# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## Meranzin hydrate from Muraya paniculata

## Euis Julaeha,<sup>a</sup> Unang Supratman,<sup>a</sup> Mat Ropi Mukhtar,<sup>b</sup> Khalijah Awang<sup>b</sup> and Seik Weng Ng<sup>b</sup>\*

<sup>a</sup>Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padiadiaran University, latinangor 45363, West lava, Indonesia, and <sup>b</sup>Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 8 February 2010; accepted 9 February 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.038; wR factor = 0.102; data-to-parameter ratio = 8.8.

The coumarin ring system in the title compound,  $C_{15}H_{18}O_5$ [IUPAC name: 8-(2,3-dihydroxy-3-methylbutyl)-7-methoxy-2H-1-benzopyran-2-one], isolated from Murava paniculata, is planar (r.m.s. deviation 0.017 Å). In the crystal, the two hydroxy groups are involved in  $O-H \cdots O$  hydrogen bonding with adjacent molecules, forming a sheet structure.

### **Related literature**

For the asymmetric synthesis and absolute configuration of meranzin hydrate, see: Grundon & McColl (1975).



#### **Experimental**

#### Crystal data

| C <sub>15</sub> H <sub>18</sub> O <sub>5</sub> |  |
|------------------------------------------------|--|
| $M_r = 278.29$                                 |  |
| Monoclinic, P2 <sub>1</sub>                    |  |
| a = 5.8061 (7)  Å                              |  |
| b = 10.5146 (13)  Å                            |  |
| c = 11.4477 (14)  Å                            |  |
| $\beta = 91.547 \ (2)^{\circ}$                 |  |

#### Data collection

Bruker SMART APEX diffractometer 6694 measured reflections

## Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ wR(F<sup>2</sup>) = 0.102 S = 1.001699 reflections 192 parameters 3 restraints

#### Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                                     | D-H     | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|----------------------------------------------------------------------|---------|-------------------------|--------------|---------------------------|
| $\begin{matrix} O4-H4\cdots O2^i\\ O5-H5\cdots O2^{ii} \end{matrix}$ | 0.84(1) | 2.01 (1)                | 2.842 (3)    | 169 (5)                   |
|                                                                      | 0.85(1) | 2.12 (2)                | 2.936 (3)    | 163 (4)                   |

 $V = 698.61 (15) \text{ Å}^3$ 

Mo  $K\alpha$  radiation  $\mu = 0.10 \text{ mm}^{-1}$ 

 $0.35 \times 0.15 \times 0.15~\text{mm}$ 

1699 independent reflections

1338 reflections with  $I > 2\sigma(I)$ 

H atoms treated by a mixture of

independent and constrained

Z = 2

T = 293 K

 $R_{\rm int}=0.040$ 

refinement

 $\Delta \rho_{\rm max} = 0.12 \text{ e } \text{\AA}^{-3}$ 

 $\Delta \rho_{\rm min}$  = -0.16 e Å<sup>-3</sup>

Symmetry codes: (i) x - 1, y, z; (ii) -x + 3,  $y - \frac{1}{2}$ , -z + 2.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

This work was supported by the Directorate General of Higher Education, Ministry of National Education, Indonesia (BPPS-Doctoral Program), the I-MHERE Project of Padjadjaran University, the Science Fund of Malaysia (12-02-03-2063) and the University of Malaya.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5194).

#### References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Grundon, M. F. & McColl, I. S. (1975). Phytochemistry, 14, 143-150. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Westrip, S. P. (2010). publCIF. In preparation.

# supporting information

Acta Cryst. (2010). E66, o620 [doi:10.1107/S1600536810005386]

## Meranzin hydrate from Muraya paniculata

## Euis Julaeha, Unang Supratman, Mat Ropi Mukhtar, Khalijah Awang and Seik Weng Ng

## S1. Comment

*Muraya paniculata* (Rutaceae, known as kemuning in Indonesia) is a perennial herb having succulent leaves. The plant is used for the treatment of orchitis, bronchitis and urine infections.

## **S2. Experimental**

*M. paniculata* was collected in from Bandung, Indonesia. The plant was identified by the Department of Biology of Padjadjaran University. The dried leaves of *M. paniculata* (4 kg) was extracted exhaustively by methanol at room temperature and then concentrated to yield a methanol extract (438 g); 200 g was partitioned between *n*-hexane and methanol containing 10% water. The aqueous extract was extracted with ethyl acetate. The ethyl acetate portion was removed and subjected to column chromatography on silica gel 60 by using a step gradient of *n*-hexane–ethyl acetate–methanol. The fraction eluted by *n*-hexane/ethyl acetate (1:4) was further separated by column chromatography on silica gel (chloroform:ethyl acetate 1:1) to give meranzin hydrate, 8-[2,3-dihydroxy-3-methylbutyl]-7-methoxy-2*H*-1-benzo-pyran-2-one (12 mg).

## **S3. Refinement**

Carbon-bound H atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The oxygen-bound H atoms were located in a difference Fourier map, and were refined isotropically with a distance restraint of O—H 0.84 (1) Å.

In the absence of anomalous scatterers, Friedel pairs were merged. The absolute configuration was set to match the one determined by the asymmetric synthesis of meranzin (Grundon & McColl, 1975).



## Figure 1

Anisotropic displacement ellipsoid plot (Barbour, 2001) of  $C_{15}H_{18}O_5$ ; at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

## 8-[2,3-dihydroxy-3-methylbutyl]-7-methoxy-2H-1-benzopyran-2-one

| Crystal data                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C <sub>15</sub> H <sub>18</sub> O <sub>5</sub><br>$M_r = 278.29$<br>Monoclinic, P2 <sub>1</sub><br>Hall symbol: P 2yb<br>a = 5.8061 (7) Å<br>b = 10.5146 (13) Å<br>c = 11.4477 (14) Å<br>$\beta = 91.547$ (2)°<br>V = 698.61 (15) Å <sup>3</sup><br>Z = 2 | F(000) = 296<br>$D_x = 1.323 \text{ Mg m}^{-3}$<br>Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A}<br>Cell parameters from 1731 reflections<br>$\theta = 2.6-22.3^{\circ}$<br>$\mu = 0.10 \text{ mm}^{-1}$<br>T = 293  K<br>Prism, colourless<br>$0.35 \times 0.15 \times 0.15 \text{ mm}$ |
| Data collection<br>Bruker SMART APEX<br>diffractometer<br>Radiation source: fine-focus sealed tube                                                                                                                                                        | Graphite monochromator $\omega$ scans<br>6694 measured reflections                                                                                                                                                                                                                            |

| 1699 independent reflections                                              | $h = -7 \longrightarrow 7$ |
|---------------------------------------------------------------------------|----------------------------|
| 1338 reflections with $I > 2\sigma(I)$                                    | $k = -11 \rightarrow 13$   |
| $R_{\rm int} = 0.040$                                                     | $l = -14 \rightarrow 14$   |
| $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$ |                            |

Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier           |
|-------------------------------------------------|------------------------------------------------------------|
| Least-squares matrix: full                      | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.038$                 | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.102$                               | neighbouring sites                                         |
| S = 1.00                                        | H atoms treated by a mixture of independent                |
| 1699 reflections                                | and constrained refinement                                 |
| 192 parameters                                  | $w = 1/[\sigma^2(F_o^2) + (0.0603P)^2]$                    |
| 3 restraints                                    | where $P = (F_o^2 + 2F_c^2)/3$                             |
| Primary atom site location: structure-invariant | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| direct methods                                  | $\Delta  ho_{ m max} = 0.12 \  m e \  m \AA^{-3}$          |
|                                                 | $\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$ |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\mathring{A}^2)$ 

|      | x          | у            | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|------|------------|--------------|--------------|-------------------------------|
| 01   | 1.4383 (3) | 0.50000 (16) | 0.83522 (15) | 0.0436 (4)                    |
| O2   | 1.7272 (3) | 0.51296 (19) | 0.96204 (18) | 0.0592 (5)                    |
| O3   | 0.8098 (4) | 0.4410 (2)   | 0.57958 (18) | 0.0677 (6)                    |
| O4   | 1.0213 (3) | 0.30444 (18) | 0.91374 (15) | 0.0500 (5)                    |
| O5   | 1.1435 (3) | 0.06759 (16) | 0.79342 (17) | 0.0490 (4)                    |
| C1   | 1.5866 (4) | 0.5712 (3)   | 0.9034 (2)   | 0.0461 (6)                    |
| C2   | 1.5618 (5) | 0.7069 (3)   | 0.8999 (3)   | 0.0553 (7)                    |
| H2   | 1.6632     | 0.7576       | 0.9436       | 0.066*                        |
| C3   | 1.3954 (5) | 0.7612 (3)   | 0.8350 (3)   | 0.0567 (7)                    |
| H3   | 1.3813     | 0.8493       | 0.8345       | 0.068*                        |
| C4   | 1.2374 (5) | 0.6858 (2)   | 0.7657 (2)   | 0.0476 (6)                    |
| C5   | 1.0585 (5) | 0.7350 (3)   | 0.6972 (3)   | 0.0596 (8)                    |
| H5A  | 1.0373     | 0.8226       | 0.6939       | 0.071*                        |
| C6   | 0.9124 (5) | 0.6572 (3)   | 0.6344 (3)   | 0.0610 (8)                    |
| H6   | 0.7931     | 0.6918       | 0.5888       | 0.073*                        |
| C7   | 0.9433 (5) | 0.5268 (3)   | 0.6391 (2)   | 0.0513 (7)                    |
| C8   | 1.1185 (4) | 0.4708 (2)   | 0.7080 (2)   | 0.0415 (5)                    |
| C9   | 1.2625 (4) | 0.5534 (2)   | 0.7693 (2)   | 0.0400 (5)                    |
| C10  | 0.6251 (5) | 0.4863 (4)   | 0.5056 (3)   | 0.0792 (11)                   |
| H10A | 0.5429     | 0.4153       | 0.4723       | 0.119*                        |
| H10B | 0.6864     | 0.5372       | 0.4442       | 0.119*                        |
| H10C | 0.5222     | 0.5367       | 0.5507       | 0.119*                        |
| C11  | 1.1382 (4) | 0.3280 (2)   | 0.7160 (2)   | 0.0419 (5)                    |
| H11A | 1.2906     | 0.3052       | 0.7459       | 0.050*                        |
| H11B | 1.1181     | 0.2912       | 0.6387       | 0.050*                        |
| C12  | 0.9563 (4) | 0.2742 (2)   | 0.79647 (19) | 0.0388 (5)                    |
| H12  | 0.8090     | 0.3159       | 0.7777       | 0.047*                        |
| C13  | 0.9231 (4) | 0.1295 (2)   | 0.7838 (2)   | 0.0406 (5)                    |
| C14  | 0.7685 (5) | 0.0804 (3)   | 0.8780 (3)   | 0.0628 (8)                    |

# supporting information

| H14A ( | 0.7520     | -0.0100    | 0.8704      | 0.094*      |
|--------|------------|------------|-------------|-------------|
| H14B ( | 0.6199     | 0.1200     | 0.8700      | 0.094*      |
| H14C ( | 0.8354     | 0.1002     | 0.9534      | 0.094*      |
| C15 (  | 0.8225 (5) | 0.0987 (3) | 0.6642 (3)  | 0.0628 (8)  |
| H15A ( | 0.7866     | 0.0096     | 0.6600      | 0.094*      |
| H15B ( | 0.9324     | 0.1193     | 0.6059      | 0.094*      |
| H15C ( | 0.6846     | 0.1474     | 0.6505      | 0.094*      |
| H4 (   | 0.935 (6)  | 0.363 (3)  | 0.937 (4)   | 0.119 (17)* |
| H5     | 1.183 (6)  | 0.068 (4)  | 0.8650 (12) | 0.089 (12)* |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | U <sup>22</sup> | $U^{33}$    | $U^{12}$     | $U^{13}$     | U <sup>23</sup> |
|-----|-------------|-----------------|-------------|--------------|--------------|-----------------|
| 01  | 0.0453 (9)  | 0.0336 (9)      | 0.0515 (10) | 0.0040 (7)   | -0.0063 (7)  | -0.0039 (7)     |
| O2  | 0.0526 (10) | 0.0556 (12)     | 0.0683 (12) | 0.0103 (9)   | -0.0159 (9)  | -0.0154 (10)    |
| O3  | 0.0719 (13) | 0.0715 (15)     | 0.0581 (12) | -0.0035 (11) | -0.0275 (10) | 0.0085 (11)     |
| O4  | 0.0630 (11) | 0.0466 (11)     | 0.0400 (9)  | 0.0096 (9)   | -0.0081 (8)  | -0.0065 (8)     |
| 05  | 0.0460 (9)  | 0.0389 (10)     | 0.0616 (12) | 0.0071 (7)   | -0.0058 (8)  | -0.0042 (9)     |
| C1  | 0.0428 (12) | 0.0441 (15)     | 0.0512 (14) | 0.0015 (11)  | -0.0013 (11) | -0.0098 (12)    |
| C2  | 0.0581 (15) | 0.0403 (15)     | 0.0676 (18) | -0.0087 (12) | -0.0002 (14) | -0.0088 (13)    |
| C3  | 0.0722 (17) | 0.0299 (13)     | 0.0683 (18) | -0.0035 (13) | 0.0078 (15)  | -0.0034 (12)    |
| C4  | 0.0567 (14) | 0.0356 (14)     | 0.0508 (15) | 0.0018 (12)  | 0.0047 (12)  | 0.0054 (12)     |
| C5  | 0.0716 (18) | 0.0427 (16)     | 0.0645 (18) | 0.0122 (14)  | 0.0013 (15)  | 0.0140 (14)     |
| C6  | 0.0656 (17) | 0.0572 (19)     | 0.0599 (17) | 0.0137 (14)  | -0.0073 (14) | 0.0186 (15)     |
| C7  | 0.0573 (15) | 0.0544 (17)     | 0.0416 (14) | 0.0014 (13)  | -0.0065 (12) | 0.0098 (13)     |
| C8  | 0.0475 (12) | 0.0371 (12)     | 0.0398 (13) | 0.0011 (10)  | -0.0002 (10) | 0.0037 (10)     |
| C9  | 0.0450 (12) | 0.0345 (13)     | 0.0406 (13) | 0.0035 (10)  | 0.0023 (10)  | 0.0042 (10)     |
| C10 | 0.0586 (16) | 0.114 (3)       | 0.0636 (19) | 0.001 (2)    | -0.0203 (15) | 0.016 (2)       |
| C11 | 0.0447 (12) | 0.0353 (12)     | 0.0455 (13) | -0.0001 (10) | -0.0016 (10) | -0.0042 (11)    |
| C12 | 0.0402 (10) | 0.0373 (12)     | 0.0384 (12) | 0.0051 (10)  | -0.0072 (9)  | -0.0023 (10)    |
| C13 | 0.0373 (10) | 0.0343 (12)     | 0.0499 (13) | -0.0004 (10) | -0.0055 (9)  | -0.0011 (11)    |
| C14 | 0.0524 (15) | 0.0546 (17)     | 0.082 (2)   | -0.0116 (13) | 0.0071 (14)  | 0.0101 (16)     |
| C15 | 0.0668 (17) | 0.0530 (17)     | 0.0672 (18) | -0.0063 (14) | -0.0239 (14) | -0.0130 (15)    |

## Geometric parameters (Å, °)

| 01—C1  | 1.369 (3)  | С7—С8    | 1.400 (3) |
|--------|------------|----------|-----------|
| O1—C9  | 1.373 (3)  | C8—C9    | 1.383 (3) |
| O2—C1  | 1.209 (3)  | C8—C11   | 1.509 (3) |
| O3—C7  | 1.361 (3)  | C10—H10A | 0.9600    |
| O3—C10 | 1.430 (3)  | C10—H10B | 0.9600    |
| O4—C12 | 1.421 (3)  | C10—H10C | 0.9600    |
| O4—H4  | 0.840 (10) | C11—C12  | 1.529 (3) |
| O5—C13 | 1.437 (3)  | C11—H11A | 0.9700    |
| O5—H5  | 0.846 (10) | C11—H11B | 0.9700    |
| C1—C2  | 1.434 (4)  | C12—C13  | 1.540 (3) |
| C2—C3  | 1.332 (4)  | C12—H12  | 0.9800    |
| С2—Н2  | 0.9300     | C13—C15  | 1.510 (4) |
|        |            |          |           |

# supporting information

| C3—C4                           | 1,434 (4)            | C13—C14                                | 1.512 (4)                |
|---------------------------------|----------------------|----------------------------------------|--------------------------|
| C3—H3                           | 0.9300               | C14—H14A                               | 0.9600                   |
| C4—C5                           | 1 384 (4)            | C14—H14B                               | 0.9600                   |
| C4—C9                           | 1 401 (3)            | C14—H14C                               | 0.9600                   |
| C5—C6                           | 1 369 (4)            | C15—H15A                               | 0.9600                   |
| C5—H5A                          | 0.9300               | C15—H15B                               | 0.9600                   |
| C6—C7                           | 1 383 (4)            | C15—H15C                               | 0.9600                   |
| С6—Н6                           | 0.9300               |                                        | 0.9000                   |
|                                 | 0.9500               |                                        |                          |
| C1                              | 122 44 (19)          | O3—C10—H10C                            | 109 5                    |
| C7-O3-C10                       | 118.9 (3)            | H10A - C10 - H10C                      | 109.5                    |
| $C_{12} = 04 = H4$              | 109(3)               | H10B-C10-H10C                          | 109.5                    |
| C12 O = 114                     | 107(3)               | $C_{8}$ $C_{11}$ $C_{12}$              | 109.5                    |
| 02-C1-01                        | 107(3)<br>1164(2)    | C8-C11-H11A                            | 109.5                    |
| 02 - 01 - 01                    | 110.4(2)<br>125.8(3) | $C_{12}$ $C_{11}$ $H_{11A}$            | 109.5                    |
| 01 - C1 - C2                    | 123.8(3)<br>117.9(2) | $C_{12} = C_{11} = H_{11}R$            | 109.5                    |
| $C_1 = C_2$                     | 117.9(2)<br>120.8(3) | $C_{0}$ $C_{11}$ $H_{11}$              | 109.5                    |
| $C_3 = C_2 = C_1$               | 120.8 (5)            |                                        | 109.5                    |
| $C_{3} = C_{2} = H_{2}$         | 119.0                | $\frac{1111}{1111} = \frac{111}{1111}$ | 100.1                    |
| $C_1 = C_2 = C_1$               | 119.0                | 04 - 012 - 011                         | 100.43(10)               |
| $C_2 = C_3 = C_4$               | 121.0 (2)            | 04-012-013                             | 109.84(19)<br>112.20(10) |
| $C_2 = C_3 = H_3$               | 119.5                | C11 - C12 - C13                        | 115.50 (19)              |
| C4 - C3 - H3                    | 119.5                | O4 - C12 - H12                         | 108.4                    |
| $C_{3} - C_{4} - C_{9}$         | 11/.6 (3)            | C11—C12—H12                            | 108.4                    |
| $C_{5}$ $C_{4}$ $C_{3}$         | 124.4 (3)            | C13-C12-H12                            | 108.4                    |
| C9—C4—C3                        | 118.0 (2)            | 05-013-015                             | 107.1 (2)                |
| C6—C5—C4                        | 121.3 (3)            | O5—C13—C14                             | 109.6 (2)                |
| C6—C5—H5A                       | 119.3                | C15—C13—C14                            | 110.5 (2)                |
| C4—C5—H5A                       | 119.3                | O5—C13—C12                             | 109.36 (17)              |
| C5—C6—C7                        | 119.6 (3)            | C15—C13—C12                            | 110.0 (2)                |
| С5—С6—Н6                        | 120.2                | C14—C13—C12                            | 110.2 (2)                |
| С7—С6—Н6                        | 120.2                | C13—C14—H14A                           | 109.5                    |
| 03                              | 124.5 (2)            | C13—C14—H14B                           | 109.5                    |
| O3—C7—C8                        | 113.5 (2)            | H14A—C14—H14B                          | 109.5                    |
| C6—C7—C8                        | 122.0 (3)            | C13—C14—H14C                           | 109.5                    |
| C9—C8—C7                        | 116.2 (2)            | H14A—C14—H14C                          | 109.5                    |
| C9—C8—C11                       | 123.4 (2)            | H14B—C14—H14C                          | 109.5                    |
| C7—C8—C11                       | 120.4 (2)            | C13—C15—H15A                           | 109.5                    |
| 01—C9—C8                        | 116.90 (19)          | C13—C15—H15B                           | 109.5                    |
| O1—C9—C4                        | 119.8 (2)            | H15A—C15—H15B                          | 109.5                    |
| C8—C9—C4                        | 123.3 (2)            | C13—C15—H15C                           | 109.5                    |
| O3—C10—H10A                     | 109.5                | H15A—C15—H15C                          | 109.5                    |
| O3—C10—H10B                     | 109.5                | H15B—C15—H15C                          | 109.5                    |
| H10A—C10—H10B                   | 109.5                |                                        |                          |
| C9-01-C1-02                     | 176 4 (2)            | C1 - 01 - C9 - C4                      | 3 2 (3)                  |
| $C_{2} = 0_{1} = 0_{1} = 0_{2}$ | -32(4)               | C7-C8-C9-O1                            | -1786(2)                 |
| 02-01-02-03                     | -177.7(3)            | $C_{11} - C_{8} - C_{9} - O_{1}$       | 3.6 (3)                  |
| 01 - 01 - 02 - 03               | 19(4)                | C7-C8-C9-C4                            | 0.8(4)                   |
| J. J. J. J. J.                  | ··· ( ')             |                                        | 3.5 ( I)                 |

| C1—C2—C3—C4  | -0.6 (5)   | C11—C8—C9—C4    | -177.1 (3)  |
|--------------|------------|-----------------|-------------|
| C2—C3—C4—C5  | 179.2 (3)  | C5—C4—C9—O1     | 179.5 (2)   |
| C2—C3—C4—C9  | 0.5 (4)    | C3—C4—C9—O1     | -1.8 (4)    |
| C9—C4—C5—C6  | -0.6 (4)   | C5—C4—C9—C8     | 0.1 (4)     |
| C3—C4—C5—C6  | -179.2 (3) | C3—C4—C9—C8     | 178.9 (2)   |
| C4—C5—C6—C7  | 0.0 (5)    | C9—C8—C11—C12   | 101.1 (3)   |
| C10—O3—C7—C6 | 0.6 (4)    | C7—C8—C11—C12   | -76.7 (3)   |
| C10—O3—C7—C8 | -179.7 (2) | C8—C11—C12—O4   | -73.0 (2)   |
| C5—C6—C7—O3  | -179.4 (3) | C8—C11—C12—C13  | 164.76 (19) |
| C5—C6—C7—C8  | 1.0 (5)    | O4—C12—C13—O5   | -70.5 (2)   |
| O3—C7—C8—C9  | 179.0 (2)  | C11—C12—C13—O5  | 51.0 (2)    |
| C6—C7—C8—C9  | -1.3 (4)   | O4—C12—C13—C15  | 172.2 (2)   |
| O3—C7—C8—C11 | -3.1 (4)   | C11—C12—C13—C15 | -66.4 (3)   |
| C6-C7-C8-C11 | 176.6 (3)  | O4—C12—C13—C14  | 50.0 (2)    |
| C1—O1—C9—C8  | -177.4 (2) | C11—C12—C13—C14 | 171.5 (2)   |
|              |            |                 |             |

Hydrogen-bond geometry (Å, °)

| D—H···A                 | D—H      | H···A    | D····A    | D—H··· $A$ |
|-------------------------|----------|----------|-----------|------------|
| O4—H4···O2 <sup>i</sup> | 0.84 (1) | 2.01 (1) | 2.842 (3) | 169 (5)    |
| O5—H5…O2 <sup>ii</sup>  | 0.85 (1) | 2.12 (2) | 2.936 (3) | 163 (4)    |

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+3, *y*-1/2, -*z*+2.