organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-(4-Chlorophenyl)-1,1,1-trifluoro-N-(trifluoromethylsulfonyl)methanesulfonamide

Núbia Boechat,^a Adriana dos Santos Lages,^a Warner B. Kover,^b Edward R. T. Tiekink,^{c*} James L. Wardell^d[‡] and Solange M. S. V. Wardell^e

^aFundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Departamento de Síntese Orgânica, Manguinhos, CEP 21041250 Rio de Janeiro, RJ, Brazil, ^bUniversidade Federal do Rio de Janeiro, Departamento de Química Orgânica, Instituto de Quiímica, Cidade Universitária, 21949-900 Rio de Janeiro, RJ, Brazil, ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, ^dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and ^eCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland

Correspondence e-mail: edward.tiekink@gmail.com

Received 26 January 2010; accepted 27 January 2010

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.002 Å; R factor = 0.031; wR factor = 0.082; data-to-parameter ratio = 15.3.

The title molecule, also called 4-chloro-N,N-bis(trifluoromethanesulfonyl)aniline, C₈H₄ClF₆NO₄S₂, has non-crystallographic twofold symmetry with the pseudo-axis aligned along the Cl-C···C-N backbone of the molecule: the SO₂CF₃ residues lie to either side of the benzene ring. In the crystal, the presence of $C-H \cdots O$ contacts lead to the formation of a sequence of 12-membered $\{\cdots HC_2NSO\}_2$ synthons within a supramolecular chain aligned along [101].

Related literature

For uses of N,N-bis(trifluoromethanesulfonyl)aniline derivatives, see: Zeller (2001); Wulff et al. (1986). For general background to the synthesis, see: Deprez et al. (1995); Greenfield & Crosanu (2008). For a previous synthesis of the title compound, see: Laali et al. (2007).

[‡] Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Crystal data

β

$C_8H_4ClF_6NO_4S_2$
$M_r = 391.70$
Monoclinic, $P2_1/c$
a = 11.5998 (3) Å
b = 13.4423 (4) Å
c = 9.0548 (2) Å
$\beta = 108.014 \ (2)^{\circ}$

Data collection

Nonius KappaCCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2007) $T_{\min} = 0.821, \ T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	199 parameters
$wR(F^2) = 0.082$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.62 \text{ e } \text{\AA}^{-3}$
3047 reflections	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} C3 - H3 \cdots O3^{i} \\ C5 - H5 \cdots O1^{ii} \end{array}$	0.95	2.57	3.496 (2)	164
	0.95	2.59	3.385 (2)	141

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x + 2, -y + 2, -z + 2.

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5319).

References

- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Deprez, P., Guillaume, J., Becker, R., Corbier, A., Didierlaurent, S., Fortin, M., Frechet, D., Hamon, G., Heckman, B., Heitsch, H., Kleeman, H.-W., Vevert, J. P., Vincent, J. C., Wagner, A. & Zhang, J. (1995). J. Med. Chem. 38, 2357-2377.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Greenfield, L. A. & Crosanu, C. (2008). Tetrahedron Lett. 49, 6300-6303.
- Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Laali, K. K., Okazaki, T. & Bunge, S. D. (2007). J. Org. Chem. 72, 6758-6762.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.

V = 1342.69 (6) Å³

Mo $K\alpha$ radiation $\mu = 0.68 \text{ mm}^{-1}$

 $0.40 \times 0.25 \times 0.25 \text{ mm}$

17100 measured reflections

3047 independent reflections

2806 reflections with $I > 2\sigma(I)$

Z = 4

T = 120 K

 $R_{\rm int} = 0.023$

- Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). publCIF. In preparation.

- Wulff, W., Peterson, G., Bauta, W., Chan, K. S., Faron, K., Gilbertson, S., Kaesler, R., Yang, D. & Murray, C. (1986). J. Org. Chem. 51, 277–279.
- Zeller, W. E. (2001). In *E-EROS Encyclopedia of Reagents for Organic Synthesis*. Chichester: Wiley.

supporting information

Acta Cryst. (2010). E66, o506-o507 [doi:10.1107/S1600536810003326]

N-(4-Chlorophenyl)-1,1,1-trifluoro-*N*-(trifluoromethylsulfonyl)methane-sulfonamide

Núbia Boechat, Adriana dos Santos Lages, Warner B. Kover, Edward R. T. Tiekink, James L. Wardell and Solange M. S. V. Wardell

S1. Comment

N,N-Bis(trifluoromethanesulfonyl)aniline derivatives find use in synthetic chemistry such as mild triflating reagents (Zeller, 2001; Wulff *et al.*, 1986). Following a literature procedure to p-ClC₆H₄NHSO₂CF₃, using p-ClC₆H₄NH₂, (F₃CSO₂)O and Et₃N in CH₂Cl₂ at 213 K, a little of the di-substituted compound, p-ClC₆H₄(NSO₂CF₃), (I), was isolated as a side-product (Greenfield & Crosanu, 2008; Deprez *et al.*, 1995). Compound (I) has been reported previously (Laali *et al.*, 2007) and the X-ray structure determination is reported herein.

In (I), the SO₂CF₃ groups occupy approximately orthogonal positions to either side of the aromatic ring: the C3/C4/N1/S1, S2 torsion angles are 77.44 (17) and -101.55 (15) $^{\circ}$, respectively; the dihedral angle formed between the benzene ring and NS₂ group is 78.13 (6) $^{\circ}$. The CF₃ groups lie to either side of the molecule and fold back over the benzene ring so that, overall, the molecule has non-crystallographic 2-fold symmetry when viewed down the C11–C1–C4–N1 axis.

Supramolecular aggregation in (I) is dominated by C–H···O interactions that lead to the formation of a sequence of 12membered {···HC₂NSO}₂ synthons aligned along [1 0 1], Fig. 2 and Table 1. Chains are connected into layers through the agency of C–Cl··· π interactions between centrosymmetrically related residues [C1–Cl1···ring centroid(C1–C6)ⁱ = 3.4592 (8) Å with angle at Cl1 = 92.46 (6) ° for i: 2-*x*, 2-*y*, 1-*z*]. The layers thus formed stack along the *b* axis with the closest contacts between successive layers being of the type C–F··· π [C8–F4···ring centroid(C1–C6)ⁱⁱ = 3.4708 (16) Å with angle at F4 = 122.83 (11) ° for *ii*: *x*, 3/2-*y*,1/2+*z*].

S2. Experimental

To a cooled (213 K) solution of *p*-ClC₆H₄NH₂ (11.5 g, 9.0 mmol) and triethylamine (1.50 ml; 10.8 mmol, 1.20 eq.) in CH₂Cl₂ (40 ml) was slowly added a solution of trifluoromethanesulfonic anhydride (2.40 ml; 13.5 mmol, 1.50 eq) in CH₂Cl₂ (40 ml). After the mixture was stirred at 213-223 K for 1 h, water (30 ml) was added. The mixture was allowed to warm to room temperature, and the organic layer was decanted, washed with water, dried, and evaporated. The products, *N*-(4-chlorophenyl)trifluoromethylsulfonamide and *N*-(4-chlorophenyl)-bis-trifluoromethylsulfonamide, (I), were purified by chromatography on silica gel with hexane as eluent. Products were recrystallized from hexane. Characterisation data for (I): m.pt. 346-348 K, ¹H-NMR (500 MHz, CDCl₃) δ : 7.34 (2*H*), 7.50 (2*H*) p.p.m. ¹³C-NMR (125 MHz, CDCl₃) δ : 119.36 (q, ¹J(C,F) = 325 Hz), 125.17 (C3), 130.06, 132.18, 138.84 p.p.m. ¹⁹F-NMR (376 MHz, CDCl₃) δ : 71.11 p.p.m.

S3. Refinement

The C-bound H atoms were geometrically placed (C–H = 0.95 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Figure 2

A view of the supramolecular chain in (I) aligned along [1 0 1] and mediated by C–H…O interactions (blue dashed lines). Colour code: Cl, cyan; S, yellow; F, pink; O, red; N, blue; C, grey; and H, green.

Figure 3

View of the stacking of layers in (I). The C–H···O interactions are shown as blue dashed lines. Colour code: Cl, cyan; S, yellow; F, pink; O, red; N, blue; C, grey; and H, green.

N-(4-Chlorophenyl)-1,1,1-trifluoro-N- (trifluoromethylsulfonyl)methanesulfonamide

Crystal data	
$C_8H_4ClF_6NO_4S_2$	F(000) = 776
$M_r = 391.70$	$D_{\rm x} = 1.938 { m Mg} { m m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2983 reflections
a = 11.5998 (3) Å	$\theta = 2.9 - 27.5^{\circ}$
b = 13.4423 (4) Å	$\mu = 0.68 \ { m mm^{-1}}$
c = 9.0548 (2) Å	T = 120 K
$\beta = 108.014 \ (2)^{\circ}$	Block, colourless
V = 1342.69 (6) Å ³	$0.40 \times 0.25 \times 0.25$ mm
Z = 4	

Data collection

Nonius KappaCCD area-detector diffractometer Radiation source: Enraf Nonius FR591 rotating anode 10 cm confocal mirrors monochromator Detector resolution: 9.091 pixels mm ⁻¹ φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2007) <i>Refinement</i>	$T_{\min} = 0.821, T_{\max} = 1.000$ 17100 measured reflections 3047 independent reflections 2806 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.023$ $\theta_{\max} = 27.5^{\circ}, \theta_{\min} = 2.9^{\circ}$ $h = -15 \rightarrow 15$ $k = -17 \rightarrow 17$ $l = -11 \rightarrow 11$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: inferred from
$wR(F^2) = 0.082$	neighbouring sites
S = 1.04	H-atom parameters constrained
3047 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0407P)^2 + 1.1662P]$
199 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.62$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.41$ e Å ⁻³

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C11	0.97286 (4)	0.86092 (3)	0.34987 (5)	0.02733 (12)	
S1	0.78053 (4)	1.09197 (3)	0.91222 (4)	0.01889 (11)	
S2	0.59031 (4)	0.94255 (3)	0.78741 (5)	0.01943 (11)	
F1	0.70006 (16)	1.20000 (9)	0.66292 (14)	0.0497 (4)	
F2	0.75847 (13)	1.28200 (9)	0.87505 (16)	0.0449 (3)	
F3	0.58975 (12)	1.20628 (11)	0.8139 (2)	0.0551 (4)	
F4	0.69058 (14)	0.77016 (10)	0.86879 (18)	0.0525 (4)	
F5	0.71980 (16)	0.87281 (11)	1.05802 (17)	0.0663 (5)	
F6	0.54674 (13)	0.80495 (10)	0.96076 (16)	0.0478 (3)	
01	0.90194 (11)	1.10259 (10)	0.91208 (15)	0.0280 (3)	
O2	0.74816 (13)	1.08338 (10)	1.04986 (15)	0.0293 (3)	
O3	0.54372 (11)	0.89593 (10)	0.64061 (14)	0.0254 (3)	
O4	0.52094 (12)	1.00882 (11)	0.84680 (16)	0.0308 (3)	
N1	0.72049 (12)	0.99798 (10)	0.79108 (15)	0.0167 (3)	
C1	0.89885 (15)	0.90047 (12)	0.4795 (2)	0.0192 (3)	
C2	0.79853 (15)	0.96166 (12)	0.42518 (19)	0.0201 (3)	

H2	0.7706	0.9812	0.3192	0.024*	
C3	0.73954 (14)	0.99385 (12)	0.52852 (18)	0.0182 (3)	
H3	0.6704	1.0358	0.4943	0.022*	
C4	0.78292 (14)	0.96396 (12)	0.68241 (18)	0.0162 (3)	
C5	0.88287 (15)	0.90243 (12)	0.73621 (19)	0.0198 (3)	
H5	0.9106	0.8824	0.8420	0.024*	
C6	0.94185 (15)	0.87055 (12)	0.6327 (2)	0.0218 (3)	
H6	1.0110	0.8286	0.6668	0.026*	
C7	0.70024 (18)	1.20199 (13)	0.8072 (2)	0.0258 (4)	
C8	0.64203 (18)	0.84073 (14)	0.9298 (2)	0.0301 (4)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0291 (2)	0.0285 (2)	0.0294 (2)	-0.00347 (16)	0.01644 (18)	-0.01089 (17)
S1	0.0231 (2)	0.0187 (2)	0.01481 (19)	-0.00119 (14)	0.00583 (15)	-0.00231 (13)
S2	0.0178 (2)	0.0220 (2)	0.0187 (2)	-0.00101 (14)	0.00585 (15)	0.00126 (14)
F1	0.0996 (12)	0.0286 (6)	0.0236 (6)	0.0191 (7)	0.0229 (7)	0.0060 (5)
F2	0.0691 (9)	0.0188 (5)	0.0461 (7)	-0.0062 (6)	0.0167 (7)	-0.0067 (5)
F3	0.0402 (7)	0.0402 (7)	0.0918 (12)	0.0177 (6)	0.0303 (8)	0.0267 (7)
F4	0.0650 (9)	0.0347 (7)	0.0620 (9)	0.0206 (7)	0.0257 (8)	0.0194 (6)
F5	0.0872 (11)	0.0427 (8)	0.0367 (7)	-0.0277 (8)	-0.0281 (7)	0.0189 (6)
F6	0.0593 (9)	0.0433 (7)	0.0469 (8)	-0.0179 (6)	0.0252 (7)	0.0100 (6)
01	0.0216 (6)	0.0317 (7)	0.0290 (7)	-0.0046 (5)	0.0053 (5)	-0.0099 (5)
02	0.0462 (8)	0.0276 (7)	0.0174 (6)	-0.0026 (6)	0.0146 (6)	-0.0025 (5)
O3	0.0211 (6)	0.0313 (7)	0.0216 (6)	-0.0065 (5)	0.0032 (5)	-0.0025 (5)
O4	0.0267 (7)	0.0358 (7)	0.0357 (7)	0.0025 (6)	0.0182 (6)	-0.0020 (6)
N1	0.0178 (6)	0.0171 (6)	0.0158 (6)	-0.0006 (5)	0.0060 (5)	-0.0025 (5)
C1	0.0216 (8)	0.0159 (7)	0.0226 (8)	-0.0044 (6)	0.0105 (6)	-0.0059 (6)
C2	0.0241 (8)	0.0204 (8)	0.0152 (7)	-0.0020 (6)	0.0055 (6)	-0.0020 (6)
C3	0.0182 (7)	0.0175 (7)	0.0171 (7)	0.0018 (6)	0.0027 (6)	0.0002 (6)
C4	0.0163 (7)	0.0166 (7)	0.0160 (7)	-0.0004 (6)	0.0055 (6)	-0.0015 (6)
C5	0.0197 (8)	0.0207 (8)	0.0176 (8)	0.0021 (6)	0.0038 (6)	0.0024 (6)
C6	0.0190 (8)	0.0193 (8)	0.0269 (8)	0.0029 (6)	0.0069 (7)	-0.0003 (6)
C7	0.0371 (10)	0.0185 (8)	0.0244 (9)	0.0017 (7)	0.0134 (7)	0.0002 (6)
C8	0.0360 (10)	0.0247 (9)	0.0258 (9)	-0.0082 (7)	0.0040 (8)	0.0053 (7)

Geometric parameters (Å, °)

Cl1—C1	1.7380 (16)	F5—C8	1.304 (2)
S1—O2	1.4131 (13)	F6—C8	1.313 (2)
S1—01	1.4160 (13)	N1C4	1.4637 (19)
S1—N1	1.6769 (13)	C1—C6	1.381 (2)
S1—C7	1.8470 (18)	C1—C2	1.385 (2)
S2—O4	1.4135 (13)	C2—C3	1.388 (2)
S2—O3	1.4168 (13)	С2—Н2	0.9500
S2—N1	1.6749 (14)	C3—C4	1.387 (2)
S2—C8	1.8483 (19)	С3—Н3	0.9500

F1—C7	1.306 (2)	C4—C5	1.384 (2)
F2—C7	1.317 (2)	C5—C6	1.388 (2)
F3—C7	1.303 (2)	С5—Н5	0.9500
F4—C8	1.309 (3)	С6—Н6	0.9500
O2—S1—O1	123.00 (9)	С2—С3—Н3	120.5
O2—S1—N1	110.21 (8)	C5—C4—C3	122.06 (15)
O1—S1—N1	106.70 (7)	C5—C4—N1	119.00 (14)
O2—S1—C7	106.88 (8)	C3—C4—N1	118.94 (14)
O1—S1—C7	105.19 (9)	C4—C5—C6	118.75 (15)
N1—S1—C7	103.02 (8)	С4—С5—Н5	120.6
O4—S2—O3	122.60 (8)	С6—С5—Н5	120.6
O4—S2—N1	109.14 (8)	C1—C6—C5	119.21 (15)
O3—S2—N1	107.18 (7)	С1—С6—Н6	120.4
O4—S2—C8	107.55 (9)	С5—С6—Н6	120.4
O3—S2—C8	105.91 (8)	F3—C7—F1	110.51 (18)
N1—S2—C8	102.67 (8)	F3—C7—F2	108.18 (16)
C4—N1—S2	118.56 (10)	F1—C7—F2	109.00 (16)
C4—N1—S1	118.91 (10)	F3—C7—S1	110.98 (13)
S2—N1—S1	122.53 (8)	F1—C7—S1	110.08 (12)
C6—C1—C2	122.17 (15)	F2—C7—S1	108.03 (13)
C6—C1—Cl1	119.27 (13)	F5—C8—F4	110.23 (19)
C2—C1—C11	118.56 (13)	F5	109.09 (18)
C1—C2—C3	118.74 (15)	F4—C8—F6	108.97 (16)
С1—С2—Н2	120.6	F5—C8—S2	111.24 (13)
С3—С2—Н2	120.6	F4—C8—S2	109.37 (13)
C4—C3—C2	119.07 (15)	F6—C8—S2	107.89 (14)
С4—С3—Н3	120.5		
O4—S2—N1—C4	-155.34 (12)	N1-C4-C5-C6	-179.88 (14)
O3—S2—N1—C4	-20.57 (14)	C2-C1-C6-C5	0.1 (3)
C8—S2—N1—C4	90.75 (13)	Cl1—C1—C6—C5	179.81 (13)
O4—S2—N1—S1	23.61 (12)	C4—C5—C6—C1	-0.4 (2)
O3—S2—N1—S1	158.38 (9)	O2—S1—C7—F3	-40.94 (16)
C8—S2—N1—S1	-90.29 (11)	O1—S1—C7—F3	-173.17 (14)
O2—S1—N1—C4	-151.50 (12)	N1—S1—C7—F3	75.21 (15)
O1—S1—N1—C4	-15.75 (14)	O2—S1—C7—F1	-163.59 (14)
C7—S1—N1—C4	94.75 (13)	O1—S1—C7—F1	64.17 (16)
O2—S1—N1—S2	29.55 (12)	N1—S1—C7—F1	-47.44 (16)
O1—S1—N1—S2	165.30 (9)	O2—S1—C7—F2	77.50 (14)
C7—S1—N1—S2	-84.20 (11)	O1—S1—C7—F2	-54.73 (14)
C6—C1—C2—C3	0.0 (2)	N1—S1—C7—F2	-166.35 (12)
Cl1—C1—C2—C3	-179.66 (12)	O4—S2—C8—F5	-67.64 (18)
C1—C2—C3—C4	0.1 (2)	O3—S2—C8—F5	159.68 (16)
C2—C3—C4—C5	-0.4 (2)	N1—S2—C8—F5	47.42 (18)
C2—C3—C4—N1	-179.97 (14)	O4—S2—C8—F4	170.36 (13)
S2—N1—C4—C5	-102.12 (15)	O3—S2—C8—F4	37.69 (16)
S1—N1—C4—C5	78.89 (17)	N1—S2—C8—F4	-74.58 (15)

supporting information

S2—N1—C4—C3	77.44 (17)	O4—S2—C8—F6	51.97 (16)
S1—N1—C4—C3	-101.55 (15)	O3—S2—C8—F6	-80.71 (15)
C3—C4—C5—C6	0.6 (2)	N1—S2—C8—F6	167.02 (13)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C3—H3…O3 ⁱ	0.95	2.57	3.496 (2)	164
C5—H5····O1 ⁱⁱ	0.95	2.59	3.385 (2)	141

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+1; (ii) -*x*+2, -*y*+2, -*z*+2.