Acta Crystallographica Section E
 Structure Reports
 Online
 ISSN 1600-5368
 2-Oxo-2,3-dihydro-1H-imidazo[1,2-a]pyridinium iodide

Jinling Miao, ${ }^{\text {a }}$ Jisheng Guo, ${ }^{\text {a }}$ Chunhua Hu, ${ }^{\text {b }}$ Daqi Wang ${ }^{\text {c }}$ and Yong Nie ${ }^{\mathrm{a} *}$

${ }^{\mathrm{a}}$ School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China, ${ }^{\text {b }}$ Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003-6688, USA, and ${ }^{\mathrm{c}}$ College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
Correspondence e-mail: chm_niey@ujn.edu.cn

Received 29 November 2009; accepted 8 February 2010
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$; disorder in main residue; R factor $=0.036 ; w R$ factor $=0.103$; data-to-parameter ratio $=11.0$.

In the title compound, $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}^{+} \cdot \mathrm{I}^{-}$, the carbonyl C and O atoms of the cation and the iodide ion are situated on mirror planes. The mean plane of the imidazo[1,2- d]pyridinium cation is perpendicular to the mirror plane as a consequence of the disorder of the cation over two opposite orientations of equal occupancy. In the crystal, $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ interactions are present.

Related literature

For the synthesis of imidazo[1,2-a]pyridinium chloride or bromide, see: Newton et al. (1984); Baumann et al. (1986). For the derivatization of imidazo[1,2-a]pyridinium and related structures, see: Plutecka et al. (2006); Hoffmann et al. (2005); Qiao et al. (2006).

I^{-}

Experimental

Crystal data
$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}^{+} . \mathrm{I}^{-}$
$M_{r}=262.05$

Orthorhombic, Pnma
$a=14.597$ (2) A
$Z=4$
$b=8.2044(18) \AA$
Mo $K \alpha$ radiation
$c=7.0926(15) \AA$
$\mu=3.71 \mathrm{~mm}^{-1}$
$V=849.4(3) \AA^{3}$
$0.48 \times 0.45 \times 0.23 \mathrm{~mm}$
Data collection
Bruker SMART 1000 CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}=0.269, T_{\text {max }}=0.482$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.103$
24 restraints
H -atom parameters constrained
$S=1.05$
806 reflections
73 parameters
$\Delta \rho_{\text {max }}=0.70 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.93 \mathrm{e}_{\AA^{-3}}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 2 A \cdots \mathrm{I} 1^{\mathrm{i}}$	1.03	2.85	$3.80(2)$	153
Symmetry code: (i) $-x+\frac{1}{2},-y, z-\frac{1}{2}$.				

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the University of Jinan (grant No. B0605) and the Key Subject Research Foundation of Shandong Province (grant No. XTD 0704) for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2672).

References

Baumann, M. E., Bosshard, H., Breitenstein, W. \& Rist, G. (1986). Helv. Chim. Acta, 69, 396-403.
Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
Hoffmann, M., Plutecka, A., Rychlewska, K., Kucybala, Z., Paczkowski, J. \& Pyszka, I. (2005). J. Phys. Chem. A, 109, 4568-4574.
Newton, C. G., Ollis, W. D. \& Wright, D. E. (1984). J. Chem. Soc. Perkin Trans. 1, pp. 69-73.
Plutecka, A., Hoffmann, M., Rychlewska, U., Kucybała, Z., Pączkowski, J. \& Pyszka, I. (2006). Acta Cryst. B62, 135-142.
Qiao, S., Yong, G.-P., Xie, Y. \& Wang, Z.-Y. (2006). Acta Cryst. E62, o4634o4635.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2010). E66, o603 [doi:10.1107/S1600536810004976]

2-Oxo-2,3-dihydro-1 H -imidazo[1,2-a] pyridinium iodide

Jinling Miao, Jisheng Guo, Chunhua Hu, Daqi Wang and Yong Nie

S1. Comment

Imidazo[1,2-a]pyridine derivatives have been investigated as important intermediates in organic synthesis and useful agents in medicinal chemistry. Imidazo[1,2-a]pyridinium chloride or bromide is accessible from the reaction of alkyl haloacetate with 2-aminopyridine compounds (Newton et al., 1984; Baumann et al., 1986), and can be further derivatised (Plutecka et al., 2006; Hoffmann et al., 2005). The reaction of 2-aminopyridine and chloroacetic acid under basic condition gave rise to, after acidification, 3,3-bis(carboxymethyl) imidazo[1,2-a]pyridine-2-one (Qiao et al., 2006). Here we report on the synthesis and structure of the title compound (I , which was obtained from the reaction of iodoacetic acid with 2-aminopyridine under basic condition.
The structure of (I) (Fig. 1) consists of imidazo[1,2-a]pyridinium cations and iodide anions. In the cation, the sixmembered and five-membered rings are coplanar with a dihedral angle of 0.48°. However, the four C / N atoms in the ring system (Fig. 1) are found to be disordered. The structure may be seen as two molecules being in one crystallographic position, with an occupancy of 0.5 for each C / N atom involved. Thus, in one molecule the five-membered ring is $\mathrm{N} 2 / \mathrm{C} 2 / \mathrm{C} 1 / \mathrm{N} 1 \mathrm{a} / \mathrm{C} 3 \mathrm{a}$, and in another molecule - C3/N1/C1/C2a/N2a.

S2. Experimental

A mixture of 2-aminopyridine ($1.132 \mathrm{~g}, 0.012 \mathrm{~mol}$), $\mathrm{ICH}_{2} \mathrm{COOH}(5.592 \mathrm{~g}, 0.030 \mathrm{~mol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(2.549 \mathrm{~g}, 0.024 \mathrm{~mol})$ was placed in 60 ml of distilled water. After the evolution of bubbles was over, the mixture of was heated at reflux for 6 h , while the pH was adjusted to $8-9$ using aqueous $\mathrm{NaOH}(0.1 \mathrm{~mol} / \mathrm{l})$ solution, at a time interval of 0.5 h . The resulting deep red solution was cooled to room temperature and acidified with hydrochloric acid till $\mathrm{pH} 2-3$ (during which some red solid was formed, but could be dissolved on warming to $40^{\circ} \mathrm{C}$). On standing still at room temperature, deep red crystals were grown after one month. IR (KBr): 3465, 3076, 1751, 1650, 1511, 1330, 1185, 792, $608 \mathrm{~cm}^{-1}$.

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$, $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Figure 1

The molecular structure, with atom labels and 25% probability displacement ellipsoids [symmetry code: (a) $x, 1 / 2-y, z$].

2-Oxo-2,3-dihydro-1 H-imidazo[1,2-a]pyridinium iodide

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}^{+} \cdot \mathrm{I}^{-}$
$M_{r}=262.05$
Orthorhombic, Pnma
$a=14.597$ (2) \AA
$b=8.2044(18) \AA$
$c=7.0926(15) \AA$
$V=849.4(3) \AA^{3}$
$Z=4$
$F(000)=496$

Data collection

Bruker SMART 1000 CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\min }=0.269, T_{\text {max }}=0.482$
$D_{\mathrm{x}}=2.049 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1914 reflections
$\theta=2.5-27.2^{\circ}$
$\mu=3.71 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Block, red
$0.48 \times 0.45 \times 0.23 \mathrm{~mm}$

3631 measured reflections
806 independent reflections
691 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.064$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=-17 \rightarrow 13$
$k=-9 \rightarrow 9$
$l=-5 \rightarrow 8$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.103$
$S=1.05$
806 reflections
73 parameters

[^0]H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0619 P)^{2}+0.9786 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.70 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.93 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\hat{A}^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$	Occ. (<1)
I1	$0.41289(4)$	0.2500	$0.91066(7)$	$0.0537(3)$	
C4	$0.1109(3)$	$0.0822(7)$	$0.9883(8)$	$0.0519(13)$	
H4	0.1112	-0.0311	0.9844	0.062^{*}	
C5	$0.0758(4)$	$0.1656(8)$	$1.1372(9)$	$0.0551(14)$	
H5	0.0517	0.1091	1.2395	0.066^{*}	$0.0724(19)$
O1	$0.2504(5)$	0.2500	$0.4103(7)$	$0.053(2)$	
C1	$0.2120(6)$	0.2500	$0.5605(11)$	$0.050(9)$	0.50
C2	$0.184(3)$	$0.103(3)$	$0.674(4)$	0.060^{*}	0.50
H2A	0.1384	0.0386	0.6073	0.060^{*}	0.50
H2B	0.2363	0.0342	0.7024	$0.039(8)$	0.50
N2	$0.146(4)$	$0.174(3)$	$0.846(4)$	$0.049(7)$	0.50
N1	$0.186(2)$	$0.1164(19)$	$0.666(3)$	0.058^{*}	0.50
H1	0.1935	0.0170	0.6309	$0.037(8)$	0.50
C3	$0.146(4)$	$0.161(4)$	$0.831(5)$		

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.0550(4)$	$0.0434(4)$	$0.0627(4)$	0.000	$-0.0103(2)$	0.000
C4	$0.044(3)$	$0.044(3)$	$0.068(3)$	$0.002(2)$	$-0.003(3)$	$0.009(3)$
C5	$0.046(3)$	$0.064(4)$	$0.056(3)$	$0.000(2)$	$-0.001(2)$	$0.013(3)$
O1	$0.070(4)$	$0.099(5)$	$0.049(3)$	0.000	$0.003(3)$	0.000
C1	$0.047(5)$	$0.058(5)$	$0.053(5)$	0.000	$-0.004(4)$	0.000
C2	$0.054(13)$	$0.039(10)$	$0.057(12)$	$-0.006(8)$	$0.009(8)$	$0.005(8)$
N2	$0.032(10)$	$0.040(9)$	$0.047(9)$	$0.004(7)$	$-0.003(7)$	$-0.002(6)$
N1	$0.047(11)$	$0.042(9)$	$0.058(11)$	$0.003(8)$	$-0.016(8)$	$-0.019(7)$
C3	$0.030(11)$	$0.034(10)$	$0.048(10)$	$-0.002(6)$	$-0.010(7)$	$-0.006(6)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{C} 4-\mathrm{N} 2$	$1.357(9)$	$\mathrm{C} 1-\mathrm{N} 1^{\mathrm{i}}$	$1.381(9)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.358(9)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.509(10)$
$\mathrm{C} 4-\mathrm{C} 3$	$1.387(9)$	$\mathrm{C} 1-\mathrm{C} 2^{\mathrm{i}}$	$1.509(10)$
$\mathrm{C} 4-\mathrm{H} 4$	0.9300	$\mathrm{C} 2-\mathrm{N} 2$	$1.461(10)$
$\mathrm{C} 5-\mathrm{C} 5^{\mathrm{i}}$	$1.386(14)$	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700
$\mathrm{C} 5-\mathrm{H} 5$	0.9300	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9700

O1-C1	1.204 (9)	N1-C3	1.360 (10)
C1-N1	1.381 (9)	N1-H1	0.8600
N2-C4-C5	116.2 (14)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2^{\text {i }}$	126.8 (12)
N2-C4-C3	6 (3)	N1-C1-C2 ${ }^{\text {i }}$	105.8 (7)
C5-C4-C3	121.9 (16)	$\mathrm{N} 1^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 2{ }^{\text {i }}$	1 (3)
N2-C4-H4	121.9	C2-C1-C2 ${ }^{\text {i }}$	106 (2)
C5-C4-H4	121.9	N2-C2-C1	103.3 (11)
C3-C4-H4	116.2	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	111.1
C4-C5-C5 ${ }^{\text {i }}$	120.2 (4)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	111.1
C4-C5-H5	119.9	N2-C2-H2B	111.1
C5--C5-H5	119.9	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	111.1
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	127.5 (10)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.1
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1^{\text {i }}$	127.5 (10)	$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 2$	122.9 (19)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 1^{\text {i }}$	105 (2)	C3-N1-C1	111.7 (10)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	126.8 (12)	C3-N1-H1	124.1
N1-C1-C2	1 (3)	C1-N1-H1	124.1
$\mathrm{N} 1{ }^{\text {i }}-\mathrm{C} 1-\mathrm{C} 2$	105.8 (7)	N1-C3-C4	136 (2)

Symmetry code: (i) $x,-y+1 / 2, z$.

Hydrogen-bond geometry ($\hat{A},{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 2 A \cdots \mathrm{I} 1^{\mathrm{ii}}$	1.03	2.85	$3.80(2)$	153

Symmetry code: (ii) $-x+1 / 2,-y, z-1 / 2$.

[^0]: 24 restraints
 Primary atom site location: structure-invariant direct methods
 Secondary atom site location: difference Fourier map
 Hydrogen site location: inferred from neighbouring sites

