Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[trimethylphenylammonium [[bromidocadmate(II)]-*µ*-bromido-*µ*chlorido]]

Kong Mun Lo and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 10 February 2010; accepted 12 February 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (N–C) = 0.006 Å; disorder in main residue; R factor = 0.027; wR factor = 0.070; data-to-parameter ratio = 24.7.

In the title salt, $(C_9H_{14}N)[CdBr_2Cl]$, the Cd^{II} atom is fivecoordinated in a trigonal-bipyramidal coordination environment. All three of the halogen sites show disorder as a result of substitution of Cl for Br or Br for Cl. Two of the three halogen atoms are involved in bridging a pair of Cd^{II} atoms, generating a linear polyanionic chain motif.

Related literature

For the crystal structure of bis[4-(dimethylamino)pyridinium]tetrabromidocadmate monohydrate, see: Lo & Ng (2009).

Experimental

Crystal data

 $(C_9H_{14}N)[CdBr_2Cl]$ $M_r = 443.88$ Monoclinic, *Cc* a = 12.9403 (2) Å b = 14.7059 (2) Å c = 7.3866 (1) Å $\beta = 95.1590$ (8)°

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.378, T_{max} = 0.746$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.070$ S = 1.063068 reflections 124 parameters 10 restraints $V = 1399.97 (3) Å^{3}$ Z = 4 Mo K\alpha radiation \mu = 7.43 mm⁻¹ T = 293 K 0.30 \times 0.25 \times 0.20 mm

6431 measured reflections 3068 independent reflections 2966 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.026$

H-atom parameters constrained $\Delta \rho_{max} = 0.67 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.68 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 1451 Friedel pairs Flack parameter: 0.021 (9)

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The authors thank the University of Malaya (RG020/ 09AFR) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5034).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m560.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122. Westrip, S. P. (2010). *publCIF*. In preparation.

supporting information

Acta Cryst. (2010). E66, m308 [doi:10.1107/S1600536810005817]

catena-Poly[trimethylphenylammonium [[bromidocadmate(II)]-µ-bromido-µ-chlorido]]

Kong Mun Lo and Seik Weng Ng

S1. Experimental

Cadmium chloride hemipentahydrate (0.45 g, 2 mmol) and trimethylphenylammonium tribromide (0.76 g, 2mmol) were heated in ethanol for 1 h. After filtering of the reaction mixture, colourless crystals were obtained upon slow evaporation of the yellow filtrate.

S2. Refinement

The aromatic ring was refined as a rigid hexagon (C—C = 1.39 Å). The N—C_{methyl} distances were restrained to 1.50 (1) Å. H atoms were placed at calculated positions (C–H = 0.93–0.96 Å) and were treated as riding on their parent atoms, with U(H) set to 1.2–1.5 times $U_{eq}(C)$.

Each of the three halogen sites are occupied by Cl or Br atoms. The total site occupancy of the Cl atoms refined to nearly 1 and that of Br atoms to nearly 2. Hence, the total site occupancy was fixed as 1.0 for Cl and 2.0 for Br atoms. The same U^{ij} parameters were used for Br and Cl atoms occupying the same site.

Figure 1

Displacement ellipsoid plot (Barbour, 2001) of a portion of polymeric $C_9H_{14}N^+$ [CdBr₂Cl]⁻ at the 50% probability level. H are drawn as spheres of arbitrary radius. The disorder in the halogen sites not shown.

catena-Poly[trimethylphenylammonium [[bromidocadmate(II)]µ-bromido-µ-chlorido]]

Crystal data	
$(C_9H_{14}N)[CdBr_2Cl]$	F(000) = 840
$M_r = 443.88$	$D_{\rm x} = 2.106 {\rm Mg} {\rm m}^{-3}$
Monoclinic, Cc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: C -2yc	Cell parameters from 5267 reflections
a = 12.9403 (2) Å	$\theta = 2.7 - 28.3^{\circ}$
b = 14.7059 (2) Å	$\mu = 7.43 \text{ mm}^{-1}$
c = 7.3866 (1) Å	T = 293 K
$\beta = 95.1590 \ (8)^{\circ}$	Block, colourless
$V = 1399.97 (3) Å^3$	$0.30 \times 0.25 \times 0.20 \text{ mm}$
Z = 4	
Data collection	
Bruker SMART APEX	Absorption correction: multi-scan
diffractometer	(SADABS; Sheldrick, 1996)
Radiation source: fine-focus sealed tube	$T_{\min} = 0.378, \ T_{\max} = 0.746$
Graphite monochromator	6431 measured reflections
ω scans	3068 independent reflections
	2966 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.026$
$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$
$h = -16 \rightarrow 16$

Refinement

пертетет	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.027$	H-atom parameters constrained
$wR(F^2) = 0.070$	$w = 1/[\sigma^2(F_o^2) + (0.0296P)^2 + 0.0436P]$
S = 1.06	where $P = (F_o^2 + 2F_c^2)/3$
3068 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
124 parameters	$\Delta \rho_{\rm max} = 0.67 \ {\rm e} \ {\rm \AA}^{-3}$
10 restraints	$\Delta \rho_{\rm min} = -0.68 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	Absolute structure: Flack (1983), 1451 Friedel
direct methods	pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.021 (9)
map	

 $k = -19 \longrightarrow 19$ $l = -9 \longrightarrow 9$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Cd1	0.50000 (2)	0.451513 (19)	0.50000 (3)	0.04131 (10)	
Br1	0.63269 (6)	0.51023 (6)	0.29653 (9)	0.04153 (19)	0.302 (2)
Br2	0.36460 (4)	0.55946 (3)	0.61951 (6)	0.04104 (14)	0.861 (2)
Br3	0.48809 (5)	0.28104 (3)	0.54560 (8)	0.05001 (16)	0.837 (2)
Cl1	0.63269 (6)	0.51023 (6)	0.29653 (9)	0.04153 (19)	0.698 (2)
C12	0.36460 (4)	0.55946 (3)	0.61951 (6)	0.04104 (14)	0.139 (2)
C13	0.48809 (5)	0.28104 (3)	0.54560 (8)	0.05001 (16)	0.163 (2)
N1	0.6446 (3)	0.8091 (3)	0.5732 (4)	0.0399 (8)	
C1	0.5525 (2)	0.8692 (2)	0.5708 (5)	0.0405 (9)	
C2	0.4530 (3)	0.8337 (2)	0.5711 (6)	0.0623 (14)	
H2	0.4432	0.7710	0.5716	0.075*	
C3	0.3682 (2)	0.8917 (3)	0.5705 (8)	0.089 (2)	
Н3	0.3017	0.8679	0.5706	0.106*	
C4	0.3830 (3)	0.9854 (3)	0.5696 (8)	0.091 (3)	
H4	0.3262	1.0242	0.5692	0.109*	
C5	0.4825 (4)	1.02091 (19)	0.5694 (7)	0.082 (2)	
Н5	0.4923	1.0835	0.5688	0.098*	
C6	0.5673 (3)	0.9628 (2)	0.5700 (6)	0.0594 (14)	
H6	0.6339	0.9866	0.5698	0.071*	
C7	0.6156 (6)	0.7104 (3)	0.5704 (10)	0.0697 (16)	
H7A	0.5714	0.6975	0.4620	0.104*	
H7B	0.5796	0.6966	0.6751	0.104*	
H7C	0.6773	0.6740	0.5722	0.104*	
C8	0.7023 (4)	0.8299 (5)	0.4097 (7)	0.0624 (14)	
H8A	0.6595	0.8148	0.3009	0.094*	
H8B	0.7650	0.7946	0.4153	0.094*	
H8C	0.7193	0.8934	0.4086	0.094*	
C9	0.7151 (4)	0.8261 (5)	0.7446 (7)	0.0623 (15)	
H9A	0.7481	0.8843	0.7365	0.093*	

supporting information

H9B	0.7670	0.7794	0.7583	0.093*
H9C	0.6749	0.8255	0.8476	0.093*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.04678 (18)	0.03161 (15)	0.04784 (18)	0.00106 (13)	0.01690 (13)	-0.00100 (13)
Brl	0.0383 (4)	0.0526 (5)	0.0341 (3)	-0.0033 (3)	0.0054 (3)	0.0011 (3)
Br2	0.0381 (3)	0.0426 (3)	0.0431 (3)	0.00585 (18)	0.00755 (18)	-0.00786 (17)
Br3	0.0605 (3)	0.0296 (2)	0.0590 (3)	0.0028 (2)	0.0003 (2)	0.00449 (19)
Cl1	0.0383 (4)	0.0526 (5)	0.0341 (3)	-0.0033 (3)	0.0054 (3)	0.0011 (3)
Cl2	0.0381 (3)	0.0426 (3)	0.0431 (3)	0.00585 (18)	0.00755 (18)	-0.00786 (17)
Cl3	0.0605 (3)	0.0296 (2)	0.0590 (3)	0.0028 (2)	0.0003 (2)	0.00449 (19)
N1	0.0381 (19)	0.042 (2)	0.0400 (18)	-0.0041 (15)	0.0046 (14)	0.0012 (14)
C1	0.040 (2)	0.040 (2)	0.041 (2)	-0.0041 (17)	0.0006 (17)	-0.0010 (16)
C2	0.047 (3)	0.068 (4)	0.072 (4)	-0.014 (3)	0.005 (2)	0.005 (3)
C3	0.046 (3)	0.120 (7)	0.098 (5)	0.005 (4)	0.001 (3)	-0.006 (5)
C4	0.084 (5)	0.103 (6)	0.082 (5)	0.047 (5)	-0.013 (4)	-0.011 (4)
C5	0.091 (5)	0.064 (4)	0.089 (5)	0.025 (4)	-0.003 (4)	-0.008 (4)
C6	0.065 (4)	0.040 (3)	0.071 (3)	-0.004(2)	-0.004 (3)	0.005 (2)
C7	0.082 (4)	0.038 (3)	0.090 (5)	-0.001 (3)	0.007 (3)	-0.002 (3)
C8	0.046 (3)	0.093 (5)	0.050 (3)	0.001 (3)	0.017 (2)	-0.001 (3)
C9	0.051 (3)	0.085 (4)	0.048 (3)	0.002 (3)	-0.008(2)	0.001 (3)

Geometric parameters (Å, °)

Cd1—Br1	2.5332 (8)	С3—Н3	0.93	
Cd1—Br3	2.5361 (6)	C4—C5	1.39	
Cd1—Br2	2.5782 (5)	C4—H4	0.93	
Cd1—Cl1 ⁱ	2.7178 (8)	C5—C6	1.39	
Cd1—Br1 ⁱ	2.7178 (8)	C5—H5	0.93	
Cd1—Br2 ⁱⁱ	3.1795 (5)	С6—Н6	0.93	
Br1—Cd1 ⁱⁱ	2.7178 (8)	C7—H7A	0.96	
N1—C1	1.483 (4)	C7—H7B	0.96	
N1—C7	1.499 (6)	C7—H7C	0.96	
N1—C8	1.507 (5)	C8—H8A	0.96	
N1—C9	1.513 (5)	C8—H8B	0.96	
C1—C2	1.39	C8—H8C	0.96	
C1—C6	1.39	С9—Н9А	0.96	
С2—С3	1.39	С9—Н9В	0.96	
С2—Н2	0.93	С9—Н9С	0.96	
C3—C4	1.39			
Br1—Cd1—Br3	117.92 (3)	С4—С3—Н3	120.0	
Br1—Cd1—Br2	120.74 (3)	С2—С3—Н3	120.0	
Br3—Cd1—Br2	120.79 (2)	C3—C4—C5	120.0	
Br1—Cd1—Cl1 ⁱ	89.70 (2)	C3—C4—H4	120.0	
Br3—Cd1—Cl1 ⁱ	98.00 (2)	C5—C4—H4	120.0	

Br2—Cd1—Cl1 ⁱ	89 78 (2)	C6—C5—C4	120.0
$Br1-Cd1-Br1^{i}$	89.70 (2)	С6—С5—Н5	120.0
$Br3-Cd1-Br1^{i}$	98.00(2)	C4-C5-H5	120.0
$Br2-Cd1-Br1^{i}$	89.78 (2)	$C_{5} - C_{6} - C_{1}$	120.0
$C11^{i}$ $Cd1$ $Br1^{i}$	0.00(4)	C5-C6-H6	120.0
$Br1-Cd1-Br2^{ii}$	80 904 (19)	C1-C6-H6	120.0
$Br3-Cd1-Br2^{ii}$	91 835 (17)	N1-C7-H7A	109 5
$Br2$ — $Cd1$ — $Br2^{ii}$	89 796 (16)	N1H7B	109.5
$C11^{i}$ $Cd1$ $Br2^{ii}$	168 79 (2)	H7A - C7 - H7B	109.5
$Br1^{i}$ $Cd1$ $Br2^{ii}$	168.79(2)	N1 - C7 - H7C	109.5
Cd1— $Br1$ — $Cd1$ ⁱⁱ	97.81 (3)	H7A - C7 - H7C	109.5
C1 N1 C7	1121(4)	H7B C7 H7C	109.5
C1 N1 C8	112.1(4) 109.0(4)	$\frac{11}{2} = \frac{11}{2} = \frac{11}{2}$	109.5
C7 N1 C8	109.0(4) 109.1(5)	N1 C8 H8B	109.5
$C_1 = N_1 = C_0$	109.1(3) 100.5(4)		109.5
$C_1 = N_1 = C_2$	109.5(4)	$\frac{110A-C0-110D}{110}$	109.5
C^{2} N1 C0	107.0(4)		109.5
C_{0} C_{1} C_{0}	109.4 (4)		109.5
$C_2 = C_1 = C_0$	120.0 121.2(2)	$H\delta D = C\delta = H\delta C$	109.5
C2-CI-NI	121.3(3)	NI-C9-H9A	109.5
$C_0 - C_1 - N_1$	118.7 (3)	NI-C9-H9B	109.5
$C_3 = C_2 = C_1$	120.0	H9A—C9—H9B	109.5
C3—C2—H2	120.0	NI-C9-H9C	109.5
C1—C2—H2	120.0	H9A—C9—H9C	109.5
C4—C3—C2	120.0	Н9В—С9—Н9С	109.5
	102 (5 (2)		1170(4)
Br3—Cd1—Br1—Cd1"	103.65 (3)	C9—N1—C1—C2	-117.8 (4)
Br2—Cd1—Br1—Cd1"	-67.89(3)	C/—NI—CI—C6	-179.0 (4)
Cll ¹ —Cdl—Brl—Cdl ⁿ	-157.45 (4)	C8—N1—C1—C6	-58.1 (4)
$Br1^{i}$ —Cd1— $Br1$ —Cd1 ⁱⁱ	-157.45 (4)	C9—N1—C1—C6	61.6 (4)
Br2 ^u —Cd1—Br1—Cd1 ⁱⁱ	16.407 (19)	N1—C1—C2—C3	179.4 (4)
C7—N1—C1—C2	1.6 (5)	N1-C1-C6-C5	-179.5 (3)
C8—N1—C1—C2	122.5 (4)		

Symmetry codes: (i) *x*, -*y*+1, *z*+1/2; (ii) *x*, -*y*+1, *z*-1/2.