organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ethyl 3-[1-(4-methoxyphenyl)-4-oxo-3phenylazetidin-2-yl]-2-nitro-1-phenyl-2,3,10,10a-tetrahydro-1*H*,5*H*-pyrrolo-[1,2-*b*]isoquinoline-10a-carboxylate

S. S. Sundaresan,^a P. Ramesh,^a N. Arumugam,^b R. Raghunathan^b and M. N. Ponnuswamy^a*

^aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India Correspondence e-mail: mnpsy2004@yahoo.com

Received 21 December 2009; accepted 11 February 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.044; wR factor = 0.121; data-to-parameter ratio = 12.0.

In the title molecule, $C_{37}H_{35}N_3O_6$, the pyrrolidine ring adopts a twist conformation and the piperidine ring is in a distorted boat conformation. One of the phenyl rings is disordered over two positions with occupancies of 0.54 (2) and 0.46 (2) and the ethyl carboxylate group is also disordered over two orientations with occupancies of 0.75 (1) and 0.25 (1).

Related literature

For the pharmacological properties of β -lactam derivatives, see: Jones *et al.* (1989); Page (1992); Hashimoto *et al.* (1976); Bose *et al.* (1974); Fujisawa *et al.* (1995); Han *et al.* (1995); Adlington *et al.* (1997); Borthwick *et al.* (1998); Palomo *et al.* (1999); Kamel & Naser (1979). For puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli *et al.* (1983). For hybridization, see: Beddoes *et al.* (1986).

Experimental

Crystal data $C_{37}H_{35}N_3O_6$ $M_r = 617.68$

Triclinic, $P\overline{1}$ a = 9.3039 (3) Å

b = 13.0725 (3) A	
c = 13.8814 (3) Å	
$\alpha = 87.504 \ (1)^{\circ}$	
$\beta = 74.123 \ (1)^{\circ}$	
$\gamma = 74.926 \ (1)^{\circ}$	
V = 1567.35 (7) Å ³	

Data collection

Bruker Kappa APEXII areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2001) $T_{min} = 0.982, T_{max} = 0.985$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.121$ S = 1.055887 reflections 490 parameters 97 restraints H-atom parameters constrained $\Delta \rho_{max} = 0.19 \text{ e } \text{Å}_{-2}^{-3}$

 $\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

Z = 2

Mo $K\alpha$ radiation

 $0.20 \times 0.20 \times 0.17~\mathrm{mm}$

30422 measured reflections

5887 independent reflections

4326 reflections with $I > 2\sigma(I)$

 $\mu = 0.09 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.029$

SSS thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2997).

References

- Adlington, R. M., Baldwin, J. E., Chen, B., Cooper, S. L., McCoull, W., Pritchard, G. J. & Howe, T. J. (1997). *Bioorg. Med. Chem. Lett.* 7, 1689–1694.
- Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). *J. Chem. Soc. Perkin Trans.* 2, pp. 787–797.
- Borthwick, A. D., Weingarten, G., Haley, T. M., Tomaszewski, W., Wang, W., Hu, Z., Bedard, J., Jim, H., Yuen, L. & Mansour, T. S. (1998). *Bioorg. Med. Chem. Lett.* 8, 365–370.
- Bose, A. K., Manhas, M. S., Kapur, J. C., Sharma, S. D. & Amin, S. G. (1974). J. Med. Chem. 17, 541–544.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Fujisawa, T., Shibuya, A., Sato, D. & Shimitzu, M. (1995). Synlett. pp. 1067– 1068.
- Han, W. T., Trehan, A. K., Wright, J. J. K., Federici, M. E., Seiler, S. M. & Meanwell, N. A. (1995). *Bioorg. Med. Chem. Lett.* 3, 1123–1143.
- Hashimoto, M., Komori, T. & Kamiya, T. (1976). J. Am. Chem. Soc. 98, 3023– 3025.
- Jones, R. N., Barry, A. L. & Thornsberry, C. (1989). J. Antimicrob. Chemother. 24 (Suppl. A), 9–29.
- Kamel, M. M. & Naser, M. E. (1979). Pharmazie, 34, 440.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Page, M. I. (1992). The Chemistry of β-Lactams. London: Blackie Academic & Professional.
- Palomo, C., Aizpurua, J. M., Gamboa, I. & Oiarbide, M. (1999). *Amino Acids*, **16**, 321–343.
- Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2010). E66, o646 [doi:10.1107/S1600536810005696]

Ethyl 3-[1-(4-methoxyphenyl)-4-oxo-3-phenylazetidin-2-yl]-2-nitro-1phenyl-2,3,10,10a-tetrahydro-1*H*,5*H*-pyrrolo[1,2-*b*]isoquinoline-10a-carboxylate

S. S. Sundaresan, P. Ramesh, N. Arumugam, R. Raghunathan and M. N. Ponnuswamy

S1. Comment

 β -lactam antibiotics have been successfully used in the treatment of infectious diseases for many years (Jones *et al.*, 1989). Despite the large number of compounds containing a β -lactam moiety that have already been synthesized and tested, there is still a need for new compounds of this kind due to the increasing resistance of bacterial strains to certain types of antibiotics (Page, 1992). A class of β -lactam known as the monocyclic β -lactam, which includes compounds such as the nocardicins, aztreonam and carumonam, has been described for their chemotherapeutic importance as antibiotics (Hashimoto *et al.*, 1976; Bose *et al.*, 1974; Fujisawa *et al.*, 1995). The recent discovery of new biologically active monocyclic β -lactam compounds displaying activities other than the usual antibiotic one, such as thrombin (Han *et al.*, 1995), prostate-specific antigen (Adlington *et al.*, 1997), human cytomegalovirus protease (Borthwick *et al.*, 1998) and the cholesterol absorption inhibitors (Palomo *et al.*, 1999), are also interesting. The presence of a carbohydrate side chain in a drug may also overcome the frequently observed water insolubility problem (Kamel & Naser, 1979).

The pyrrolidine ring in the title molecule (Fig. 1) adopts a twist conformation, with puckering (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) of $q_2 = 0.275$ (2) Å, $\varphi = 92.8$ (3)° and $\Delta_2(N1) = 2.8$ (2)°. The sum of angles around N1 (339.53°) is in accordance with *sp*³ hybridization (Beddoes *et al.*, 1986). The piperidine ring adopts a distorted boat conformation with the puckering and asymmetry parameters $q_2 = 0.641$ (2) Å, $q_3 = -0.005$ (2) Å, $\varphi_2 = 64.3$ (2)° and $\Delta_s(C2,C9) = 4.7$ (2)°. The β -lactam ring is planar and the keto atom O5 deviates from this plane by -0.054 (2) Å. The methoxy group is slightly twisted out of the attached C34–C39 phenyl ring [C40–O6–C37–C36 = 5.4 (3)°].

A weak intermolecular C—H^{...} π interaction involving the C9–H9B group and the C3–C8 benzene ring (centroid Cg1) of the molecule at (1-x, 1-y, 1-z) is observed [H9B···Cg1 = 2.95 Å, C9···Cg1 = 3.889 (2) Å and C9···H9B···Cg1 = 163°].

S2. Experimental

To a stirred solution of 5-(1'-N-(p-methoxyphenyl-azetidine-2'-one)-4-nitro-3-phenyl-2-ethoxycarbonyl-2-benzylpyrrlolidine (1 mmol) in dry chloroform (20 ml) was added *p*-formaldehyde (1 mmol) followed by trifluroacetic acid (0.1 mmol) at room temperature. After completion of the reaction, the mixture was washed with water and dried over Na₂SO₄. The solvent was removed under the reduced pressure and the crude product was subjected to column chromatography with hexane-ethyl acetate (9:1)to obtain pure cyclized product. The compound was recrystallized from ethyl acetate.

S3. Refinement

One of the phenyl rings is disordered over two positions with occupancies of 0.54 (2) and 0.46 (2) and the ethyl carboxylate group is also disordered over two orientations with occupancies of 0.753 (10) and 0.247 (10). The C—C distances in the disordered components were restrained to be equal and U_{ij} parameters of atoms C15A, C16A, C32, C32A and C33A were restrained to an approximate isotropic behaviour. All H atoms were positioned geometrically (C-H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H and $1.2U_{eq}(C)$ for other H atoms. The reflection '0 1 0' affected by beamstop was removed during refinement.

Figure 1

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. All disorder components are shown. H atoms have been omitted for clarity.

(I)

Crystal data
$C_{37}H_{35}N_3O_6$
$M_r = 617.68$
Triclinic, $P\overline{1}$
Hall symbol: -P 1
<i>a</i> = 9.3039 (3) Å
<i>b</i> = 13.0725 (3) Å
c = 13.8814(3) Å
$\alpha = 87.504 \ (1)^{\circ}$
$\beta = 74.123 \ (1)^{\circ}$
$\gamma = 74.926 \ (1)^{\circ}$
V = 1567.35 (7) Å ³

Z = 2 F(000) = 652 $D_x = 1.309 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3651 reflections $\theta = 1.5-25.6^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.20 \times 0.20 \times 0.17 \text{ mm}$ Data collection

Bruker Kappa APEXII area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2001) $T_{min} = 0.982, T_{max} = 0.985$ Refinement	30422 measured reflections 5887 independent reflections 4326 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 25.6^{\circ}, \theta_{min} = 1.5^{\circ}$ $h = -11 \rightarrow 11$ $k = -15 \rightarrow 15$ $l = -16 \rightarrow 16$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.121$ S = 1.05 5887 reflections	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0504P)^2 + 0.3689P]$
490 parameters97 restraintsPrimary atom site location: structure-invariant direct methods	where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.20 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2

are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	-0.00074 (16)	0.59615 (13)	0.42249 (12)	0.0806 (4)	
02	0.2057 (6)	0.4922 (4)	0.3151 (4)	0.0612 (9)	0.753 (10)
O2A	0.180 (2)	0.5220 (14)	0.2887 (16)	0.089 (5)	0.247 (10)
03	0.0627 (2)	0.86406 (15)	0.16584 (14)	0.1081 (6)	
O4	0.0583 (2)	0.71036 (16)	0.22020 (13)	0.0956 (5)	
05	0.74560 (17)	0.70097 (11)	-0.04187 (12)	0.0897 (5)	
06	0.79171 (19)	0.19925 (11)	0.10468 (13)	0.0877 (5)	
N1	0.37346 (14)	0.63265 (10)	0.29712 (9)	0.0413 (3)	
N23	0.10037 (17)	0.79028 (15)	0.21643 (11)	0.0595 (4)	
N27	0.57227 (15)	0.63357 (10)	0.08244 (10)	0.0476 (3)	
C2	0.52195 (18)	0.58959 (13)	0.32089 (13)	0.0474 (4)	
H2A	0.6053	0.5980	0.2639	0.057*	
H2B	0.5358	0.5144	0.3324	0.057*	
C3	0.5315 (2)	0.64295 (14)	0.41105 (14)	0.0530 (4)	
C4	0.6528 (2)	0.68215 (17)	0.41500 (18)	0.0738 (6)	
H4	0.7354	0.6785	0.3584	0.089*	

C5	0.6517 (3)	0.7269 (2)	0.5032 (2)	0.1005 (9)	
H5	0.7339	0.7536	0.5062	0.121*	
C6	0.5304 (4)	0.7323 (2)	0.5864 (2)	0.1026 (10)	
H6	0.5316	0.7616	0.6459	0.123*	
C7	0.4075 (3)	0.69511 (18)	0.58325 (16)	0.0797 (7)	
H7	0.3250	0.6996	0.6402	0.096*	
C8	0.4063 (2)	0.65081 (14)	0.49505 (13)	0.0580 (5)	
C9	0.2777 (2)	0.61098 (15)	0.48137 (13)	0.0582 (5)	
H9A	0.1874	0.6356	0.5376	0.070*	
H9B	0.3069	0.5341	0.4808	0.070*	
C10	0.23601 (18)	0.64853 (13)	0.38286 (12)	0.0462 (4)	
C11	0.14835 (19)	0.76820 (13)	0.38416 (12)	0.0478 (4)	
H11	0.0381	0.7724	0.3963	0.057*	
C12	0.20748 (18)	0.80076(13)	0.27678(12)	0.0457(4)	
H12	0.2140	0.8744	0.2768	0.055*	
C13	0 37003 (17)	0.72713(12)	0.23744(11)	0.0410(4)	
H13	0.4435	0.7621	0.2517	0.049*	
C14	0.1301(2)	0.7021 0.57983 (17)	0.2317 0.37252(15)	0.019	
C15	0.1301(2) 0.1191(4)	0.57505(17) 0.4158(4)	0.31202(15)	0.0778(14)	0 753 (10)
H15A	0.0584	0.4087	0.3818	0.093*	0.753 (10)
H15R	0.1908	0.3474	0.2916	0.093*	0.753 (10)
C16	0.0156 (6)	0.3474 0.4446 (4)	0.2910 0.2489(3)	0.095 0.1046 (17)	0.753 (10)
H16A	-0.0397	0.3015	0.2409 (3)	0.157*	0.753 (10)
U16D	0.0397	0.3913	0.2310	0.157*	0.753(10) 0.753(10)
H16C	-0.0566	0.4495	0.1813	0.157*	0.753 (10)
C16A	0.0500 0.1254(17)	0.3118 0.3554 (13)	0.2712 0.2817 (13)	0.115(5)	0.733(10) 0.247(10)
	0.1234 (17)	0.3334 (13)	0.2617 (15)	0.113 (3)	0.247(10)
	0.0378	0.3184	0.2037	0.173*	0.247(10)
	0.1204	0.3442	0.3303	0.173*	0.247(10)
	0.2282	0.3290	0.2300	0.173°	0.247(10)
UISA UISC	0.071(2)	0.4009 (10)	0.2008 (19)	0.155 (7)	0.247(10)
	-0.0310	0.4940	0.3111	0.159*	0.247(10)
	0.0000	0.4/8/	0.1982	0.139	0.247 (10)
C1/	0.1040(2)	0.84124(14)	0.43989(13)	0.0349(3)	
	0.0576(5)	0.85584 (18)	0.55518 (14)	0.0744 (6)	
H18 C10	-0.0201	0.8204	0.50/0	0.089^{*}	
U19 U10	0.0053 (4)	0.9221 (2)	0.62489 (19)	0.1005 (10)	
H19	-0.0066	0.9305	0.68/4	0.121^{*}	
C20	0.1/66 (4)	0.9753 (2)	0.6051 (2)	0.1116 (12)	
H20	0.181/	1.0196	0.6540	0.134*	
C21	0.2820 (3)	0.9638 (2)	0.5125 (2)	0.09/3 (9)	
H21	0.3574	1.0012	0.4982	0.117*	
C22	0.2758 (2)	0.89655 (16)	0.44051 (17)	0.0692 (6)	
H22	0.3481	0.8885	0.3782	0.083*	
C24	0.41689 (18)	0.70400 (12)	0.12498 (12)	0.0441 (4)	
H24	0.3373	0.6816	0.1038	0.053*	
C25	0.4743 (2)	0.79226 (13)	0.05688 (12)	0.0503 (4)	
H25	0.4203	0.8104	0.0045	0.060*	
C26	0.6241 (2)	0.70663 (14)	0.01974 (14)	0.0586 (5)	

C28	0.4838 (2)	0.88931 (14)	0.10429 (13)	0.0579 (5)	
C29	0.6204 (18)	0.8829 (16)	0.1303 (17)	0.074 (3)	0.46 (2)
H29	0.6975	0.8198	0.1139	0.088*	0.46 (2)
C30	0.6522 (16)	0.9628 (11)	0.1789 (9)	0.083 (3)	0.46 (2)
H30	0.7428	0.9527	0.1985	0.099*	0.46 (2)
C31	0.5410 (19)	1.0561 (10)	0.1953 (10)	0.086 (4)	0.46 (2)
H31	0.5545	1.1123	0.2277	0.103*	0.46 (2)
C32	0.4107 (19)	1.0685 (7)	0.1653 (8)	0.070 (3)	0.46 (2)
H32	0.3385	1.1341	0.1750	0.083*	0.46 (2)
C33	0.383 (2)	0.9867 (10)	0.1209 (19)	0.069 (4)	0.46 (2)
H33	0.2919	0.9983	0.1016	0.083*	0.46 (2)
C29A	0.5938 (18)	0.8965 (15)	0.1495 (16)	0.093 (5)	0.54 (2)
H29A	0.6760	0.8388	0.1516	0.111*	0.54 (2)
C30A	0.577 (2)	0.9938 (11)	0.1922 (12)	0.116 (5)	0.54 (2)
H30A	0.6534	1.0015	0.2203	0.139*	0.54 (2)
C31A	0.456 (3)	1.0783 (10)	0.1957 (10)	0.097 (4)	0.54 (2)
H31A	0.4515	1.1414	0.2265	0.117*	0.54 (2)
C32A	0.3408 (18)	1.0722 (7)	0.1540 (7)	0.078 (2)	0.54 (2)
H32A	0.2560	1.1296	0.1568	0.093*	0.54 (2)
C33A	0.3560 (17)	0.9759 (9)	0.1073 (16)	0.061 (2)	0.54 (2)
H33A	0.2804	0.9690	0.0777	0.074*	0.54 (2)
C34	0.62980 (19)	0.52261 (13)	0.08421 (12)	0.0457 (4)	
C35	0.7856 (2)	0.47680 (14)	0.04880 (15)	0.0582 (5)	
H35	0.8524	0.5189	0.0214	0.070*	
C36	0.8439 (2)	0.36877 (15)	0.05343 (16)	0.0638 (5)	
H36	0.9495	0.3384	0.0287	0.077*	
C37	0.7467 (2)	0.30656 (14)	0.09426 (14)	0.0581 (5)	
C38	0.5902 (2)	0.35246 (14)	0.12876 (14)	0.0580 (5)	
H38	0.5236	0.3102	0.1560	0.070*	
C39	0.5313 (2)	0.45959 (13)	0.12349 (13)	0.0511 (4)	
H39	0.4254	0.4895	0.1464	0.061*	
C40	0.9516 (3)	0.14970 (18)	0.0789 (2)	0.0958 (8)	
H40A	0.9674	0.0756	0.0928	0.144*	
H40B	1.0005	0.1817	0.1175	0.144*	
H40C	0.9957	0.1580	0.0088	0.144*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0501 (8)	0.1036 (12)	0.0806 (10)	-0.0273 (8)	0.0017 (7)	0.0018 (8)
O2	0.0529 (17)	0.059 (2)	0.0692 (18)	-0.0213 (15)	-0.0051 (12)	0.0002 (13)
O2A	0.078 (7)	0.068 (9)	0.129 (13)	-0.037 (7)	-0.020 (7)	-0.018 (7)
03	0.1268 (15)	0.1068 (13)	0.1019 (13)	-0.0018 (11)	-0.0799 (12)	0.0268 (11)
04	0.0999 (13)	0.1229 (15)	0.0954 (13)	-0.0543 (11)	-0.0568 (10)	0.0229 (10)
05	0.0710 (10)	0.0672 (9)	0.0956 (11)	-0.0114 (7)	0.0269 (9)	0.0157 (8)
06	0.0941 (12)	0.0454 (8)	0.1134 (13)	-0.0072 (8)	-0.0223 (10)	0.0046 (8)
N1	0.0351 (7)	0.0442 (7)	0.0410 (7)	-0.0052 (6)	-0.0103 (6)	0.0063 (5)
N23	0.0430 (8)	0.0810 (12)	0.0454 (9)	0.0024 (8)	-0.0147 (7)	0.0022 (8)

N27	0.0432 (8)	0.0445 (8)	0.0473 (8)	-0.0099 (6)	-0.0011 (6)	0.0022 (6)
C2	0.0402 (9)	0.0472 (9)	0.0494 (9)	0.0011 (7)	-0.0150 (7)	0.0013 (7)
C3	0.0487 (10)	0.0494 (10)	0.0584 (11)	0.0050 (8)	-0.0270 (9)	0.0000 (8)
C4	0.0549 (12)	0.0770 (14)	0.0889 (16)	0.0021 (10)	-0.0341 (11)	-0.0148 (11)
C5	0.0770 (17)	0.105 (2)	0.128 (2)	0.0033 (14)	-0.0611 (18)	-0.0376 (17)
C6	0.102 (2)	0.104 (2)	0.101 (2)	0.0252 (16)	-0.0688 (18)	-0.0399 (16)
C7	0.0826 (16)	0.0844 (15)	0.0590 (13)	0.0206 (12)	-0.0364 (12)	-0.0081 (11)
C8	0.0625 (12)	0.0552 (11)	0.0489 (10)	0.0092 (9)	-0.0261 (9)	0.0020 (8)
C9	0.0584 (11)	0.0621 (11)	0.0437 (10)	-0.0033 (9)	-0.0101 (8)	0.0124 (8)
C10	0.0385 (9)	0.0536 (10)	0.0412 (9)	-0.0069 (7)	-0.0075 (7)	0.0060 (7)
C11	0.0372 (9)	0.0574 (10)	0.0411 (9)	-0.0002 (7)	-0.0096 (7)	0.0020 (7)
C12	0.0415 (9)	0.0488 (9)	0.0428 (9)	-0.0023 (7)	-0.0139 (7)	0.0028 (7)
C13	0.0371 (8)	0.0427 (8)	0.0415 (9)	-0.0071 (7)	-0.0114 (7)	0.0039 (6)
C14	0.0475 (11)	0.0734 (13)	0.0558 (11)	-0.0188 (9)	-0.0076 (9)	0.0117 (10)
C15	0.075 (2)	0.081 (3)	0.085 (2)	-0.041 (2)	-0.0143 (18)	-0.001 (2)
C16	0.107 (3)	0.130 (4)	0.089 (3)	-0.048 (3)	-0.026 (2)	-0.026 (2)
C16A	0.121 (8)	0.101 (9)	0.139 (9)	-0.031 (7)	-0.057 (7)	-0.007 (7)
C15A	0.132 (10)	0.116 (9)	0.174 (11)	-0.065 (8)	-0.047 (8)	-0.016 (8)
C17	0.0513 (10)	0.0540 (10)	0.0495 (10)	0.0121 (8)	-0.0212 (8)	-0.0028 (8)
C18	0.0751 (14)	0.0781 (14)	0.0476 (11)	0.0200 (11)	-0.0164 (10)	-0.0062 (10)
C19	0.104 (2)	0.107 (2)	0.0609 (14)	0.0401 (17)	-0.0328 (14)	-0.0246 (14)
C20	0.119 (2)	0.101 (2)	0.103 (2)	0.0429 (19)	-0.071 (2)	-0.0508 (17)
C21	0.0903 (18)	0.0791 (16)	0.127 (2)	0.0109 (13)	-0.0622 (18)	-0.0333 (15)
C22	0.0651 (13)	0.0628 (12)	0.0764 (14)	0.0058 (10)	-0.0327 (11)	-0.0142 (10)
C24	0.0401 (9)	0.0455 (9)	0.0427 (9)	-0.0074 (7)	-0.0084 (7)	0.0030 (7)
C25	0.0552 (10)	0.0486 (10)	0.0417 (9)	-0.0101 (8)	-0.0085 (8)	0.0070 (7)
C26	0.0574 (11)	0.0522 (11)	0.0551 (11)	-0.0132 (8)	0.0016 (9)	0.0041 (8)
C28	0.0770 (13)	0.0501 (11)	0.0453 (10)	-0.0217 (10)	-0.0108 (9)	0.0124 (8)
C29	0.104 (6)	0.068 (5)	0.052 (5)	-0.040 (4)	-0.009 (4)	-0.005 (3)
C30	0.097 (6)	0.083 (6)	0.075 (4)	-0.034 (5)	-0.025 (5)	-0.005 (4)
C31	0.116 (9)	0.075 (7)	0.072 (5)	-0.048 (7)	-0.010 (6)	-0.001 (5)
C32	0.084 (7)	0.050 (4)	0.067 (5)	-0.019 (5)	-0.006 (5)	0.000 (3)
C33	0.103 (8)	0.040 (5)	0.056 (6)	-0.019 (4)	-0.008 (5)	0.000 (3)
C29A	0.130 (9)	0.091 (9)	0.091 (11)	-0.063 (7)	-0.056 (9)	0.030 (6)
C30A	0.157 (12)	0.097 (9)	0.150 (10)	-0.077 (10)	-0.097 (10)	0.045 (7)
C31A	0.163 (13)	0.068 (5)	0.096 (6)	-0.058 (7)	-0.066 (8)	0.012 (4)
C32A	0.097 (5)	0.055 (3)	0.083 (4)	-0.031 (4)	-0.018 (4)	0.011 (2)
C33A	0.085 (4)	0.044 (4)	0.052 (5)	-0.022 (3)	-0.008 (3)	0.002 (3)
C34	0.0476 (9)	0.0436 (9)	0.0423 (9)	-0.0094 (7)	-0.0078 (7)	-0.0015 (7)
C35	0.0462 (10)	0.0525 (11)	0.0701 (12)	-0.0128 (8)	-0.0066 (9)	0.0026 (9)
C36	0.0499 (11)	0.0547 (11)	0.0784 (14)	-0.0038 (9)	-0.0123 (10)	-0.0014 (9)
C37	0.0679 (12)	0.0454 (10)	0.0589 (11)	-0.0084 (9)	-0.0191 (9)	-0.0033 (8)
C38	0.0672 (12)	0.0496 (10)	0.0563 (11)	-0.0233 (9)	-0.0068 (9)	-0.0030 (8)
C39	0.0472 (10)	0.0510 (10)	0.0510 (10)	-0.0136 (8)	-0.0047 (8)	-0.0061 (8)
C40	0.1015 (19)	0.0581 (14)	0.116 (2)	0.0125 (13)	-0.0417 (16)	0.0010 (13)

Geometric parameters (Å, °)

01—C14	1.193 (2)	C15A—H15C	0.97
O2—C14	1.340 (6)	C15A—H15D	0.97
O2—C15	1.440 (7)	C17—C22	1.378 (3)
O2A—C14	1.32 (2)	C17—C18	1.384 (3)
O2A—C15A	1.49 (3)	C18—C19	1.376 (4)
O3—N23	1.202 (2)	C18—H18	0.93
O4—N23	1.202 (2)	C19—C20	1.355 (4)
O5—C26	1.203 (2)	C19—H19	0.93
O6—C37	1.369 (2)	C20—C21	1.373 (4)
O6—C40	1.410 (3)	C20—H20	0.93
N1-C13	1.4552 (19)	C21—C22	1.381 (3)
N1-C10	1.4648 (19)	C21—H21	0.93
N1-C2	1.471 (2)	C22—H22	0.93
N23—C12	1.501 (2)	C24—C25	1.568 (2)
N27—C26	1.356 (2)	C24—H24	0.98
N27—C34	1.411 (2)	C25—C28	1.488 (3)
N27—C24	1.475 (2)	C25—C26	1.519 (2)
С2—С3	1.493 (2)	C25—H25	0.98
C2—H2A	0.97	C28—C33	1.357 (10)
C2—H2B	0.97	C28—C29A	1.362 (9)
C3—C4	1.370 (3)	C28—C29	1.395 (11)
С3—С8	1.390 (3)	C28—C33A	1.405 (10)
C4—C5	1.376 (3)	C29—C30	1.401 (11)
C4—H4	0.93	C29—H29	0.93
С5—С6	1.365 (4)	C30—C31	1.360 (12)
С5—Н5	0.93	С30—Н30	0.93
С6—С7	1.366 (4)	C31—C32	1.356 (11)
С6—Н6	0.93	C31—H31	0.93
C7—C8	1.381 (3)	C32—C33	1.370 (11)
С7—Н7	0.93	С32—Н32	0.93
С8—С9	1.482 (3)	С33—Н33	0.93
C9—C10	1.547 (2)	C29A—C30A	1.380 (11)
С9—Н9А	0.97	C29A—H29A	0.93
С9—Н9В	0.97	C30A—C31A	1.344 (11)
C10-C14	1.532 (3)	C30A—H30A	0.93
C10-C11	1.563 (2)	C31A—C32A	1.375 (9)
C11—C17	1.511 (2)	C31A—H31A	0.93
C11—C12	1.524 (2)	C32A—C33A	1.398 (10)
C11—H11	0.98	C32A—H32A	0.93
C12—C13	1.532 (2)	С33А—Н33А	0.93
C12—H12	0.98	C34—C35	1.373 (2)
C13—C24	1.523 (2)	C34—C39	1.377 (2)
С13—Н13	0.98	C35—C36	1.380 (3)
C15—C16	1.464 (5)	С35—Н35	0.93
C15—H15A	0.97	C36—C37	1.365 (3)
C15—H15B	0.97	С36—Н36	0.93

C16—H16A	0.96	C37—C38	1.378 (3)
C16—H16B	0.96	C38—C39	1.372 (2)
C16—H16C	0.96	С38—Н38	0.93
C16A—C15A	1.439 (10)	С39—Н39	0.93
C16A—H16D	0.96	C40—H40A	0.96
С16А—Н16Е	0.96	C40—H40B	0.96
C16A—H16F	0.96	C40—H40C	0.96
C14—O2—C15	116.3 (4)	C22—C17—C18	117.98 (19)
C14—O2A—C15A	116.2 (16)	C22—C17—C11	123.72 (17)
C37—O6—C40	117.86 (18)	C18—C17—C11	118.28 (19)
C13—N1—C10	111.04 (12)	C19—C18—C17	120.9 (3)
C13—N1—C2	113.18 (12)	С19—С18—Н18	119.6
C10—N1—C2	115.31 (12)	C17—C18—H18	119.6
O4—N23—O3	123.91 (19)	C20—C19—C18	120.5 (3)
O4—N23—C12	119.47 (16)	С20—С19—Н19	119.8
O3—N23—C12	116.62 (19)	С18—С19—Н19	119.8
C26—N27—C34	131.40 (14)	C19—C20—C21	119.8 (3)
C26—N27—C24	94.69 (13)	С19—С20—Н20	120.1
C34—N27—C24	131.58 (13)	С21—С20—Н20	120.1
N1—C2—C3	112.50 (13)	C20—C21—C22	119.9 (3)
N1—C2—H2A	109.1	C20—C21—H21	120.0
C3—C2—H2A	109.1	C22—C21—H21	120.0
N1—C2—H2B	109.1	C17—C22—C21	120.9 (2)
С3—С2—Н2В	109.1	C17—C22—H22	119.6
H2A—C2—H2B	107.8	C21—C22—H22	119.6
C4—C3—C8	120.07 (18)	N27—C24—C13	116.31 (13)
C4—C3—C2	124.54 (18)	N27—C24—C25	86.97 (11)
C8—C3—C2	115.39 (16)	C13—C24—C25	115.86 (14)
C3—C4—C5	119.6 (2)	N27—C24—H24	111.8
C3—C4—H4	120.2	C13—C24—H24	111.8
C5—C4—H4	120.2	C25—C24—H24	111.8
C6—C5—C4	120.2 (3)	C28—C25—C26	116.96 (16)
С6—С5—Н5	119.9	C28—C25—C24	119.41 (14)
C4—C5—H5	119.9	C26—C25—C24	84.88 (12)
C7—C6—C5	120.8 (2)	С28—С25—Н25	111.1
С7—С6—Н6	119.6	C26—C25—H25	111.1
С5—С6—Н6	119.6	C24—C25—H25	111.1
C6—C7—C8	119.6 (2)	O5—C26—N27	131.23 (17)
С6—С7—Н7	120.2	O5—C26—C25	135.39 (17)
С8—С7—Н7	120.2	N27—C26—C25	93.38 (13)
C7—C8—C3	119.6 (2)	C33—C28—C29A	103.8 (8)
C7—C8—C9	124.6 (2)	C33—C28—C29	114.0 (11)
C3—C8—C9	115.77 (16)	C29A—C28—C33A	120.6 (8)
C8—C9—C10	112.11 (15)	C29—C28—C33A	130.7 (9)
С8—С9—Н9А	109.2	C33—C28—C25	129.7 (8)
С10—С9—Н9А	109.2	C29A—C28—C25	126.3 (8)
С8—С9—Н9В	109.2	C29—C28—C25	116.2 (7)

С10—С9—Н9В	109.2	C33A—C28—C25	112.9 (6)
H9A—C9—H9B	107.9	C28—C29—C30	126.0 (14)
N1—C10—C14	111.71 (14)	С28—С29—Н29	117.0
N1—C10—C9	111.98 (13)	С30—С29—Н29	117.0
C14—C10—C9	103.09 (14)	C31—C30—C29	115.1 (11)
N1-C10-C11	106.09 (12)	C31—C30—H30	122.5
C14—C10—C11	109.45 (14)	С29—С30—Н30	122.5
C9-C10-C11	114.63 (14)	C_{32} — C_{31} — C_{30}	121.1 (10)
C17—C11—C12	112.23 (15)	C32—C31—H31	119.5
C17 - C11 - C10	117.47 (13)	C30—C31—H31	119.5
C12-C11-C10	10354(12)	$C_{31} - C_{32} - C_{33}$	121 5 (9)
C17—C11—H11	107.7	$C_{31} = C_{32} = H_{32}$	119.2
C_{12} C_{11} H_{11}	107.7	C_{33} C_{32} H_{32}	119.2
C10-C11-H11	107.7	C_{28} C_{33} C_{32} C_{32}	122 1 (10)
N_{23} C_{12} C_{11}	107.7 110.10(14)	$C_{26} = C_{33} = H_{33}$	118.9
$N_{23} - C_{12} - C_{13}$	112 54 (13)	C32_C33_H33	118.9
1125 - 12 - 13	112.34(13) 105.38(12)	$C_{32} = C_{33} = 1153$	116.9
N23 C12 H12	100.58 (12)	C_{20} C_{20A} C_{20A} C_{20A} C_{20A}	110.5 (11)
$N_{23} = C_{12} = H_{12}$	109.0	C_{20} C_{20} C_{20} H_{20}	121.7
C12 - C12 - H12	109.0	$C_{20A} = C_{20A} = C_{20A}$	121.7 124.2(10)
N1 C12 C24	109.0	$C_{21A} = C_{20A} = C_{29A}$	124.3 (10)
N1 - C12 - C12	115.09(15) 106.24(12)	$C_{20A} = C_{20A} = H_{20A}$	117.9
N1 - C13 - C12	100.24(12)	C_{29A} C_{30A} C_{21A} C_{22A}	117.9
C_{24} C_{13} C_{12} C_{12}	115.00 (15)	$C_{30A} = C_{31A} = C_{32A}$	120.5 (9)
NI-CI3-HI3	107.7	C30A - C31A - H31A	119.8
C24—C13—H13	107.7	C32A—C31A—H31A	119.8
C12—C13—H13	10/./	C31A - C32A - C33A	117.1 (9)
01—C14—02A	121.8 (8)	C31A—C32A—H32A	121.4
01 - C14 - 02	124.0 (3)	C33A—C32A—H32A	121.4
01-014-010	122.06 (19)	C32A—C33A—C28	120.9 (10)
O2A—C14—C10	113.8 (8)	С32А—С33А—Н33А	119.5
02	113.1 (3)	С28—С33А—Н33А	119.5
O2—C15—C16	113.0 (5)	C35—C34—C39	119.39 (16)
O2—C15—H15A	109.0	C35—C34—N27	120.06 (15)
C16—C15—H15A	109.0	C39—C34—N27	120.54 (15)
O2—C15—H15B	109.0	C34—C35—C36	120.61 (17)
C16—C15—H15B	109.0	С34—С35—Н35	119.7
H15A—C15—H15B	107.8	С36—С35—Н35	119.7
C15—C16—H16A	109.5	C37—C36—C35	120.02 (18)
C15—C16—H16B	109.5	С37—С36—Н36	120.0
H16A—C16—H16B	109.5	С35—С36—Н36	120.0
C15—C16—H16C	109.5	C36—C37—O6	125.13 (18)
H16A—C16—H16C	109.5	C36—C37—C38	119.31 (17)
H16B—C16—H16C	109.5	O6—C37—C38	115.55 (17)
C15A—C16A—H16D	109.5	C39—C38—C37	120.95 (17)
C15A—C16A—H16E	109.5	С39—С38—Н38	119.5
H16D—C16A—H16E	109.5	С37—С38—Н38	119.5
C15A—C16A—H16F	109.5	C38—C39—C34	119.69 (16)
H16D—C16A—H16F	109.5	С38—С39—Н39	120.2

H16E—C16A—H16F	109.5	С34—С39—Н39	120.2
C16A—C15A—O2A	108 (2)	O6—C40—H40A	109.5
C16A—C15A—H15C	110.0	O6—C40—H40B	109.5
O2A—C15A—H15C	110.0	H40A—C40—H40B	109.5
C16A—C15A—H15D	110.0	O6—C40—H40C	109.5
O2A—C15A—H15D	110.0	H40A—C40—H40C	109.5
H15C—C15A—H15D	108.4	H40B—C40—H40C	109.5
C13—N1—C2—C3	84.31 (17)	C19—C20—C21—C22	-1.2 (4)
C10—N1—C2—C3	-45.06 (19)	C18—C17—C22—C21	0.5 (3)
N1—C2—C3—C4	-130.67 (18)	C11—C17—C22—C21	178.70 (18)
N1—C2—C3—C8	49.8 (2)	C20—C21—C22—C17	0.6 (3)
C8—C3—C4—C5	1.6 (3)	C26—N27—C24—C13	-119.64 (16)
C2—C3—C4—C5	-177.9 (2)	C34—N27—C24—C13	76.7 (2)
C3—C4—C5—C6	0.0 (4)	C26—N27—C24—C25	-2.18(14)
C4—C5—C6—C7	-1.0(4)	C34—N27—C24—C25	-165.88 (17)
C5—C6—C7—C8	0.5 (4)	N1—C13—C24—N27	-58.31 (18)
C6—C7—C8—C3	1.1 (3)	C12—C13—C24—N27	179.98 (13)
C6—C7—C8—C9	-177.93 (19)	N1—C13—C24—C25	-158.34(13)
C4—C3—C8—C7	-2.1(3)	C12-C13-C24-C25	79.95 (18)
C_{2} C_{3} C_{8} C_{7}	177.42 (16)	N27-C24-C25-C28	-116.22(17)
C4-C3-C8-C9	176.97 (17)	C_{13} C_{24} C_{25} C_{28}	1.7 (2)
$C_{2} = C_{3} = C_{8} = C_{9}$	-35(2)	N27—C24—C25—C26	1.95(13)
C7 - C8 - C9 - C10	$134\ 24\ (19)$	C_{13} C_{24} C_{25} C_{26} C_{26}	119 82 (15)
$C_3 - C_8 - C_9 - C_{10}$	-44.8(2)	$C_{34} N_{27} C_{26} O_{5}$	-13.6(4)
C_{13} N1 $-C_{10}$ C14	111.95 (15)	$C_{24} N_{27} C_{26} 0_{5}$	-1774(2)
$C_{-N1} - C_{10} - C_{14}$	-117.64(15)	$C_{34} N_{27} C_{26} C_{25}$	165.99(17)
C13 = N1 = C10 = C9	-132.99(15)	$C_{24} N_{27} C_{26} C_{25}$	2.25(15)
C_{2} N1 $-C_{10}$ $-C_{9}$	-2.58(19)	$C_{28} - C_{25} - C_{26} - C_{5}$	-62.0(3)
C13 = N1 = C10 = C11	-7.25(17)	$C_{24} - C_{25} - C_{26} - C_{5}$	177.5(3)
C_{2} N1 $-C_{10}$ $-C_{11}$	123 17 (14)	C_{28} C_{25} C_{26} C_{26} N_{27}	118 39 (16)
C8 - C9 - C10 - N1	47.6 (2)	$C_{24} = C_{25} = C_{26} = N_{27}$	-2.12(14)
C8-C9-C10-C14	167 77 (15)	$C_{26} - C_{25} - C_{28} - C_{33}$	161.5(15)
C8-C9-C10-C11	-73.36(19)	C_{24} C_{25} C_{28} C_{33}	-98.6(15)
N1-C10-C11-C17	-10252(16)	$C_{26} = C_{25} = C_{28} = C_{29A}$	-24.7(12)
C_{14} C_{10} C_{11} C_{17}	136 81 (16)	C_{24} C_{25} C_{28} C_{29A}	75 1 (12)
C9-C10-C11-C17	21.6 (2)	$C_{26} - C_{25} - C_{28} - C_{29}$	-139(12)
$N_1 - C_{10} - C_{11} - C_{12}$	21.0 (2)	$C_{20} = C_{25} = C_{20} = C_{29}$	86.0 (12)
C_{14} C_{10} C_{11} C_{12}	-98.87(15)	$C_{24} = C_{25} = C_{26} = C$	161.0(10)
C9-C10-C11-C12	145 91 (14)	$C_{20} = C_{20} = C_{20} = C_{30} = C_{30}$	-99.1(10)
$O_4 N_{23} C_{12} C_{11}$	-47.9(2)	$C_{24}^{33} = C_{25}^{23} = C_{26}^{23} = C_{35}^{33} = C_{36}^{33}$	6(3)
$O_{1} = N_{2} O_{2} = C_{12} = C_{11}$	(2)	C_{29}^{29} C_{28}^{29} C_{29}^{29} C_{30}^{20}	-37(6)
04 N23 C12 C13	132.07(10)	$C_{23}A = C_{28}C_{29}C_{30}$	9(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-110 10 (10)	$C_{23} - C_{20} - C_{29} - C_{30}$	-1775(17)
$C_{17} = C_{12} = C_{12} = C_{13}$	-13851(14)	C_{23} C_{20} C_{20} C_{20} C_{21}	-4(3)
$C_{11} = C_{11} = C_{12} = N_{23}$	130.31(14) 02.92(15)	$C_{20} = C_{29} = C_{30} = C_{31}$	-0.4(10)
C_{10} $-C_{11}$ $-C_{12}$ $-N_{23}$ C_{17} C_{11} C_{12} C_{12} C_{12}	73.03(13)	$C_{29} = C_{30} = C_{31} = C_{32}$	-0.4(19)
$C_{11} = C_{11} = C_{12} = C_{13}$	27.77 (10)	$C_{30} - C_{31} - C_{32} - C_{33}$	3 (2) ((2)
C10-C11-C12-C13	-2/.//(10)	U29A—U28—U33—U32	0(3)

C10-N1-C13-C24	-136.12 (14)	C29—C28—C33—C32	-4 (3)
C2—N1—C13—C24	92.35 (16)	C33A—C28—C33—C32	-178 (9)
C10—N1—C13—C12	-10.37 (17)	C25—C28—C33—C32	-179.4 (12)
C2—N1—C13—C12	-141.90 (13)	C31—C32—C33—C28	0 (3)
N23—C12—C13—N1	-95.83 (16)	C33—C28—C29A—C30A	-3 (2)
C11—C12—C13—N1	24.16 (17)	C29—C28—C29A—C30A	137 (10)
N23—C12—C13—C24	29.9 (2)	C33A—C28—C29A—C30A	-4 (2)
C11—C12—C13—C24	149.93 (14)	C25—C28—C29A—C30A	-177.5 (11)
C15A—O2A—C14—O1	-8 (2)	C28—C29A—C30A—C31A	3 (3)
C15A—O2A—C14—O2	96 (3)	C29A—C30A—C31A—C32A	-1 (2)
C15A—O2A—C14—C10	-170.6 (15)	C30A—C31A—C32A—C33A	-1 (2)
C15—O2—C14—O1	1.2 (5)	C31A—C32A—C33A—C28	1 (2)
C15—O2—C14—O2A	-92 (2)	C33—C28—C33A—C32A	-2 (5)
C15—O2—C14—C10	170.9 (3)	C29A—C28—C33A—C32A	2 (3)
N1—C10—C14—O1	-164.28 (18)	C29—C28—C33A—C32A	-10 (3)
C9—C10—C14—O1	75.3 (2)	C25—C28—C33A—C32A	176.5 (14)
C11—C10—C14—O1	-47.1 (2)	C26—N27—C34—C35	29.8 (3)
N1—C10—C14—O2A	-1.3 (10)	C24—N27—C34—C35	-172.06 (17)
C9—C10—C14—O2A	-121.7 (10)	C26—N27—C34—C39	-151.74 (19)
C11—C10—C14—O2A	115.9 (10)	C24—N27—C34—C39	6.4 (3)
N1—C10—C14—O2	25.8 (3)	C39—C34—C35—C36	-0.8 (3)
C9—C10—C14—O2	-94.6 (3)	N27—C34—C35—C36	177.66 (17)
C11—C10—C14—O2	143.0 (2)	C34—C35—C36—C37	-0.6 (3)
C14—O2—C15—C16	79.2 (4)	C35—C36—C37—O6	-178.58 (19)
C14—O2A—C15A—C16A	-107.7 (16)	C35—C36—C37—C38	1.3 (3)
C12—C11—C17—C22	-28.3 (2)	C40—O6—C37—C36	5.4 (3)
C10—C11—C17—C22	91.6 (2)	C40—O6—C37—C38	-174.5 (2)
C12—C11—C17—C18	149.89 (16)	C36—C37—C38—C39	-0.6 (3)
C10-C11-C17-C18	-90.27 (19)	O6—C37—C38—C39	179.23 (17)
C22—C17—C18—C19	-1.2 (3)	C37—C38—C39—C34	-0.7 (3)
C11—C17—C18—C19	-179.44 (18)	C35—C34—C39—C38	1.4 (3)
C17—C18—C19—C20	0.6 (4)	N27—C34—C39—C38	-177.02 (16)
C18—C19—C20—C21	0.5 (4)		