Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(E)-1-[(2-Chloro-5-methylpyridin-3-yl)methylene]thiosemicarbazide

Zhen Wang, Yongqiang Ma, Yan Xu, Yun Ling and Xinling Yang*

College of Science, China Agricultural University, Beijing, 100193, People's
Republic of China.
Correspondence e-mail: yangxl@cau.edu.cn

Received 15 January 2010; accepted 8 February 2010
Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.037 ; w R$ factor $=0.105$; data-to-parameter ratio $=14.3$.

The title compound, $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{ClN}_{4} \mathrm{~S}$, which has potential insecticidal activity, was synthesized by the reaction of 2-chloro-5methylnicotinaldehyde and thiosemicarbazide. In the crystal structure, the molecules are linked via intermolecular N $\mathrm{H} \cdots \mathrm{N}, \mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, forming a three-dimensional network stacked down a.

Related literature

Tyrosinase is a key enzyme in the moulting process of insects, see: Kramer \& Knost (2001). For the inhibitory activity on tyrosinase of benzaldehyde thiosemicarbazones, see: Xue et al. (2007). For the synthesis of the title compound, see: Liu et al. (2008).

Experimental

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{ClN}_{4} \mathrm{~S}$
$M_{r}=228.70$
Monoclinic, $P 2_{1} / c$
$a=8.776$ (3) \AA
$b=15.523$ (4) \AA
$c=7.540(2) \AA$
$\beta=96.193(16)^{\circ}$
$V=1021.2(5) \AA^{3}$

$Z=4$

$\mathrm{Cu} K \alpha$ radiation
$\mu=4.95 \mathrm{~mm}^{-1}$

Data collection
Rigaku R-AXIS Rapid diffractometer
Absorption correction: numerical (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.214, T_{\text {max }}=0.319$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.105$
$S=1.11$
1847 reflections

129 parameters
H-atom parameters constrained
$T=173 \mathrm{~K}$
$0.45 \times 0.30 \times 0.30 \mathrm{~mm}$

> 6565 measured reflections 1847 independent reflections 1598 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.048$

H-atom parameters
$\Delta \rho_{\text {max }}=0.27 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.22 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H3B \cdots S $1^{\text {i }}$	0.88	2.52	3.379 (2)	166
$\mathrm{N} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{~N} 1^{\text {ii }}$	0.88	2.15	3.012 (3)	168
$\mathrm{N} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{Cl}^{\text {ii }}$	0.88	2.98	3.609 (2)	130

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: $X P$ in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This work was supported by the National High Technology Research and Development Program of China (2006 A A10A201). We acknowledge Dr Liang Tongling for collecting the data at the Analysis and Testing Center, Institute of Chemistry Academy of Science, Beijing.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2018).

References

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Kramer, K. J. \& Knost, M. R. (2001). Tetrahedron, 57, 385-392.
Liu, J., Yi, W., Wan, Y., Ma, L. \& Song, H. (2008). Bioorg. Med. Chem. 16, 1096-1102.
Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Xue, C.-B., Zhang, L., Luo, W.-C., Xie, X.-Y., Jiang, L. \& Xiao, T. (2007). Bioorg. Med. Chem. 15, 2006-2015.

supporting information

(E)-1-[(2-Chloro-5-methylpyridin-3-yl)methylene]thiosemicarbazide

Zhen Wang, Yongqiang Ma, Yan Xu, Yun Ling and Xinling Yang

S1. Comment

Tyrosinase is a key enzyme in the molting process of insect (Kramer \& Knost 2001), and benzaldehyde thiosemicarbazones have inhibitory activity on tyrosinase (Xue et al., 2007). In order to look for highly potent tyrosinase inhibitors, the title compound was synthesized by the reaction of thiosemicarbazide and 2-chloro-5-methylnicotinaldehyde (Liu et al., 2008). Finally in the preliminary bioassay, we found that it showed obvious inhibitory activity against tyrosinase from cotton bollworm. To get more information about the structure, we prepared a single crystal of the title compound and its crystal will be reported herein.
The bond distances between N2 and C7 is 1.277 (3) \AA, which is in the range of typical bond length of imine double bond. The bond distance of 1.683 (2) \AA for the thiocarbonyl group (S1-C8) is about the average value of the typical $\mathrm{C}=\mathrm{S}$ double bond $(1.56 \AA)$ and $\mathrm{C}-\mathrm{S}$ single bond $(1.82 \AA)$, showing a partial double bond character in feature. The partial double bond character also appears between N3 and C8 as well as N4 and C8, which show the distance of 1.355 (3) and 1.322 (3) \AA, respectively. In the cryatal structure, there are three intermolecular hydrogen bonds: N3-H3 $\cdots \mathrm{S} 1, \mathrm{~N} 4-$ $\mathrm{H} 4 \cdots \mathrm{~N} 1, \mathrm{~N} 4-\mathrm{H} 4 \cdots \mathrm{Cl} 1$ (Table 1).

S2. Experimental

$1.6 \mathrm{~g}(10 \mathrm{mmol})$ 2-Chloro-5-methylnicotinaldehyde was dissolved in anhydrous ethanol (15 ml). To this solution, 0.91 g $(10 \mathrm{mmol})$ thiosemicarbazide and 0.5 mL acetic acid were added. The mixture was refluxed for 24 h and then cooled to room temperatur. The precipitate was formed and collected after filteration. The title compound was obtained in 89% yield after recrystallization of the precipitate from anhydrous MeOH . The colourless crystals suitable for X-ray crystallography was carefully grown from anhydrous methanolic solution.

S3. Refinement

All H atoms were placed in geometrically idealized positions $(\mathrm{C}-\mathrm{H}=0.93-0.96 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$) and treated as riding on their parent atoms, with $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.2-1.5 \mathrm{U}_{\mathrm{eq}}(\mathrm{C}, N)$.

Figure 1
The molecular structure of the title compound, showing the labelling scheme. Displacement ellipsoids are drawn at the 30% probability level for all non-H atoms.

Figure 2
Packing diagram for the title compound viewed along the a axis.
(E)-1-[(2-Chloro-5-methylpyridin-3-yl)methylene]thiosemicarbazide

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{ClN}_{4} \mathrm{~S}$
$M_{r}=228.70$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=8.776$ (3) \AA
$b=15.523$ (4) \AA
$c=7.540$ (2) \AA
$\beta=96.193$ (16) ${ }^{\circ}$
$V=1021.2(5) \AA^{3}$
$Z=4$
$F(000)=472$
$D_{\mathrm{x}}=1.488 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54186 \AA$
Cell parameters from 658 reflections
$\theta=3.1-66.2^{\circ}$
$\mu=4.95 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Block, colorless
$0.45 \times 0.30 \times 0.30 \mathrm{~mm}$

Data collection

Rigaku R-AXIS Rapid
diffractometer
Radiation source: rotating anode
Graphite monochromator
ω scans at fixed $\chi=45^{\circ}$
Absorption correction: numerical
(ABSCOR; Higashi, 1995)
$T_{\min }=0.214, T_{\text {max }}=0.319$

> 6565 measured reflections
> 1847 independent reflections
> 1598 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.048$
> $\theta_{\max }=68.3^{\circ}, \theta_{\min }=5.1^{\circ}$
> $h=-10 \rightarrow 9$
> $k=-18 \rightarrow 17$
> $l=-8 \rightarrow 9$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.105$
$S=1.11$
1847 reflections
129 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0431 P)^{2}+0.4188 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.27 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.22$ e \AA^{-3}
Extinction correction: SHELXL, $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0051 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iss }} * / U_{\text {eq }}$
C11	$0.50443(6)$	$0.31852(4)$	$0.16529(8)$	$0.0385(2)$
S1	$1.21803(7)$	$0.48033(4)$	$-0.12061(9)$	$0.0413(2)$
N1	$0.5116(2)$	$0.15225(14)$	$0.1900(3)$	$0.0341(5)$
N2	$0.9510(2)$	$0.28984(13)$	$-0.0128(2)$	$0.0309(5)$
N3	$1.0139(2)$	$0.36918(13)$	$-0.0313(3)$	$0.0349(5)$
H3B	0.9687	0.4145	0.0097	0.042^{*}
N4	$1.2069(2)$	$0.31191(13)$	$-0.1757(3)$	$0.0380(5)$
H4A	1.1645	0.2609	-0.1669	0.046^{*}
H4B	1.2914	0.3171	-0.2281	0.046^{*}
C1	$0.5935(3)$	$0.21864(16)$	$0.1461(3)$	$0.0308(5)$
C2	$0.7391(2)$	$0.21399(15)$	$0.0899(3)$	$0.0289(5)$
C3	$0.7996(3)$	$0.13151(16)$	$0.0783(3)$	$0.0315(5)$
H3A	0.8979	0.1246	0.0385	0.038^{*}
C4	$0.7192(3)$	$0.05922(17)$	$0.1237(3)$	$0.0336(5)$
C5	$0.5753(3)$	$0.07344(16)$	$0.1798(3)$	$0.0357(6)$

H5A	0.5186	0.0249	0.2129	0.043^{*}
C6	$0.7836(3)$	$-0.03035(16)$	$0.1176(3)$	$0.0407(6)$
H6A	0.8908	-0.0302	0.1699	0.061^{*}
H6B	0.7779	-0.0498	-0.0067	0.061^{*}
H6C	0.7241	-0.0694	0.1854	0.061^{*}
C7	$0.8228(3)$	$0.29122(16)$	$0.0529(3)$	$0.0340(5)$
H7A	0.7804	0.3455	0.0787	0.041^{*}
C8	$1.1438(3)$	$0.38067(15)$	$-0.1105(3)$	$0.0305(5)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0293(3)$	$0.0389(4)$	$0.0493(4)$	$0.0043(2)$	$0.0141(3)$	$0.0027(2)$
S1	$0.0337(4)$	$0.0357(4)$	$0.0589(4)$	$-0.0051(3)$	$0.0259(3)$	$-0.0051(3)$
N1	$0.0275(10)$	$0.0380(11)$	$0.0387(11)$	$0.0010(9)$	$0.0119(8)$	$0.0023(9)$
N2	$0.0255(10)$	$0.0368(11)$	$0.0313(10)$	$-0.0025(8)$	$0.0063(8)$	$0.0003(8)$
N3	$0.0256(10)$	$0.0369(12)$	$0.0449(12)$	$-0.0032(8)$	$0.0155(9)$	$-0.0046(9)$
N4	$0.0283(11)$	$0.0369(12)$	$0.0519(13)$	$-0.0026(8)$	$0.0184(9)$	$-0.0073(9)$
C1	$0.0266(12)$	$0.0381(14)$	$0.0284(11)$	$0.0031(10)$	$0.0057(9)$	$-0.0013(9)$
C2	$0.0242(11)$	$0.0374(14)$	$0.0263(11)$	$-0.0030(9)$	$0.0075(9)$	$-0.0010(9)$
C3	$0.0230(11)$	$0.0434(14)$	$0.0293(12)$	$0.0010(10)$	$0.0080(9)$	$-0.0014(10)$
C4	$0.0290(12)$	$0.0422(14)$	$0.0307(12)$	$0.0001(10)$	$0.0080(9)$	$-0.0007(10)$
C5	$0.0311(13)$	$0.0357(14)$	$0.0422(13)$	$-0.0027(10)$	$0.0122(10)$	$0.0020(10)$
C6	$0.0385(14)$	$0.0381(15)$	$0.0474(15)$	$0.0015(11)$	$0.0138(12)$	$0.0007(11)$
C7	$0.0283(12)$	$0.0341(13)$	$0.0413(14)$	$-0.0017(10)$	$0.0115(10)$	$-0.0002(10)$
C8	$0.0230(11)$	$0.0371(14)$	$0.0325(12)$	$-0.0019(9)$	$0.0078(9)$	$-0.0004(9)$

Geometric parameters ($\AA,{ }^{\circ}$)

C11-C1	1.749 (2)	C2-C3	1.392 (3)
S1-C8	1.683 (2)	C2-C7	1.449 (3)
N1-C1	1.319 (3)	C3-C4	1.388 (3)
N1-C5	1.350 (3)	C3-H3A	0.9500
N2-C7	1.277 (3)	C4-C5	1.393 (3)
N2-N3	1.363 (3)	C4-C6	1.503 (3)
N3-C8	1.355 (3)	C5-H5A	0.9500
N3-H3B	0.8800	C6-H6A	0.9800
N4-C8	1.322 (3)	C6-H6B	0.9800
N4-H4A	0.8800	C6-H6C	0.9800
N4-H4B	0.8800	C7-H7A	0.9500
$\mathrm{C} 1-\mathrm{C} 2$	1.391 (3)		
C1-N1-C5	117.0 (2)	C3-C4-C6	122.5 (2)
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{N} 3$	114.1 (2)	C5-C4-C6	120.8 (2)
C8-N3-N2	122.2 (2)	N1-C5-C4	123.7 (2)
C8-N3-H3B	118.9	N1-C5-H5A	118.1
N2-N3-H3B	118.9	C4-C5-H5A	118.1
C8-N4-H4A	120.0	C4-C6-H6A	109.5

supporting information

$\mathrm{C} 8-\mathrm{N} 4-\mathrm{H} 4 \mathrm{~B}$	120.0
$\mathrm{H} 4 \mathrm{~A}-\mathrm{N} 4-\mathrm{H} 4 \mathrm{~B}$	120.0
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 2$	$125.4(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 11$	$114.30(17)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Cl} 1$	$120.30(19)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$115.8(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$121.2(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7$	$123.0(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$121.4(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.3
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.3
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$116.7(2)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 8$	$-175.1(2)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$0.2(3)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{Cl} 1$	$-179.23(17)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.8(3)$
$\mathrm{C} 11-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-179.73(16)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$-177.0(2)$
$\mathrm{C} 11-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$2.5(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-1.2(3)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$176.6(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.5(3)$

$\mathrm{C} 4-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	109.5
$\mathrm{H} 6 \mathrm{~A}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	109.5
$\mathrm{C} 4-\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$	109.5
$\mathrm{H} 6 \mathrm{~A}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$	109.5
$\mathrm{H} 6 \mathrm{~B}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$	109.5
$\mathrm{~N} 2-\mathrm{C} 7-\mathrm{C} 2$	$123.2(2)$
N2-C7-H7A	118.4
C2-C7-H7A	118.4
N4-C8-N3	$117.7(2)$
N4-C8-S1	$123.06(18)$
N3-C8-S1	$119.29(18)$

C2-C3-C4-C6
C1—N1-C5-C4
C3-C4-C5-N1
C6-C4-C5-N1
N3-N2-C7-C2
C1-C2-C7-N2
C3-C2-C7-N2
N2-N3-C8-N4
N2-N3-C8-S1
109.5
109.5
109.5
109.5
109.5
123.2 (2)
118.4
118.4
123.06 (18)
119.29 (18)
-178.2 (2)
-1.0 (3)
0.7 (4)
179.4 (2)
-177.63 (19)
-174.1 (2)
8.3 (4)
2.0 (3)
-177.57 (16)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3 — \mathrm{H} 3 B \cdots \mathrm{~S} 1^{\mathrm{i}}$	0.88	2.52	$3.379(2)$	166
$\mathrm{~N} 4-\mathrm{H} 4 B \cdots \mathrm{~N} 1^{\mathrm{ii}}$	0.88	2.15	$3.012(3)$	168
$\mathrm{~N} 4 — \mathrm{H} 4 B \cdots \mathrm{Cl}^{\mathrm{ii}}$	0.88	2.98	$3.609(2)$	130

Symmetry codes: (i) $-x+2,-y+1,-z$; (ii) $x+1,-y+1 / 2, z-1 / 2$.

