Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis[(4-methylphenyl)ethynyl] telluride

Ignez Caracelli, ${ }^{\text {a* }}$ Julio Zukerman-Schpector, ${ }^{\text {b }}$ Jesus M. Pena, ${ }^{\text {c }}$ Hélio A. Stefani ${ }^{\text {c }}$ and Edward R. T. Tiekink ${ }^{\text {d }}$

${ }^{\text {a }}$ BioMat-Physics Department, Univ Estadual Paulista, UNESP, 17033-360 Bauru, SP, Brazil, ${ }^{\text {b }}$ Department of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, ${ }^{\text {c }}$ Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo-SP, Brazil, and ${ }^{\text {d Department of }}$ Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia
Correspondence e-mail: ignez@fc.unesp.br

Received 14 February 2010; accepted 16 February 2010

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.019 ; w R$ factor $=0.055$; data-to-parameter ratio $=16.4$.

The tellurium atom in the title bis-ethynyl telluride, $\mathrm{Te}\left(\mathrm{C}_{9} \mathrm{H}_{7}\right)_{2}$ or $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Te}$, is located on a crystallographic twofold axis, the $\mathrm{C}-\mathrm{Te}-\mathrm{C}$ angle being $92.23(15)^{\circ}$. The dihedral angle between the rings is $87.27(7)^{\circ}$. In the crystal structure, molecules are connected in chains parallel to the b axis and mediated by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Related literature

For the synthesis of bis-ethynyl tellurides, see: Gedridge et al. (1992); Engman \& Stern (1993). For background to the motivation of studies into tellurium chemistry, see: Petragnani \& Stefani (2007); Zukerman-Schpector et al. (2008). For related structures, see: Jones \& Ruthe (2006). For searching the Cambridge Structural Database, see: Bruno et al. (2002). For background to $\mathrm{Te} \cdots \pi$ interactions, see: Tiekink \& Zukerman-Schpector (2009); Zukerman-Schpector \& Haiduc (2002).

Experimental

Crystal data

[^0]$c=11.3764(3) \AA$
$\beta=100.316$ (2) ${ }^{\circ}$
$V=1414.65(8) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$$
\mu=2.09 \mathrm{~mm}^{-1}
$$
$$
T=100 \mathrm{~K}
$$

Data collection

Bruker SMART APEXII diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

$$
T_{\min }=0.617, T_{\max }=0.746
$$

$0.27 \times 0.13 \times 0.09 \mathrm{~mm}$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019 \quad 88$ parameters
$w R\left(F^{2}\right)=0.055$
$S=1.20$
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.74 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.72 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).
Cg is the centroid of the $\mathrm{C} 3-\mathrm{C} 8$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 9-\mathrm{H} 9 \mathrm{a} \cdots C g^{\mathrm{i}}$	0.98	2.62	$3.573(3)$	163
Symmetry code: (i) $x, y+1, z$.				

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank FAPESP (07/59404-2 to HAS), CNPq (472237/ 2008-0 to IC, 300613/2007 to HAS, and 306532/2009-3 to JZS) and CAPES (808/2009 to JZ-S and IC) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2646).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.
Engman, L. \& Stern, D. (1993). Organometallics, 12, 1445-1448.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gedridge, R. W. Jr, Brandsma, L., Nissan, R. A., Verkruijsse, H. D., Harder, S., de Jong, R. L. P. \& O’Connor, C. J. (1992). Organometallics, 11, 418-422.
Jones, P. G. \& Ruthe, F. (2006). Private communication (refcode: CEPSUM). CCDC, Cambridge, England.
Petragnani, N. \& Stefani, H. A. (2007). Tellurium in Organic Synthesis Second, Updated and Enlarged Edition. 2nd ed. Netherlands: Academic Press/Elsevier.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tiekink, E. R. T. \& Zukerman-Schpector, J. (2009). CrystEngComm, 11, 27012711.

Zukerman-Schpector, J. \& Haiduc, I. (2002). CrystEngComm, 4, 178-192.
Zukerman-Schpector, J., Stefani, H. A., Guadagnin, R. C., Suganuma, C. A. \& Tiekink, E. R. T. (2008). Z. Kristallogr. 223, 536-541.

supporting information

Acta Cryst. (2010). E66, 0685 [doi:10.1107/S1600536810006264]

Bis[(4-methylphenyl)ethynyl] telluride

Ignez Caracelli, Julio Zukerman-Schpector, Jesus M. Pena, Hélio A. Stefani and Edward R. T. Tiekink

S1. Comment

Carbon-carbon bond formation for the preparation of symmetrical and unsymmetrical 1,3-diyne compounds is one of the most useful and important tools in modern organic chemistry. The construction of 1,3-diynes can be achieved either by intermolecular or intramolecular coupling of two similar or dissimilar alkynylic functionalities in the presence of organometallic complexes. However, the synthesis and use of bis-ethynyl tellurides are scarcely described in the literature (Gedridge et al., 1992, Engman \& Stern, 1993) and their use in the detelluration reaction to afford 1,3-diynes is unknown until now. As part of our ongoing research into tellurium chemistry (Petragnani \& Stefani, 2007; Zukerman-Schpector et al., 2008), the title compound, (I), was synthesized and its crystal structure determined.
The $\mathrm{C}-\mathrm{Te}-\mathrm{C}$ in (I), Fig. 1, angle of $92.23(15)^{\circ}$ is close to the smallest value found for related diorganotellurium compounds, i.e. $92.30(14)^{\circ}$ for $\mathrm{Te}[\mathrm{C}(\mathrm{H})=\mathrm{C}(\mathrm{H}) \mathrm{Ph}]_{2}$ (Jones \& Ruthe, 2006). A search in the CSD (Bruno et al. 2002) showed 225 hits for related compounds and a mean value of 96.0° for the $\mathrm{C}-\mathrm{Te}(\mathrm{II})-\mathrm{C}$ angle.
The molecules are linked in chains parallel to the b axis mediated in a large part through $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, Table 1 and Fig. 1. Short intermolecular Te-C interactions [e.g. $\mathrm{Te} \cdots \mathrm{C} 2^{\mathrm{ii}}=3.541$ (3) \AA for $\left.i i: x,-1+y, z\right]$, indicative of $\mathrm{Te} \cdots \pi$ interactions (Zukerman-Schpector \& Haiduc, 2002; Tiekink \& Zukerman-Schpector, 2009), are also noted as contributing to the stability of the chain.

S2. Experimental

To a stirred solution of 1-ethynyl-4-methylbenzene ($0.35 \mathrm{~g}, 3.0 \mathrm{mmol}$) in THF (10 ml), $n-\operatorname{BuLi}(1.2 \mathrm{ml}, 2.5 \mathrm{M}, 3.0 \mathrm{mmol})$ was added dropwise at 195 K . After 20 min ., freshly crushed tellurium powder ($0.38 \mathrm{~g}, 3.0 \mathrm{mmol}$) was added in one lot while a stream of argon was passed through the open flask. The cooling bath was then removed to bring the reaction medium to room temperature. When almost all the tellurium was consumed, the reaction mixture was again cooled to 195 K . Then a solution of bromine $(0.48 \mathrm{~g}, 3.0 \mathrm{mmol})$ in dry benzene (5 ml) was added dropwise, and stirring was continued for 15 min . The reaction mixture was hydrolyzed at 195 K by addition of water $(5 \mathrm{ml})$. Dilution with water $(20 \mathrm{ml})$ at room temperature, extraction with dichloromethane ($2 \times 15 \mathrm{ml}$), drying $\left(\mathrm{MgSO}_{4}\right)$, and flash chromatography ($1 / 4$ dichloromethane/hexane) afforded 0.90 g (62% yield) of the title compound as yellow crystals, m.pt. 400-401 K.

S3. Refinement

The H atoms were geometrically placed $(\mathrm{C}-\mathrm{H}=0.95-0.98 \AA)$ and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2-1.5 U_{e q}(\mathrm{C})$.

Figure 1
The molecular structure of (I) showing atom labelling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms). Symmetry operation $i:-x, y, 3 / 2-z$.

Figure 2
Supramolecular chain aligned along the b axis in (I) sustained by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions shown as orange dashed lines.
Colour code: Te, purple; C, grey; and H, green.

bis[(4-methylphenyl)ethynyl] telluride

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Te}$

$M_{r}=357.89$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=25.8462$ (8) \AA

$$
\begin{aligned}
& b=4.8902(2) \AA \\
& c=11.3764(3) \AA \\
& \beta=100.316(2)^{\circ} \\
& V=1414.65(8) \AA^{3} \\
& Z=4
\end{aligned}
$$

$F(000)=696$
$D_{\mathrm{x}}=1.680 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4746 reflections
$\theta=2.2-27.7^{\circ}$

Data collection

Bruker SMART APEXII diffractometer
Radiation source: sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.617, T_{\text {max }}=0.746$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.055$
$S=1.20$
1443 reflections
88 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& \mu=2.09 \mathrm{~mm}^{-1} \\
& T=100 \mathrm{~K} \\
& \text { Block, pale-yellow } \\
& 0.27 \times 0.13 \times 0.09 \mathrm{~mm} \\
& \\
& \\
& 5433 \text { measured reflections } \\
& 1443 \text { independent reflections } \\
& 1350 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.020 \\
& \theta_{\max }=26.5^{\circ}, \theta_{\min }=1.6^{\circ} \\
& h=-32 \rightarrow 32 \\
& k=-6 \rightarrow 5 \\
& l=-14 \rightarrow 14
\end{aligned}
$$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.019 P)^{2}+5.1394 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.74$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.72$ e \AA^{-3}

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
Te	0.0000	$0.37974(5)$	0.7500	$0.01504(9)$
C 1	$0.04373(10)$	$0.6695(6)$	$0.8528(2)$	$0.0161(5)$
C 2	$0.07098(10)$	$0.8358(6)$	$0.9095(2)$	$0.0172(6)$
C 3	$0.10551(10)$	$1.0424(6)$	$0.9693(2)$	$0.0155(5)$
C 4	$0.14665(10)$	$1.1424(6)$	$0.9162(2)$	$0.0173(6)$
H 4	0.1510	1.0759	0.8401	0.021^{*}
C 5	$0.18087(10)$	$1.3374(6)$	$0.9737(2)$	$0.0172(6)$
H5	0.2086	1.4024	0.9365	0.021^{*}
C6	$0.17559(10)$	$1.4406(6)$	$1.0852(2)$	$0.0154(6)$
C7	$0.13423(10)$	$1.3430(6)$	$1.1371(2)$	$0.0179(6)$
H7	0.1298	1.4119	1.2127	0.022^{*}
C8	$0.09947(10)$	$1.1478(6)$	$1.0810(2)$	$0.0170(5)$

H8	0.0715	1.0851	1.1181	0.020^{*}
C9	$0.21318(10)$	$1.6531(6)$	$1.1461(2)$	$0.0189(6)$
H9A	0.1990	1.8358	1.1248	0.028^{*}
H9B	0.2472	1.6332	1.1202	0.028^{*}
H9C	0.2179	1.6286	1.2329	0.028^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Te	$0.01487(13)$	$0.01124(14)$	$0.01834(14)$	0.000	$0.00119(9)$	0.000
C 1	$0.0156(12)$	$0.0148(14)$	$0.0177(12)$	$0.0001(11)$	$0.0023(10)$	$0.0042(11)$
C 2	$0.0154(12)$	$0.0175(15)$	$0.0183(12)$	$0.0040(11)$	$0.0021(10)$	$0.0045(12)$
C 3	$0.0151(12)$	$0.0123(14)$	$0.0175(12)$	$0.0018(10)$	$-0.0013(10)$	$0.0008(11)$
C 4	$0.0199(12)$	$0.0172(15)$	$0.0152(12)$	$0.0024(11)$	$0.0038(10)$	$-0.0026(12)$
C 5	$0.0179(12)$	$0.0163(15)$	$0.0179(13)$	$-0.0021(11)$	$0.0049(10)$	$0.0027(12)$
C 6	$0.0165(12)$	$0.0116(14)$	$0.0172(12)$	$0.0021(10)$	$0.0002(10)$	$0.0009(11)$
C 7	$0.0204(13)$	$0.0168(15)$	$0.0168(12)$	$0.0004(11)$	$0.0037(10)$	$-0.0020(12)$
C 8	$0.0180(12)$	$0.0150(14)$	$0.0192(13)$	$-0.0016(11)$	$0.0069(10)$	$0.0037(12)$
C 9	$0.0182(12)$	$0.0177(15)$	$0.0199(13)$	$-0.0015(11)$	$0.0006(10)$	$0.0035(12)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Te}-\mathrm{C} 1$	2.044 (3)	C6-C7	1.395 (4)
$\mathrm{C} 1-\mathrm{C} 2$	1.188 (4)	C6-C9	1.504 (4)
C2-C3	1.437 (4)	C7-C8	1.386 (4)
C3-C4	1.402 (4)	C7-H7	0.9500
C3-C8	1.406 (4)	C8-H8	0.9500
C4-C5	1.383 (4)	C9-H9A	0.9800
C4-H4	0.9500	C9-H9B	0.9800
C5-C6	1.394 (4)	C9—H9C	0.9800
C5-H5	0.9500		
$\mathrm{C} 1-\mathrm{Te}-\mathrm{Cl}^{\mathrm{i}}$	92.23 (15)	C7-C6-C9	121.5 (2)
C2-C1-Te	176.9 (2)	C8-C7-C6	121.6 (3)
C1-C2-C3	175.3 (3)	C8-C7-H7	119.2
C4-C3-C8	118.5 (3)	C6-C7-H7	119.2
C4-C3-C2	119.7 (3)	C7-C8-C3	120.1 (3)
C8-C3-C2	121.8 (3)	C7-C8-H8	120.0
C5-C4-C3	120.4 (3)	C3-C8-H8	120.0
C5-C4-H4	119.8	C6-C9-H9A	109.5
C3-C4-H4	119.8	C6-C9- H 9 B	109.5
C4-C5-C6	121.5 (3)	H9A-C9-H9B	109.5
C4-C5-H5	119.3	C6-C9- H 9 C	109.5
C6-C5-H5	119.3	H9A-C9-H9C	109.5
C5-C6-C7	117.9 (3)	H9B-C9-H9C	109.5
C5-C6-C9	120.6 (2)		
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	1.0 (4)	C5-C6-C7-C8	0.5 (4)

supporting information

$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-178.7(3)$	$\mathrm{C} 9-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$179.8(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.2(4)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 3$	$0.2(4)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-0.6(4)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 7$	$-1.0(4)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 9$	$-179.9(3)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 7$	$178.7(3)$

Symmetry code: (i) $-x, y,-z+3 / 2$.

Hydrogen-bond geometry ($\AA,{ }^{o}$)
Cg is the centroid of the $\mathrm{C} 3-\mathrm{C} 8$ ring.

$D — \mathrm{H} \cdots A$	$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{C} 9 — \mathrm{H} 9 \mathrm{a} \cdots C g^{\mathrm{ii}}$	0.98	2.62	$3.573(3)$	163

Symmetry code: (ii) $x, y+1, z$.

[^0]: $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Te}$
 $M_{r}=357.89$
 Monoclinic, $C 2 / c$
 $a=25.8462(8) \AA$

