10—N4—H4	125.6	C15—C14—H14B	109.4
C17—N5—C19	122.1 (5)	H14A—C14—H14B	108.0
C17—N5—C18	119.5 (6)	C16'—C15—C14	114.0 (14)
C19—N5—C18	118.4 (6)	C16—C15—C14	109.9 (19)
C20—N6—C22	120.8 (5)	C16'—C15—H15A	129.8
C20—N6—C21	121.3 (6)	C16—C15—H15A	109.7
C22—N6—C21	117.9 (6)	C14—C15—H15A	109.7
C4	114.2 (3)	C16—C15—H15B	109.7

C4—O2—H1	111 (2)	C14—C15—H15B	109.7
C5—O3—H1	113 (3)	H15A—C15—H15B	108.2
C12—O5—Ni1	114.0 (4)	C16'—C15—H15C	98.8
С13—О7—Н7	109.5	C14—C15—H15C	107.5
Ni1—O1W—H1W	112.5	C16'—C15—H15D	119.5
Ni1—O1W—H2W	125.5	C14—C15—H15D	108.6
H1W—O1W—H2W	109.5	H15C—C15—H15D	107.2
Ni1—O2W—H3W	105.4	C15—C16—H16A	109.5
Ni1—O2W—H4W	106.7	C15—C16—H16B	109.5
H3W—O2W—H4W	108.3	C15—C16—H16C	109.5
C2—C1—N1	109.5 (5)	C15—C16'—H16D	109.5
C2—C1—C4	132.8 (5)	C15—C16′—H16E	109.5
N1—C1—C4	117.7 (4)	H16D—C16′—H16E	109.5
N2—C2—C1	105.4 (4)	C15—C16'—H16F	109.5
N2—C2—C5	122.6 (5)	H16D—C16′—H16F	109.5
C1—C2—C5	131.9 (5)	H16E—C16'—H16F	109.5
N1—C3—N2	110.2 (5)	O9—C17—N5	124.7 (6)
N1—C3—C6	124.9 (5)	O9—C17—H17	117.7
N2—C3—C6	124.9 (5)	N5—C17—H17	117.7
O1—C4—O2	124.6 (5)	N5-C18-H18A	109.5
O1—C4—C1	116.9 (5)	N5-C18-H18B	109.5
O2—C4—C1	118.4 (5)	H18A—C18—H18B	109.5
O4—C5—O3	123.9 (5)	N5—C18—H18C	109.5
O4—C5—C2	119.6 (6)	H18A—C18—H18C	109.5
O3—C5—C2	116.5 (5)	H18B—C18—H18C	109.5
C3—C6—C7	112.9 (6)	N5—C19—H19A	109.5
С3—С6—Н6А	109.0	N5—C19—H19B	109.5
С7—С6—Н6А	109.0	H19A—C19—H19B	109.5
C3—C6—H6B	109.0	N5—C19—H19C	109.5
С7—С6—Н6В	109.0	H19A—C19—H19C	109.5
H6A—C6—H6B	107.8	H19B—C19—H19C	109.5
C8—C7—C6	114.1 (9)	O10—C20—N6	125.2 (6)
C8′—C7—C6	130.5 (19)	O10—C20—H20	117.4
С8—С7—Н7А	108.7	N6—C20—H20	117.4
С6—С7—Н7А	108.7	N6—C21—H21A	109.5
С8—С7—Н7В	108.7	N6—C21—H21B	109.5
C8′—C7—H7B	120.0	H21A—C21—H21B	109.5
С6—С7—Н7В	108.7	N6—C21—H21C	109.5
H7A—C7—H7B	107.6	H21A—C21—H21C	109.5
С8'—С7—Н7'А	106.8	H21B—C21—H21C	109.5
С6—С7—Н7'А	104.3	N6—C22—H22A	109.5
С8′—С7—Н7′В	103.8	N6—C22—H22B	109.5
С6—С7—Н7′В	104.0	H22A—C22—H22B	109.5
H7A—C7—H7′B	147.0	N6—C22—H22C	109.5
H7'A—C7—H7'B	105.4	H22A—C22—H22C	109.5
С7—С8—Н8А	109.5	H22B—C22—H22C	109.5
С7—С8—Н8В	109.5		

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
03—H1…O2	1.05 (6)	1.42 (6)	2.474 (6)	176 (5)
O7—H7…O6	0.82	1.67	2.479 (6)	169
N2—H2…O10 ⁱ	0.86	1.93	2.780 (6)	171
N4—H4…O9	0.86	1.94	2.788 (6)	171
$O1W$ — $H1W$ ··· $O8^{ii}$	0.85	1.96	2.782 (5)	162
O1 <i>W</i> —H2 <i>W</i> ···O10 ⁱⁱⁱ	0.85	1.92	2.757 (6)	168
$O2W$ — $H3W$ ···· $O4^{iv}$	0.85	1.96	2.794 (5)	166
O2W— $H4W$ ···O9 ^v	0.85	1.98	2.800 (6)	163

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) *x*-1/2, -*y*-1/2, *z*-1; (ii) *x*, *y*-1, *z*; (iii) *x*, *y*, *z*-1; (iv) *x*, *y*+1, *z*; (v) *x*-1/2, -*y*+1/2, *z*.