organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-[(*E*)-(5-*tert*-Butyl-2-hydroxyphenyl)diazenyl]benzoic acid benzene hemisolvate

Tushar S. Basu Baul,^a‡ Anup Paul^a and Edward R. T. Tiekink^b*

^aDepartment of Chemistry, North-Eastern Hill University, NEHU Permanent Campus, Umshing, Shillong 793 022, India, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 1 February 2010; accepted 1 February 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.046; wR factor = 0.157; data-to-parameter ratio = 13.2.

The title benzene hemisolvate, $C_{17}H_{18}N_2O_3 \cdot 0.5C_6H_6$, features an essentially planar (the r.m.s. deviation of the non-H atoms, excluding methyl-C, is 0.071 Å) diazo molecule with an *E* conformation about the N—N bond, and a half-molecule of benzene disposed about a centre of inversion. The dihedral angle formed between the benzene rings of the diazo molecule is 7.69 (12)°. In the crystal, centrosymmetrically related dimers associate *via* the eight-membered carboxylic acid dimer synthon, {···HOC(=O)}₂, and these are connected into a supramolecular chain along the *b* axis *via* C–H···O contacts.

Related literature

For background to and motivation for the synthesis of the title compound, see: Basu Baul *et al.* (2010a,b,c). For the structure of a related diazo compound, see: Basu Baul *et al.* (2008).

Experimental

Crystal data	
$C_{17}H_{18}N_2O_3 \cdot 0.5C_6H_6$	c = 20.6562 (7) Å
$M_r = 337.39$	$\alpha = 81.326 \ (2)^{\circ}$
Triclinic, $P\overline{1}$	$\beta = 88.992 \ (2)^{\circ}$
a = 6.0960 (2) Å	$\gamma = 71.355 \ (2)^{\circ}$
b = 7.3578 (3) Å	V = 867.37 (5) Å ³

Z = 2Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$

Data collection

Bruker SMART APEXII
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.859, \ T_{\max} = 1$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ 232 parameters $wR(F^2) = 0.157$ H-atom parameters constrainedS = 1.08 $\Delta \rho_{max} = 0.25$ e Å $^{-3}$ 3053 reflections $\Delta \rho_{min} = -0.39$ e Å $^{-3}$

T = 100 K

 $R_{\rm int} = 0.049$

 $0.49 \times 0.09 \times 0.03 \text{ mm}$

11445 measured reflections 3053 independent reflections

1888 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} 03 - H30 \cdots N1 \\ 02 - H20 \cdots O1^{i} \\ C3 - H3 \cdots O1^{ii} \\ C6 - H6 \cdots O3^{iii} \end{array}$	0.84 0.84 0.95 0.95	1.87 1.79 2.59 2.48	2.587 (3) 2.614 (3) 3.473 (3) 3.201 (3)	142 167 155 133

Symmetry codes: (i) -x + 2, -y + 2, -z; (ii) -x + 2, -y + 1, -z; (iii) x, y + 1, z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS86* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *SHELXL97*.

The financial support of the Department of Science & Technology, New Delhi, India (grant No. SR/S1/IC-03/2005, TSBB) and the University Grants Commission, New Delhi, India, through SAP–DSA (Phase-III), are gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2642).

References

- Basu Baul, T. S., Paul, A., Arman, H. D. & Tiekink, E. R. T. (2008). Acta Cryst. E64, o2125.
- Basu Baul, T. S., Paul, A., Pellerito, L., Scopelliti, M., Singh, P., Verma, P. & de Vos, D. (2010b). *Invest New Drugs*, doi:10.1007/s10637-009-9293-x.
- Basu Baul, T. S., Paul, A., Pellerito, L., Scopelliti, M., Singh, P., Verma, P., Duthie, A., de Vos, D. & Tiekink, E. R. T. (2010a). *Invest New Drugs*, doi:10.1007/s10637-009-9360-3.
- Basu Baul, T. S., Paul, A. & Tiekink, E. R. T. (2010c). Z. Kristallogr. doi:10.1524/zkri.2010.1232.
- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

‡ Additional correspondence author, e-mail: basubaul@hotmail.com.

supporting information

Acta Cryst. (2010). E66, o540 [doi:10.1107/S1600536810003880]

4-[(*E*)-(5-*tert*-Butyl-2-hydroxyphenyl)diazenyl]benzoic acid benzene hemisolvate

Tushar S. Basu Baul, Anup Paul and Edward R. T. Tiekink

S1. Comment

4-Aminobenzoic acid reacts with 4-tert-butyl-phenol to yield the title compound which was prepared during an on-going study of the coordination chemistry of organotin carboxylates, their potential as cytotoxic agents and molecular modelling (Basu Baul *et al.*, 2010a,b,c). The asymmetric unit of (I) comprises a molecule of 4-[(*E*)-2-(5-tert-butyl-2-hy-droxyphenyl)diazen-1-yl]benzoic acid and half a molecule of benzene, with the latter being disposed about a crystallographic centre of inversion. The conformation about the central N1=N2 bond [1.269 (3) Å] is *E*, Fig. 1. The diazo molecule is essentially planar with the exception of the *tert*-butyl group. The planarity is reflected in the sequence of O1-C1-C2-C3, C4-C5-N1-N2, and N1-N2-C8-C9 torsion angles of 6.4 (4), 172.6 (2), and 0.1 (4)°, respectively, which show only small twists in the molecule. The dihedral angle formed between the two benzene rings is 7.69 (12) °. The planar conformation is stabilised by an intramolecular O_{hydroxyl}--H···N_{azo} hydrogen bond, Table 1. In terms of geometric parameters, the diazo compound in (I) resembles those reported for the 2-benzoic acid isomer (Basu Baul *et al.*, 2008).

The crystal packing features a familiar eight-membered carboxylic acid dimer synthon, Table 1. These are connected into a supramolecular chain via C–H···O contacts, Fig. 2 and Table 1. The C–H···O contacts involving the carbonyl-O2 atom lead to the formation of ten-membered {···HC₃O}₂ synthons, while those involving the hydroxyl-O3—H group are somewhat larger, i.e. 17-membered {···O_{hydroxyl}C₂N₂C₃H···O_{carboxylic acid}C₄H}₂, and incorporate the intramolecular six-membered {···HOC₂N₂} synthons. The supramolecular chain has a flat topology and is aligned along the *b* axis. Chains stack in the crystal structure to form columns with the primary interactions between them being of the type π ··· π : ring centroid(C2—C7)···ring centroid(C8—C13)ⁱ = 3.6637 (14) Å for *i*: 1+*x*, *y*, *z*. Interspersing these arrays are the solvent benzene molecules, Fig. 3.

S2. Experimental

The compound was prepared by reacting *p*-carboxybenzenediazonium chloride with 4-*tert*-butyl-phenol in alkaline solution under cold conditions (273–278 K) following the literature method (Basu Baul *et al.*, 2010a). Several crystallizations from methanol yielded red plates. M.pt.: 531–533 K. Anal. Calc. for $C_{17}H_{18}N_2O_3$: C, 68.44; H, 6.08; N, 9.39 %. Found. 68.39; H, 6.12; N, 9.40 %. IR (KBr): 1688 v(OCO)_{asym}. Single crystals suitable for an X-ray crystal-structure determination were obtained by slow evaporation of a benzene solution of the analytically pure compound and shown by crystallography to be the hemi-benzene solvate, (I).

S3. Refinement

All H-atoms were placed in calculated positions (O–H = 0.84 Å, and C–H = 0.95-0.98 Å) and were included in the refinement in the riding model approximation with $U_{iso}(H)$ set to 1.2-1.5 U_{eq} (carrier atom).

Figure 1

Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 2

Supramolecular chain formation along the *b* axis in (I) mediated by O—H \cdots O hydrogen bonds (orange dashed lines) and C—H \cdots O contacts (blue dashed lines).

Figure 3

View in projection down the *a* axis of the crystal packing in (I), highlighting the stacking of supramolecular chains. The O—H···O hydrogen bonds are shown as orange dashed lines, and C—H···O contacts as blue dashed lines.

4-[(E)-(5-tert-Butyl-2-hydroxyphenyl)diazenyl]benzoic acid benzene hemisolvate

Crystal data

C₁₇H₁₈N₂O₃·0.5C₆H₆ $M_r = 337.39$ Triclinic, *P*1 Hall symbol: -P 1 a = 6.0960 (2) Å b = 7.3578 (3) Å c = 20.6562 (7) Å a = 81.326 (2)° $\beta = 88.992$ (2)° $\gamma = 71.355$ (2)° V = 867.37 (5) Å³

Data collection

Bruker SMART APEXII diffractometer Radiation source: sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.859, T_{\max} = 1$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.157$ S = 1.083053 reflections Z = 2 F(000) = 358 $D_x = 1.292 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2230 reflections $\theta = 3.0-25.1^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 100 K Plate, orange $0.49 \times 0.09 \times 0.03 \text{ mm}$

11445 measured reflections 3053 independent reflections 1888 reflections with $I > 2\sigma(I)$ $R_{int} = 0.049$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 1.0^{\circ}$ $h = -7 \rightarrow 7$ $k = -8 \rightarrow 8$ $l = -24 \rightarrow 24$

232 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.0815P)^2 + 0.0458P]$
neighbouring sites	where $P = (F_o^2 + 2F_c^2)/3$
H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta ho_{ m max} = 0.25 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.39 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.9406 (3)	0.7864 (2)	0.00097 (8)	0.0270 (5)
O2	0.7757 (3)	1.0387 (2)	0.05359 (8)	0.0270 (5)
H2O	0.8709	1.0827	0.0321	0.040*
O3	0.0159 (3)	0.2070 (2)	0.17405 (9)	0.0295 (5)
H3O	0.1019	0.2690	0.1569	0.044*
N1	0.1696 (3)	0.4998 (3)	0.15671 (9)	0.0214 (5)
N2	0.0282 (3)	0.5895 (3)	0.19601 (9)	0.0214 (5)
C1	0.7939 (4)	0.8718 (4)	0.03965 (11)	0.0200 (6)
C2	0.6296 (4)	0.7767 (3)	0.07027 (11)	0.0186 (6)
C3	0.6505 (4)	0.5880 (4)	0.06190 (11)	0.0215 (6)
H3	0.7704	0.5196	0.0362	0.026*
C4	0.4971 (4)	0.5002 (4)	0.09100 (11)	0.0224 (6)
H4	0.5120	0.3709	0.0856	0.027*
C5	0.3208 (4)	0.6011 (4)	0.12827 (11)	0.0187 (6)
C6	0.2955 (4)	0.7910 (4)	0.13581 (11)	0.0210 (6)
H6	0.1722	0.8610	0.1602	0.025*
C7	0.4513 (4)	0.8766 (4)	0.10745 (11)	0.0224 (6)
H7	0.4371	1.0055	0.1133	0.027*
C8	-0.1216 (4)	0.4932 (4)	0.22568 (11)	0.0193 (6)
C9	-0.1262 (4)	0.3104 (4)	0.21544 (12)	0.0215 (6)
C10	-0.2869 (4)	0.2363 (4)	0.24863 (12)	0.0254 (6)
H10	-0.2942	0.1134	0.2419	0.030*
C11	-0.4361 (4)	0.3394 (4)	0.29125 (12)	0.0245 (6)
H11	-0.5437	0.2849	0.3134	0.029*
C12	-0.4341 (4)	0.5213 (4)	0.30302 (11)	0.0201 (6)
C13	-0.2753 (4)	0.5933 (4)	0.26916 (12)	0.0213 (6)
H13	-0.2699	0.7169	0.2757	0.026*
C14	-0.5974 (4)	0.6396 (4)	0.35012 (12)	0.0241 (6)
C15	-0.7522 (5)	0.5308 (4)	0.38459 (13)	0.0357 (8)
H15A	-0.8514	0.5080	0.3520	0.053*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H15B	-0.8489	0.6083	0.4154	0.053*	
H15C	-0.6557	0.4060	0.4085	0.053*	
C16	-0.4527 (5)	0.6816 (4)	0.40241 (13)	0.0344 (7)	
H16A	-0.3585	0.5590	0.4281	0.052*	
H16B	-0.5559	0.7619	0.4314	0.052*	
H16C	-0.3511	0.7508	0.3811	0.052*	
C17	-0.7517 (5)	0.8319 (4)	0.31170 (13)	0.0307 (7)	
H17A	-0.6543	0.9044	0.2899	0.046*	
H17B	-0.8531	0.9088	0.3419	0.046*	
H17C	-0.8462	0.8052	0.2787	0.046*	
C18	0.8298 (5)	0.0370 (4)	0.45204 (13)	0.0313 (7)	
H18	0.7123	0.0620	0.4192	0.038*	
C19	0.9784 (5)	0.1460 (4)	0.44705 (13)	0.0305 (7)	
H19	0.9640	0.2458	0.4108	0.037*	
C20	1.1478 (5)	0.1084 (4)	0.49518 (13)	0.0334 (7)	
H20	1.2501	0.1831	0.4920	0.040*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	<i>U</i> ³³	U^{12}	<i>U</i> ¹³	U ²³
01	0.0223 (10)	0.0252 (10)	0.0326 (10)	-0.0054 (8)	0.0128 (8)	-0.0077 (8)
O2	0.0259 (11)	0.0235 (11)	0.0361 (11)	-0.0136 (9)	0.0103 (9)	-0.0074 (9)
O3	0.0302 (11)	0.0227 (10)	0.0384 (11)	-0.0097 (9)	0.0153 (9)	-0.0123 (9)
N1	0.0173 (11)	0.0237 (12)	0.0241 (11)	-0.0065 (10)	0.0041 (9)	-0.0067 (10)
N2	0.0183 (11)	0.0236 (12)	0.0235 (11)	-0.0074 (10)	0.0046 (9)	-0.0062 (10)
C1	0.0195 (14)	0.0191 (14)	0.0220 (14)	-0.0065 (12)	0.0018 (11)	-0.0045 (11)
C2	0.0167 (14)	0.0205 (14)	0.0185 (13)	-0.0058 (11)	0.0021 (11)	-0.0038 (11)
C3	0.0192 (14)	0.0264 (16)	0.0190 (13)	-0.0059 (12)	0.0056 (11)	-0.0071 (11)
C4	0.0219 (14)	0.0221 (15)	0.0251 (14)	-0.0075 (12)	0.0046 (11)	-0.0087 (11)
C5	0.0154 (13)	0.0229 (15)	0.0198 (13)	-0.0082 (11)	0.0025 (11)	-0.0046 (11)
C6	0.0179 (14)	0.0221 (15)	0.0224 (13)	-0.0039 (12)	0.0072 (11)	-0.0080 (11)
C7	0.0228 (15)	0.0224 (15)	0.0232 (14)	-0.0079 (12)	0.0029 (12)	-0.0060 (12)
C8	0.0175 (13)	0.0217 (14)	0.0208 (13)	-0.0094 (12)	0.0004 (11)	-0.0032 (11)
C9	0.0194 (14)	0.0222 (15)	0.0226 (14)	-0.0054 (12)	0.0022 (11)	-0.0051 (11)
C10	0.0265 (15)	0.0208 (15)	0.0316 (15)	-0.0109 (13)	0.0044 (12)	-0.0059 (12)
C11	0.0212 (15)	0.0279 (16)	0.0260 (14)	-0.0118 (12)	0.0032 (12)	-0.0012 (12)
C12	0.0168 (13)	0.0231 (15)	0.0196 (13)	-0.0054 (11)	0.0013 (11)	-0.0027 (11)
C13	0.0201 (14)	0.0218 (14)	0.0245 (14)	-0.0079 (12)	0.0023 (11)	-0.0088 (11)
C14	0.0204 (14)	0.0304 (16)	0.0239 (14)	-0.0096 (12)	0.0056 (11)	-0.0085 (12)
C15	0.0292 (16)	0.0411 (18)	0.0372 (17)	-0.0118 (14)	0.0160 (14)	-0.0081 (14)
C16	0.0270 (16)	0.0456 (19)	0.0325 (16)	-0.0092 (14)	0.0073 (13)	-0.0177 (14)
C17	0.0257 (16)	0.0315 (17)	0.0335 (16)	-0.0048 (13)	0.0096 (13)	-0.0111 (13)
C18	0.0308 (17)	0.0334 (17)	0.0301 (16)	-0.0093 (14)	0.0007 (13)	-0.0084 (13)
C19	0.0381 (17)	0.0265 (16)	0.0270 (15)	-0.0099 (14)	0.0067 (13)	-0.0055 (12)
C20	0.0365 (18)	0.0378 (18)	0.0335 (16)	-0.0199 (15)	0.0076 (14)	-0.0114 (14)

Geometric parameters (Å, °)

01—C1	1.265 (3)	C11—C12	1.400 (4)
O2—C1	1.274 (3)	C11—H11	0.9500
O2—H2O	0.8400	C12—C13	1.379 (3)
O3—C9	1.345 (3)	C12—C14	1.537 (3)
O3—H3O	0.8400	C13—H13	0.9500
N1—N2	1.269 (3)	C14—C15	1.526 (3)
N1—C5	1.427 (3)	C14—C16	1.533 (4)
N2—C8	1.406 (3)	C14—C17	1.534 (4)
C1—C2	1.478 (3)	C15—H15A	0.9800
C2—C3	1.390 (3)	C15—H15B	0.9800
C2—C7	1.393 (3)	C15—H15C	0.9800
C3—C4	1.379 (3)	C16—H16A	0.9800
С3—Н3	0.9500	C16—H16B	0.9800
C4—C5	1.390 (3)	C16—H16C	0.9800
C4—H4	0.9500	C17—H17A	0.9800
C5—C6	1.389 (3)	C17—H17B	0.9800
C6—C7	1.376 (3)	C17—H17C	0.9800
С6—Н6	0.9500	C18—C20 ⁱ	1.383 (4)
С7—Н7	0.9500	C18—C19	1.383 (4)
C8—C13	1.398 (3)	C18—H18	0.9500
C8—C9	1.401 (3)	C19—C20	1.379 (4)
C9—C10	1.390 (3)	C19—H19	0.9500
C10—C11	1.382 (3)	C20—C18 ⁱ	1.383 (4)
C10—H10	0.9500	C20—H20	0.9500
C1 02 1120	100 5		120.2 (2)
C1 = 02 = H20	109.5	C13 - C12 - C14	120.3 (2)
C9—O3—H3O	109.5	C11 - C12 - C14	123.6 (2)
N2-N1-C5	114.0 (2)	C12-C13-C8	123.2 (2)
N1 - N2 - C8	115.6 (2)	C12—C13—H13	118.4
OI = CI = O2	123.8 (2)	C8—C13—H13	118.4
OI = CI = C2	119.2 (2)	C15 - C14 - C16	108.3 (2)
02-01-02	117.0(2)	CI5-CI4-CI7	108.6 (2)
$C_{3} = C_{2} = C_{1}$	119.5 (2)	C16-C14-C17	109.4 (2)
$C_{3} = C_{2} = C_{1}$	120.4 (2)	C15 - C14 - C12	111.9 (2)
C/=C2=C1	120.1 (2)	C16-C14-C12	109.1 (2)
C4 - C3 - C2	120.0 (2)	C17 - C14 - C12	109.44 (19)
C4 - C3 - H3	120.0	C14—C15—H15A	109.5
C2—C3—H3	120.0	CI4—CI5—HI5B	109.5
$C_3 - C_4 - C_5$	119.9 (2)	HISA—CIS—HISB	109.5
C3-C4-H4	120.0	C14—C15—H15C	109.5
C_{1} C_{4} H_{4}	120.0	H15A - U15 - H15U	109.5
$C_0 - C_5 - C_4$	120.5(2)	H12B - C12 - H12C	109.5
$C_0 - C_5 - N_1$	123.0(2)	C14 - C10 - H16A	109.5
C4C5N1	110.4 (2)	U14 - U10 - H10B	109.5
$C_{1} = C_{0} = C_{3}$	119.2 (2)	HI0A - UI0 - HI0B	109.5
C/	120.4	C14—C10—H16C	109.5

С5—С6—Н6	120.4	H16A—C16—H16C	109.5
C6—C7—C2	120.8 (2)	H16B—C16—H16C	109.5
С6—С7—Н7	119.6	C14—C17—H17A	109.5
С2—С7—Н7	119.6	C14—C17—H17B	109.5
C13—C8—C9	119.4 (2)	H17A—C17—H17B	109.5
C13—C8—N2	114.9 (2)	C14—C17—H17C	109.5
C9—C8—N2	125.7 (2)	H17A—C17—H17C	109.5
O3—C9—C10	119.3 (2)	H17B—C17—H17C	109.5
O3—C9—C8	122.4 (2)	C20 ⁱ —C18—C19	120.0 (3)
C10—C9—C8	118.3 (2)	C20 ⁱ —C18—H18	120.0
C11—C10—C9	120.7 (2)	C19—C18—H18	120.0
C11—C10—H10	119.6	C20-C19-C18	119.3 (3)
С9—С10—Н10	119.6	С20—С19—Н19	120.3
C10—C11—C12	122.3 (2)	C18—C19—H19	120.3
C10-C11-H11	118.8	C19—C20—C18 ⁱ	120.7 (3)
C12—C11—H11	118.8	С19—С20—Н20	119.7
C13—C12—C11	116.1 (2)	C18 ⁱ —C20—H20	119.7
C5—N1—N2—C8	-179.2 (2)	N2—C8—C9—O3	-0.9 (4)
O1—C1—C2—C3	6.4 (4)	C13—C8—C9—C10	0.8 (4)
O2—C1—C2—C3	-174.6 (2)	N2-C8-C9-C10	-179.7 (2)
O1—C1—C2—C7	-173.2 (2)	O3—C9—C10—C11	-179.7 (2)
O2—C1—C2—C7	5.8 (4)	C8—C9—C10—C11	-0.8 (4)
C7—C2—C3—C4	-0.8 (4)	C9—C10—C11—C12	0.2 (4)
C1—C2—C3—C4	179.6 (2)	C10-C11-C12-C13	0.5 (4)
C2—C3—C4—C5	0.5 (4)	C10-C11-C12-C14	-179.9 (2)
C3—C4—C5—C6	0.9 (4)	C11—C12—C13—C8	-0.5 (4)
C3—C4—C5—N1	-180.0 (2)	C14—C12—C13—C8	179.9 (2)
N2—N1—C5—C6	-8.3 (3)	C9—C8—C13—C12	-0.1 (4)
N2—N1—C5—C4	172.6 (2)	N2-C8-C13-C12	-179.7 (2)
C4—C5—C6—C7	-1.8 (4)	C13—C12—C14—C15	-177.7 (2)
N1—C5—C6—C7	179.1 (2)	C11—C12—C14—C15	2.7 (4)
C5—C6—C7—C2	1.5 (4)	C13-C12-C14-C16	-57.8 (3)
C3—C2—C7—C6	-0.2 (4)	C11—C12—C14—C16	122.6 (3)
C1—C2—C7—C6	179.4 (2)	C13-C12-C14-C17	61.9 (3)
N1—N2—C8—C13	179.6 (2)	C11—C12—C14—C17	-117.7 (3)
N1—N2—C8—C9	0.1 (4)	C20 ⁱ —C18—C19—C20	-0.2 (4)
C13—C8—C9—O3	179.6 (2)	C18—C19—C20—C18 ⁱ	0.2 (4)

Symmetry code: (i) -x+2, -y, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
03—H3o…N1	0.84	1.87	2.587 (3)	142
O2—H2o···O1 ⁱⁱ	0.84	1.79	2.614 (3)	167

			supporting informatio		
С3—Н3…О1ііі	0.95	2.59	3.473 (3)	155	
<u>C6—H6···O3^{iv}</u>	0.95	2.48	3.201 (3)	133	

Symmetry codes: (ii) -*x*+2, -*y*+2, -*z*; (iii) -*x*+2, -*y*+1, -*z*; (iv) *x*, *y*+1, *z*.