

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis{2-[1-(8-hydroxy-2-quinolylmethyl)-1*H*-benzimidazol-2-yl]quinolin-8-ol} toluene solvate

Hui-Li Chen,^a* Qi Ma^{a,b} and Qing-Ming Wang^a

^aInstitute of Molecular Science, Key Laboratory of Chemical Biology and Molecular, Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, Shanxi 037009, People's Republic of China Correspondence e-mail: huilichen@sxu.edu.cn

Received 9 December 2009; accepted 7 February 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; Hatom completeness 98%; disorder in solvent or counterion; R factor = 0.051; wR factor = 0.156; data-to-parameter ratio = 12.4.

Crystals of the title compound, 2C₂₆H₁₈N₄O₂·C₇H₈, were obtained from the reaction of 8-hydroxyquinoline with 1.2phenylenediamine in methanol and recrystallized from toluene. The compound contains three essentially planar ring systems: the benzimidazole ring (r.m.s. deviation = 0.039 Å) and two 8-hydroxyquinoline rings (r.m.s. deviations of 0.0056 Å in both rings). The benzimidazole ring and one 8hydroxyquinoline ring are almost co-planar, forming a dihdral angle of $3.1 (2)^\circ$. The other 8-hydroxyquinoline ring is almost perpendicular to the benzimidazole plane with a dihedral angle of 86.2 (2)°. Intramolecular $O-H \cdots N$ contacts are present. The crystal structure is stabilized by intermolecular O-H···N interactions. The complete toluene molecule is generated by crystallographic inversion symmetry; therefore its methyl group is disordered over two sites of equal occupancy.

Related literature

For the use of the reaction of *o*-phenylenediamine with excess aldehyde without an oxidant to produce a Shiff base compound containing two -N=CH- bonds, see: Chen & Martell (1987); Wang *et al.* (1994). Similar benzimidazole derivatives have been obtained, see: Dege *et al.* (2006); Yang *et al.* (2004). For the preparation of benzimidazole, see: Boufatah *et al.* (2004); Grimmet (1997); Kumar *et al.* (1981); Srivastava & Venkataramair (1988).

Experimental

Crystal data $2C_{26}H_{18}N_4O_2 \cdot C_7H_8$ $M_r = 929.02$ Triclinic, $P\overline{1}$ a = 8.014 (7) Å b = 12.669 (11) Å c = 12.727 (11) Å $\alpha = 112.979$ (10)° $\beta = 90.881$ (11)°

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan

(SADABS; Sheldrick, 2001) $T_{min} = 0.975, T_{max} = 0.987$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$	2 restraints
$wR(F^2) = 0.156$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.40 \text{ e } \text{\AA}^{-3}$
4077 reflections	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$
329 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1-H1···N1	0.82	2.29	2.745 (3)	116
$O1-H1\cdots N4$	0.82	2.47	3.131 (3)	139
$O2-H2 \cdot \cdot \cdot N4$	0.82	2.27	2.722 (3)	116
$O2 - H2 \cdots N2^i$	0.82	2.55	3.145 (3)	131

Symmetry code: (i) x + 1, y, z.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL/PC* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL/PC*.

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20601018) and the Province Natural Science Foundation of Shanxi Province of China (grant No. 2009021006–3).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2138).

 $\gamma = 100.966 \ (11)^{\circ}$

Mo $K\alpha$ radiation

 $0.30 \times 0.20 \times 0.15 \text{ mm}$

6333 measured reflections

4077 independent reflections

3049 reflections with $I > 2\sigma(I)$

 $\mu = 0.09 \text{ mm}^{-1}$

T = 295 K

 $R_{\rm int} = 0.024$

Z = 1

 $V = 1162.1 (17) \text{ Å}^3$

References

- Boufatah, N., Gellis, A., Maldonado, J. & Vanelle, P. (2004). *Tetrahedron*, **60**, 9131–9137.
- Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, D. & Martell, A. E. (1987). Inorg. Chem. 26, 1026–1030.
- Dege, N., Şekerci, M., Servi, S., Dinçer, M. & Demirbaş, Ü. (2006). Turk J. Chem. 30, 103–108.
- Grimmet, M. R. (1997). Imidazole and Benzimidazole Synthesis. London: Academic Press.
- Kumar, S., Kansal, V. & Bhaduri, A. (1981). Indian J. Chem. Sect. B, 20, 254– 256.
- Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Srivastava, R. G. & Venkataramair, P. S. (1988). Synth. Commun. 18, 1537– 1544.
- Wang, H., Li, S.-L., Liu, D.-X., Cui, X.-G. & Li, X.-Y. (1994). Acta Chim. Sin. 52, 676–682.
- Yang, H.-W., Yue, F., Feng, S., Wang, J.-D., Liu, A.-H., Chen, H.-M. & Yu, K.-B. (2004). Chin. J. Org. Chem. 24, 792–796.

supporting information

Acta Cryst. (2010). E66, o671-o672 [doi:10.1107/S1600536810004794]

Bis{2-[1-(8-hydroxy-2-quinolylmethyl)-1*H*-benzimidazol-2-yl]quinolin-8-ol} toluene solvate

Hui-Li Chen, Qi Ma and Qing-Ming Wang

S1. Comment

In most cases, without oxidant, the reaction of *o*-phenylenediamine with excess aldehyde produces a Shiff-base compound containing two —N=CH— bonds (Chen *et al.*,1987; Wang *et al.*,1994). However, in our case, the reaction of *o*-phenylenediamine with 3 equivalents of 8-hydroxyquinoline-2-aldehyde did not form the desired compound. Instead, the reaction produced a novel 2-substituted benzimidazole. Similar benzimidazole derivatives were also obtained by Dege and Yang (Dege *et al.*, 2006; Yang *et al.*, 2004). Usually, one of the general routes for synthesis of benzimidazole involves the reaction of a carboxylic acid with *o*-phenylenediamine in the presence of a strong acid (Grimmet *et al.*, 1997; Boufatah *et al.*, 2004). Another typical procedure involves heating *o*-phenylenediamine with an aldehyde in the presence of oxidant, such as Pb(OAc)₄ (Kumar *et al.*, 1981), BaMnO₄ (Srivastava *et al.*, 1988).

The molecular structure and a packing diagram of the title compound are illustrated in Figs 1 and 2, respectively. Selected geometric parameters are listed in Table 1.The compound contains 3 planar rings. One is the benzimidazole ring (N2, N3, C10—C16); the others are the 8-hydroxyquinoline rings. The 8-hydroxyquinoline ring [A(N1,O1,C1—C9)] attached to C10, is almost coplanar with the benzimidazole ring (with a dihedral angle of 3.1 (2)°). The other 8-hydroxyquinoline group [B(N4,O2,C18—C26)], was attached to the C17 methylene group almost perpendicular to the benzimidazole plane (with a dihedral angle of 93.8 (2)°). Two 8-hydroxyquinoline rings (A and B) form a dihedral angle of 96.5 (2)°. The C17—C18,C17—N3 and N2—C10 bond distances are 1.513 (3), 1.462 (3) and 1.327 (3) Å, which are similar to the corresponding bond lengths in 1-(thiophen-2-ylmethyl)-2-(thiophen-2-yl)-1*H*-benzimidazole (1.501 (3), 1.452 (3) and 1.315 (3) Å) (Dege *et al.*, 2006). There is a strong intermolecular between O2—H2···N2(x + 1,y,z), with a H2···N2 distance of 2.55 Å (Figure 2, Table 2).

S2. Experimental

A solution of 1,2-diaminobenzene (0.001 mol) in absolute methanol (20 ml) was added in small portions to a solution of 8-hydroxyquinoline-2-aldehyde (0.003 mol) in absolute methanol (30 ml). The reaction mixture was maintained at 348 K for 2 h,and was monitored by TLC. The resulting precipitation was washed with methanol, dried and recrystallized from toluene. ¹H NMR(d6-DMSO):9.46(s,1*H*),9.33(s,1*H*),8.56(d,1*H*),8.47(d,1*H*),8.15(d,1*H*), 7.82–7.85(m,2*H*),7.42–7.48(m,2*H*),7.08–7.40(m,7*H*),6.73(s,2*H*).

S3. Refinement

Toluene molecule is located at a symmetrical center, so 4-H of toluene is not present. H atoms attached to C atoms were placed in geometrically idealized positions with Csp^2 —H = 0.93 Å and Csp^3 —H = 0.96 Å, and were constrained to ride on their parent atoms.

Figure 1

The structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

The packing view of the title compound.

Bis{2-[1-(8-hydroxy-2-quinolylmethyl)-1*H*-benzimidazol-2-yl]quinolin- 8-ol} toluene solvate

Crystal data	
$2C_{26}H_{18}N_{4}O_{2} \cdot C_{7}H_{8}$ $M_{r} = 929.02$ Triclinic, <i>P</i> 1 Hall symbol: -P 1 a = 8.014 (7) Å b = 12.669 (11) Å c = 12.727 (11) Å a = 112.979 (10)° $\beta = 90.881$ (11)° $\gamma = 100.966$ (11)° V = 1162.1 (17) Å ³	Z = 1 F(000) = 486 $D_x = 1.327 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2466 reflections $\theta = 3.0-25.9^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 295 K Block, yellow $0.30 \times 0.20 \times 0.15 \text{ mm}$
Data collection Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2001) $T_{\min} = 0.975, T_{\max} = 0.987$	6333 measured reflections 4077 independent reflections 3049 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 25.1^{\circ}, \theta_{min} = 1.8^{\circ}$ $h = -9 \rightarrow 7$ $k = -15 \rightarrow 14$ $l = -12 \rightarrow 15$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.051$	H-atom parameters constrained
$wR(F^2) = 0.156$	$w = 1/[\sigma^2(F_o^2) + (0.0768P)^2 + 0.2872P]$
S = 1.03	where $P = (F_0^2 + 2F_c^2)/3$
4077 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
329 parameters	$\Delta \rho_{\rm max} = 0.40 \text{ e} \text{ Å}^{-3}$
2 restraints	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: SHELXL, Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Secondary atom site location: difference Fourier	Extinction coefficient: 0.033 (4)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.5707 (3)	0.12196 (18)	-0.05782 (17)	0.0455 (5)	
C2	0.7346 (3)	0.0952 (2)	-0.0469 (2)	0.0535 (6)	
C3	0.7601 (3)	-0.0148 (2)	-0.1092 (2)	0.0624 (6)	
H3	0.8668	-0.0316	-0.1027	0.075*	
C4	0.6260 (4)	-0.1028 (2)	-0.1830 (2)	0.0676 (7)	
H4	0.6453	-0.1773	-0.2248	0.081*	
C5	0.4679 (3)	-0.0808 (2)	-0.1944 (2)	0.0633 (6)	
Н5	0.3807	-0.1402	-0.2435	0.076*	
C6	0.4366 (3)	0.03220 (19)	-0.13169 (18)	0.0509 (5)	
C7	0.2767 (3)	0.0626 (2)	-0.13557 (19)	0.0556 (6)	
H7	0.1833	0.0059	-0.1805	0.067*	
C8	0.2582 (3)	0.17396 (19)	-0.07426 (19)	0.0524 (6)	
H8	0.1532	0.1942	-0.0774	0.063*	
C9	0.4018 (2)	0.25868 (18)	-0.00545 (17)	0.0434 (5)	
C10	0.3807 (2)	0.37994 (17)	0.05742 (16)	0.0421 (5)	
C11	0.2623 (3)	0.52959 (18)	0.12008 (18)	0.0462 (5)	
C12	0.1518 (3)	0.6075 (2)	0.1430 (2)	0.0554 (6)	
H12	0.0394	0.5825	0.1100	0.066*	
C13	0.2159 (3)	0.7227 (2)	0.2162 (2)	0.0625 (6)	
H13	0.1452	0.7763	0.2325	0.075*	
C14	0.3845 (3)	0.7607 (2)	0.2665 (2)	0.0652 (7)	
H14	0.4228	0.8390	0.3160	0.078*	
C15	0.4960 (3)	0.6855 (2)	0.2448 (2)	0.0569 (6)	

H15	0.6081	0.7112	0.2783	0.068*	
C16	0.4318(2)	0 56921 (18)	0 16998 (17)	0.0441 (5)	
C17	0.6860 (2)	0.47670 (18)	0.15656 (18)	0.0437(5)	
H17A	0.7497	0.5569	0.1811	0.052*	
H17B	0.7314	0.4293	0.0878	0.052*	
C18	0.7154(2)	0.43377 (16)	0 24939 (16)	0.0411 (5)	
C19	0.5972 (3)	0.43317(19)	0.33017 (18)	0.0511 (5)	
H19	0.4935	0.4545	0.3249	0.061*	
C20	0.6374 (3)	0.4007(2)	0.41619 (19)	0.0557 (6)	
H20	0.5605	0.4004	0.4701	0.067*	
C21	0.7938 (3)	0.36783 (18)	0.42466 (17)	0.0481 (5)	
C22	0.8471 (3)	0.3341 (2)	0.5118 (2)	0.0632 (6)	
H22	0.7776	0.3338	0.5695	0.076*	
C23	1.0006 (4)	0.3022 (2)	0.5104 (2)	0.0702 (7)	
H23	1.0346	0.2799	0.5675	0.084*	
C24	1.1081 (3)	0.3024 (2)	0.4245 (2)	0.0680 (7)	
H24	1.2123	0.2804	0.4252	0.082*	
C25	1.0602 (3)	0.3348 (2)	0.3397 (2)	0.0556 (6)	
C26	0.9023 (2)	0.36878 (17)	0.33817 (17)	0.0440 (5)	
C27	0.6666 (8)	0.9326 (7)	0.5448 (6)	0.109 (2) 0.5	50
H27A	0.6352	0.8484	0.5116	0.163* 0.:	50
H27B	0.5904	0.9635	0.5112	0.163* 0.5	50
H27C	0.6590	0.9610	0.6260	0.163* 0.5	50
C28	0.8398 (8)	0.9701 (3)	0.5231 (4)	0.1311 (17)	
C29	0.8662 (8)	0.9652 (4)	0.4163 (4)	0.151 (2)	
H29	0.7753	0.9409	0.3601	0.181*	
C30	1.0280 (8)	0.9965 (4)	0.3939 (4)	0.141 (2)	
H30	1.0493	0.9953	0.3219	0.169*	
N1	0.5530(2)	0.23373 (15)	0.00443 (14)	0.0448 (4)	
N2	0.2332 (2)	0.41096 (15)	0.05066 (15)	0.0486 (5)	
N3	0.5069 (2)	0.47278 (14)	0.12805 (14)	0.0426 (4)	
N4	0.8615 (2)	0.40046 (14)	0.25095 (14)	0.0437 (4)	
01	0.8628 (2)	0.17832 (16)	0.02683 (16)	0.0740 (5)	
H1	0.8293	0.2394	0.0589	0.111*	
O2	1.1662 (2)	0.3371 (2)	0.25782 (18)	0.0811 (6)	
H2	1.1174	0.3512	0.2093	0.122*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0529 (12)	0.0487 (12)	0.0422 (12)	0.0166 (9)	0.0120 (9)	0.0232 (10)
C2	0.0539 (13)	0.0595 (14)	0.0556 (14)	0.0219 (11)	0.0143 (10)	0.0271 (11)
C3	0.0682 (16)	0.0667 (16)	0.0672 (16)	0.0343 (13)	0.0272 (12)	0.0325 (13)
C4	0.091 (2)	0.0566 (15)	0.0625 (16)	0.0302 (14)	0.0287 (14)	0.0244 (12)
C5	0.0789 (17)	0.0514 (14)	0.0552 (14)	0.0112 (12)	0.0127 (12)	0.0176 (11)
C6	0.0610 (14)	0.0511 (13)	0.0430 (12)	0.0117 (10)	0.0097 (10)	0.0214 (10)
C7	0.0552 (13)	0.0541 (14)	0.0526 (13)	0.0027 (10)	-0.0015 (10)	0.0204 (11)
C8	0.0441 (12)	0.0589 (14)	0.0560 (13)	0.0092 (10)	-0.0010 (10)	0.0260 (11)

supporting information

C9	0.0438 (11)	0.0506 (12)	0.0424 (11)	0.0128 (9)	0.0048 (8)	0.0243 (9)
C10	0.0395 (11)	0.0515 (12)	0.0420 (11)	0.0120 (9)	0.0034 (8)	0.0249 (9)
C11	0.0455 (11)	0.0545 (13)	0.0492 (12)	0.0162 (9)	0.0099 (9)	0.0291 (10)
C12	0.0471 (12)	0.0673 (15)	0.0682 (15)	0.0250 (11)	0.0153 (10)	0.0383 (13)
C13	0.0691 (16)	0.0657 (16)	0.0717 (16)	0.0334 (13)	0.0234 (12)	0.0382 (13)
C14	0.0793 (17)	0.0525 (14)	0.0670 (16)	0.0222 (12)	0.0132 (13)	0.0236 (12)
C15	0.0582 (14)	0.0547 (14)	0.0584 (14)	0.0136 (11)	0.0034 (11)	0.0227 (11)
C16	0.0465 (11)	0.0502 (12)	0.0455 (12)	0.0166 (9)	0.0089 (9)	0.0267 (10)
C17	0.0359 (10)	0.0505 (12)	0.0486 (12)	0.0099 (8)	0.0023 (8)	0.0236 (9)
C18	0.0375 (10)	0.0424 (11)	0.0410 (11)	0.0084 (8)	0.0008 (8)	0.0142 (9)
C19	0.0423 (11)	0.0665 (14)	0.0477 (13)	0.0199 (10)	0.0052 (9)	0.0225 (11)
C20	0.0548 (13)	0.0716 (15)	0.0456 (13)	0.0202 (11)	0.0140 (10)	0.0254 (11)
C21	0.0557 (13)	0.0482 (12)	0.0412 (12)	0.0143 (10)	0.0029 (9)	0.0173 (9)
C22	0.0791 (17)	0.0717 (16)	0.0489 (14)	0.0247 (13)	0.0084 (12)	0.0309 (12)
C23	0.0856 (19)	0.0767 (17)	0.0633 (16)	0.0304 (14)	-0.0019 (13)	0.0381 (14)
C24	0.0625 (15)	0.0780 (17)	0.0804 (18)	0.0291 (13)	0.0023 (13)	0.0431 (14)
C25	0.0489 (13)	0.0634 (14)	0.0669 (15)	0.0196 (11)	0.0063 (11)	0.0357 (12)
C26	0.0437 (11)	0.0418 (11)	0.0466 (12)	0.0084 (9)	-0.0012 (9)	0.0184 (9)
C27	0.126 (6)	0.111 (6)	0.093 (5)	0.052 (5)	0.008 (5)	0.033 (4)
C28	0.243 (5)	0.064 (2)	0.083 (3)	0.045 (3)	-0.029 (3)	0.0222 (18)
C29	0.262 (7)	0.096 (3)	0.094 (3)	0.027 (4)	-0.041 (4)	0.044 (2)
C30	0.268 (7)	0.085 (3)	0.069 (3)	0.036 (4)	-0.027 (4)	0.031 (2)
N1	0.0448 (10)	0.0504 (10)	0.0444 (10)	0.0156 (8)	0.0062 (7)	0.0220 (8)
N2	0.0403 (9)	0.0540 (11)	0.0579 (11)	0.0146 (8)	0.0035 (8)	0.0270 (9)
N3	0.0383 (9)	0.0491 (10)	0.0464 (10)	0.0136 (7)	0.0035 (7)	0.0237 (8)
N4	0.0381 (9)	0.0495 (10)	0.0473 (10)	0.0131 (7)	0.0031 (7)	0.0217 (8)
01	0.0539 (10)	0.0736 (12)	0.0870 (13)	0.0276 (9)	0.0027 (9)	0.0180 (10)
O2	0.0540 (10)	0.1300 (17)	0.1009 (15)	0.0461 (11)	0.0256 (10)	0.0773 (13)

Geometric parameters (Å, °)

C1—N1	1.363 (3)	C17—C18	1.513 (3)	
C1—C6	1.415 (3)	C17—H17A	0.9700	
C1—C2	1.435 (3)	C17—H17B	0.9700	
C2—O1	1.354 (3)	C18—N4	1.320 (3)	
С2—С3	1.365 (3)	C18—C19	1.410 (3)	
C3—C4	1.406 (4)	C19—C20	1.365 (3)	
С3—Н3	0.9300	C19—H19	0.9300	
C4—C5	1.365 (4)	C20—C21	1.409 (3)	
C4—H4	0.9300	C20—H20	0.9300	
С5—С6	1.414 (3)	C21—C26	1.416 (3)	
С5—Н5	0.9300	C21—C22	1.421 (3)	
C6—C7	1.411 (3)	C22—C23	1.365 (4)	
С7—С8	1.358 (3)	C22—H22	0.9300	
С7—Н7	0.9300	C23—C24	1.403 (4)	
С8—С9	1.418 (3)	С23—Н23	0.9300	
С8—Н8	0.9300	C24—C25	1.369 (3)	
C9—N1	1.325 (3)	C24—H24	0.9300	

C9—C10	1.474 (3)	C25—O2	1.361 (3)
C10—N2	1.327 (3)	C25—C26	1.414 (3)
C10—N3	1.381 (3)	C26—N4	1.374 (3)
C11—N2	1.385 (3)	C27—C28	1.4463 (15)
C11—C12	1.400 (3)	С27—Н27А	0.9600
C11—C16	1.402 (3)	С27—Н27В	0.9600
C12—C13	1.378 (4)	С27—Н27С	0.9600
C12—H12	0.9300	C28—C29	1.358 (6)
C13—C14	1.398 (4)	C28—C30 ⁱ	1.365 (6)
C13—H13	0.9300	C29—C30	1.351 (9)
C14—C15	1.381 (3)	С29—Н29	0.9300
C14—H14	0.9300	C30—C28 ⁱ	1.365 (6)
C15—C16	1.394 (3)	С30—Н30	0.9300
С15—Н15	0.9300	01—H1	0.8200
C16—N3	1.385 (3)	O2—H2	0.8200
C17—N3	1.462 (3)		
	1.102 (3)		
N1—C1—C6	123.4 (2)	C18—C17—H17B	108.7
N1—C1—C2	117.63 (19)	H17A—C17—H17B	107.6
C6—C1—C2	119.0 (2)	N4—C18—C19	122.82 (19)
O1—C2—C3	120.0 (2)	N4—C18—C17	115.06 (17)
O1—C2—C1	120.0 (2)	C19—C18—C17	122.09 (18)
C3—C2—C1	120.0 (2)	C20—C19—C18	118.8 (2)
C2—C3—C4	120.4 (2)	С20—С19—Н19	120.6
C2—C3—H3	119.8	С18—С19—Н19	120.6
C4—C3—H3	119.8	C19—C20—C21	121.0 (2)
C5-C4-C3	121.2 (2)	C19—C20—H20	119.5
C5—C4—H4	119.4	C_{21} C_{20} H_{20}	119.5
C3—C4—H4	119.4	C_{20} C_{21} C_{26}	115.94 (19)
C4—C5—C6	120.1 (2)	C_{20} C_{21} C_{22}	124.9 (2)
C4—C5—H5	119.9	$C_{26} = C_{21} = C_{22}$	1192(2)
C6—C5—H5	119.9	C_{23} C_{22} C_{21}	119.8 (2)
C7-C6-C5	124 3 (2)	C_{23} C_{22} H_{22}	120.1
C7—C6—C1	1164(2)	$C_{21} - C_{22} - H_{22}$	120.1
C_{5} $-C_{6}$ $-C_{1}$	119 3 (2)	C^{22} C^{23} C^{24}	1212(2)
C8-C7-C6	120.6(2)	$C_{22} = C_{23} = H_{23}$	119.4
C8—C7—H7	119 7	C24—C23—H23	119.4
C6-C7-H7	119.7	C_{25} C_{24} C_{23}	120.2(2)
C7 - C8 - C9	118.8 (2)	$C_{25} = C_{24} = H_{24}$	119.9
C7—C8—H8	120.6	C_{23} C_{24} H_{24}	119.9
C9-C8-H8	120.6	02-C25-C24	1201(2)
N1 - C9 - C8	123.0(2)	02 - C25 - C26	120.1(2) 1195(2)
N1-C9-C10	118.97 (18)	C_{24} C_{25} C_{26}	120.3 (2)
C8 - C9 - C10	117.98 (18)	N4-C26-C25	117 61 (19)
N2-C10-N3	112 54 (18)	N4-C26-C21	123 14 (19)
$N_2 - C_{10} - C_9$	12.04 (10)	C_{25} C_{26} C_{21}	129.17(17) 119.2 (2)
N3-C10-C9	125.44 (17)	$C_{23} = C_{20} = C_{21}$	109.5
$N_2 - C_{11} - C_{12}$	129.9 (17)	$C_{20} = C_{27} = H_{27R}$	109.5
112-011-012	129.9 (2)	$U_{20} U_{2} U_{112} D$	107.5

N2-C11-C16	109.73 (17)	H27A—C27—H27B	109.5
C12—C11—C16	120.4 (2)	C28—C27—H27C	109.5
C13—C12—C11	117.5 (2)	H27A—C27—H27C	109.5
С13—С12—Н12	121.2	H27B—C27—H27C	109.5
C11—C12—H12	121.2	C29—C28—C30 ⁱ	121.6 (5)
C12—C13—C14	121.5 (2)	C29—C28—C27	117.7 (6)
С12—С13—Н13	119.2	C30 ⁱ —C28—C27	120.6 (6)
С14—С13—Н13	119.2	C30—C29—C28	118.3 (5)
C15—C14—C13	121.9 (2)	C30—C29—H29	120.9
C15—C14—H14	119.0	C28—C29—H29	120.9
C13—C14—H14	119.0	C29—C30—C28 ⁱ	120.1 (5)
C14—C15—C16	116.6 (2)	С29—С30—Н30	120.0
C14—C15—H15	121.7	C28 ⁱ —C30—H30	120.0
C16—C15—H15	121.7	C9—N1—C1	117.77 (18)
N3—C16—C15	132.0 (2)	C10—N2—C11	105.48 (17)
N3—C16—C11	106.02 (18)	C10—N3—C16	106.21 (16)
C15—C16—C11	122.00 (19)	C10—N3—C17	129.92 (17)
N3—C17—C18	114.36 (16)	C16—N3—C17	123.86 (16)
N3—C17—H17A	108.7	C18—N4—C26	118.16 (17)
С18—С17—Н17А	108.7	C2—O1—H1	109.5
N3—C17—H17B	108.7	С25—О2—Н2	109.5
N1—C1—C2—O1	2.7 (3)	C19—C20—C21—C22	179.3 (2)
C6-C1-C2-O1	-177.24 (19)	C20—C21—C22—C23	179.0 (2)
N1—C1—C2—C3	-178.68 (19)	C26—C21—C22—C23	-0.6 (3)
C6—C1—C2—C3	1.4 (3)	C21—C22—C23—C24	0.3 (4)
O1—C2—C3—C4	177.8 (2)	C22—C23—C24—C25	-0.1 (4)
C1—C2—C3—C4	-0.8(3)	C23—C24—C25—O2	178.7 (2)
C2—C3—C4—C5	0.0 (4)	C23—C24—C25—C26	0.2 (4)
C3—C4—C5—C6	0.2 (4)	O2—C25—C26—N4	1.5 (3)
C4—C5—C6—C7	-178.4(2)	C24—C25—C26—N4	179.9 (2)
C4—C5—C6—C1	0.4 (3)	O2—C25—C26—C21	-179.1(2)
N1—C1—C6—C7	-2.3(3)	C24—C25—C26—C21	-0.6(3)
C2-C1-C6-C7	177.70 (19)	C20-C21-C26-N4	0.6 (3)
N1—C1—C6—C5	178.91 (19)	C22—C21—C26—N4	-179.78(19)
$C_2-C_1-C_6-C_5$	-1.1(3)	C_{20} C_{21} C_{26} C_{25}	-178.89(19)
C5—C6—C7—C8	-178.7(2)	C22—C21—C26—C25	0.8 (3)
C1—C6—C7—C8	2.5 (3)	$C30^{i}$ C28 C29 C30	-1.2(8)
C6-C7-C8-C9	-0.7(3)	C_{27} C_{28} C_{29} C_{30}	-178.0(5)
C7—C8—C9—N1	-1.8(3)	$C28-C29-C30-C28^{i}$	1.2 (8)
C7-C8-C9-C10	178.01 (19)	C8 - C9 - N1 - C1	2.2(3)
N1 - C9 - C10 - N2	179.53 (18)	C10-C9-N1-C1	-177.69(17)
C8—C9—C10—N2	-0.3 (3)	C6-C1-N1-C9	0.0 (3)
N1-C9-C10-N3	-0.2(3)	C2-C1-N1-C9	180.00 (18)
C8-C9-C10-N3	179.92 (18)	N_{3} C10 N_{2} C11	-0.2(2)
N_2 —C11—C12—C13	-179.8(2)	C9-C10-N2-C11	-179.95(17)
C_{16} C_{11} C_{12} C_{13}	-0.5(3)	C_{12} C_{11} N_{2} C_{10}	178.8 (2)
C11-C12-C13-C14	-0.3(3)	C16-C11-N2-C10	-0.6(2)
			··· (

C12—C13—C14—C15	0.6 (4)	N2-C10-N3-C16	0.8 (2)
C13—C14—C15—C16	-0.1 (4)	C9-C10-N3-C16	-179.41 (18)
C14—C15—C16—N3	178.5 (2)	N2-C10-N3-C17	-178.58 (18)
C14—C15—C16—C11	-0.8 (3)	C9—C10—N3—C17	1.2 (3)
N2-C11-C16-N3	1.0 (2)	C15—C16—N3—C10	179.6 (2)
C12-C11-C16-N3	-178.36 (18)	C11—C16—N3—C10	-1.1 (2)
N2-C11-C16-C15	-179.55 (19)	C15—C16—N3—C17	-1.0 (3)
C12-C11-C16-C15	1.1 (3)	C11—C16—N3—C17	178.35 (17)
N3-C17-C18-N4	158.92 (17)	C18—C17—N3—C10	-81.6 (3)
N3—C17—C18—C19	-23.0 (3)	C18—C17—N3—C16	99.1 (2)
N4-C18-C19-C20	2.3 (3)	C19—C18—N4—C26	-2.8 (3)
C17—C18—C19—C20	-175.59 (19)	C17-C18-N4-C26	175.22 (16)
C18—C19—C20—C21	-0.3 (3)	C25-C26-N4-C18	-179.18 (18)
C19—C20—C21—C26	-1.1 (3)	C21-C26-N4-C18	1.4 (3)

Symmetry code: (i) -x+2, -y+2, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
01—H1…N1	0.82	2.29	2.745 (3)	116
O1—H1···N4	0.82	2.47	3.131 (3)	139
O2—H2…N4	0.82	2.27	2.722 (3)	116
O2—H2···N2 ⁱⁱ	0.82	2.55	3.145 (3)	131

Symmetry code: (ii) x+1, y, z.