

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Decaaqua- $1\kappa^5O, 4\kappa^5O$ -bis(μ -nitrilotriacetato)- $1:2\kappa^5O:N,O',O'',O''';3: 4\kappa^5N,O,O',O'':O'''-\mu$ -oxido- $2:3\kappa^2O:O$ diperoxido- $2\kappa^2O,O';3\kappa^2O,O'-1,4$ dicopper(II)-2,3-dititanium(IV) heptahydrate

Xiao-Hua Xie,^a Bai-Mu Wang^b and Seik Weng Ng^c*

^aCollege of Chinese Language and Culture, Jinan University, Guangzhou 510610, People's Republic of China, ^bOffice of Rongcheng Vocational College, Rongcheng Vocational College, Rongcheng 476600, People's Republic of China, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 26 January 2010; accepted 2 February 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.026; wR factor = 0.075; data-to-parameter ratio = 16.5.

The tetranuclear title compound, $[Cu_2Ti_2(C_6H_6NO_6)_2O(O_2)_2(H_2O)_{10}]\cdot7H_2O$, lies about a twofold rotation axis that passes through the bridging oxide atom. The titanium atom is N,O,O',O''-chelated by the nitrilotriacetate and O,O'-chelated by the peroidxo group and is coordinated to the bridging O atom in an overall pentagonal-bipyramidal geometry. The O atom of one of the carboxylate $-CO_2$ groups binds to the water-coordinated Cu atom, whose coordination polyhedron is an elongated octahedron. Adjacent tetranuclear molecules are linked through the coordinated and uncoordinated water molecules by $O-H\cdots O$ hydrogen bonds into a three-dimensional network.

Related literature

For the hydrated sodium and ammonium salts of oxobis(nitrilotriacetatoperoxotitanates), see: Schwarzenbach & Girgis (1975); Zhou *et al.* (2004).

 $\beta = 100.825 \ (2)^{\circ}$

Z = 4

V = 3399.9 (4) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.20 \times 0.20$ mm

16221 measured reflections

3894 independent reflections

3408 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 1.81 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.033$

236 parameters

 $\Delta \rho_{\text{max}} = 0.44 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.31 \text{ e } \text{\AA}^{-3}$

Experimental

Crystal data

$$\begin{split} & [\mathrm{Cu}_2\mathrm{Ti}_2(\mathrm{C}_6\mathrm{H}_6\mathrm{NO}_6)_2\mathrm{O}(\mathrm{O}_2)_2^- \\ & (\mathrm{H}_2\mathrm{O})_{10}]\cdot\mathrm{7H}_2\mathrm{O} \\ & M_r = 985.39 \\ & \mathrm{Monoclinic}, \ C2/c \\ & a = 14.9312 \ (10) \\ & \mathrm{\AA} \\ & b = 13.2892 \ (9) \\ & \mathrm{\AA} \\ & c = 17.4449 \ (10) \\ & \mathrm{\AA} \end{split}$$

Data collection

Rigaku R-AXIS Spider IP diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\rm min} = 0.694, T_{\rm max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.026$
$wR(F^2) = 0.075$
S = 1.08
3894 reflections

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1w-H11\cdots O6w^{i}$	0.84	1.80	2.627 (2)	169
$O1w - H12 \cdots O9w^{ii}$	0.84	1.99	2.789(1)	159
$O2w - H21 \cdots O1w^{i}$	0.84	1.91	2.746 (2)	173
$O2w - H22 \cdots O1^{iii}$	0.84	1.90	2.737 (2)	174
$O3w - H31 \cdots O4^{iv}$	0.84	1.93	2.746 (2)	165
$O3w - H32 \cdots O4w^{iii}$	0.84	1.86	2.658 (2)	158
$O4w - H4w1 \cdots O8^{iii}$	0.84	1.85	2.693 (2)	176
$O4w - H4w2 \cdots O8w$	0.84	1.85	2.675 (2)	169
$O5w - H51 \cdots O2^{v}$	0.84	2.02	2.850 (2)	168
$O5w - H52 \cdots O7w$	0.84	2.01	2.813 (3)	161
$O6w - H61 \cdots O5w$	0.84	2.02	2.797 (2)	153
$O6w - H62 \cdots O7w^{vi}$	0.84	2.15	2.965 (3)	164
$O7w - H71 \cdots O3$	0.84	2.38	3.195 (2)	163
$O7w - H72 \cdot \cdot \cdot O9^{vii}$	0.84	2.07	2.900 (2)	168
$O8w - H81 \cdots O3^{viii}$	0.84	2.06	2.890 (2)	172
$O8w - H82 \cdots O4^{ix}$	0.84	2.33	3.148 (3)	164
$O9w - H9 \cdots O2$	0.84	1.89	2.716 (2)	170

 $\begin{array}{l} \text{Symmetry codes: (i) } -x, -y+1, -z+1; (ii) \ x-\frac{1}{2}, y-\frac{1}{2}, z; (iii) -x+\frac{1}{2}, -y+\frac{3}{2}, -z+1; \\ (iv) \ x, -y+1, z+\frac{1}{2}, (v) \ -x+\frac{1}{2}, y-\frac{1}{2}, -z+\frac{1}{2}; \\ (vi) \ -x+\frac{1}{2}, -y+\frac{1}{2}, -z+1; \\ (vii) \ -x+1, -y+1, -z+1; \\ (viii) \ x-\frac{1}{2}, y+\frac{1}{2}, z; \\ (ix) \ -x+\frac{1}{2}, y+\frac{1}{2}, -z+\frac{1}{2}. \end{array}$

Data collection: *RAPID-AUTO* (Rigaku, 2002); cell refinement: *RAPID-AUTO*; data reduction: *CrystalClear* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the the National Science Foundation of China (No. 20971045-B0103303) and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5183).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
 Rigaku (2002). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
 Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA. Schwarzenbach, D. & Girgis, K. (1975). Helv. Chim. Acta, 58, 2391-2398. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Westrip, S. P. (2010). publCIF. In preparation. Zhou, Z.-H., Hong, Q.-M. & Deng, Y.-F. (2004). *Huaxue Xuebao*, **62**, 2379–2385.

Acta Cryst. (2010). E66, m271-m272 [doi:10.1107/S1600536810004198]

Decaaqua-1 κ^5 O,4 κ^5 O-bis(μ -nitrilotriacetato)-1:2 κ^5 O:N,O',O'',O''';3:4 κ^5 N,O,O',O'':O'''- μ -oxido-2:3 κ^2 O:Odiperoxido-2 κ^2 O,O';3 κ^2 O,O'-1,4-dicopper(II)-2,3-dititanium(IV) heptahydrate

Xiao-Hua Xie, Bai-Mu Wang and Seik Weng Ng

S1. Experimental

To a suspension of nitrilotriacetic acid (1.91 g, 10 mol) in water (30 ml) was added titanium tetrabutoxide (3.40 ml). After 12 hours, the mixture was allowed to cool to 273 K; 30% hydrogen peroxide (5 ml) was added. The mixture was filtered. The pH of the filtrate was raised to 4.0. Copper chloride dihydrate (1.70 g, 10 mol) was added. The solution was kept at 279 K for a week. Green crystals were collected and washed with water; the yield was 90%. CH&N elemental analysis. Found (Calc. for $C_{12}H_{46}O_{34}N_2Cu_2Ti_2$): C 14.59 (14.63), H 4.75 (4.71), N 2.82% (2.84%). The crystals do not dissolve in organic solvents.

S2. Refinement

Carbon-bound H-atoms were allowed to ride on their parent atoms (C–H 0.97 Å) with U(H) set to $1.2U_{eq}(C)$. The water H-atoms were located in a difference Fourier map, and were initially refined with distance restraints of O–H 0.84 and H…H 1.37 Å; with U(H) set to $1.5U_{eq}(O)$. Once found, their positions were fixed.

Figure 1

Anisotropic displacement ellipsoid plot (Barbour, 2001) of $Cu_2Ti_2(O)(O_2)_2(H_2O)_{10}(C_6H_6NO_6)_2$ 7H₂O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Decaaqua-1 κ^5 O,4 κ^5 O-bis(μ -nitrilotriacetato)- 1:2 κ^5 O:N,O',O'',O'''; 3:4 κ^5 N,O,O',O'':O'''- μ -oxido- 2:3 κ^2 O:O-diperoxido- 2 κ^2 O,O';3 κ^2 O,O'-1,4-dicopper(II)- 2,3-dititanium(IV) heptahydrate

F(000) = 2024 $D_x = 1.925 \text{ Mg m}^{-3}$

 $\theta = 3.1-27.5^{\circ}$ $\mu = 1.81 \text{ mm}^{-1}$ T = 293 KBlock, green

 $0.30 \times 0.20 \times 0.20$ mm

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 13230 reflections

Crystal data

$[Cu_2Ti_2(C_6H_6NO_6)_2O(O_2)_2(H_2O)_{10}]$ ·7H ₂ O
$M_r = 985.39$
Monoclinic, $C2/c$
Hall symbol: -C 2yc
a = 14.9312 (10) Å
b = 13.2892 (9) Å
c = 17.4449 (10) Å
$\beta = 100.825 (2)^{\circ}$
$V = 3399.9 (4) Å^3$
Z = 4

Data collection

Rigaku R-AXIS Spider IP diffractometer	16221 measured reflections 3894 independent reflections
Radiation source: fine-focus sealed tube	3408 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.033$
ω scan	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Absorption correction: multi-scan	$h = -19 \rightarrow 19$
(ABSCOR; Higashi, 1995)	$k = -17 \rightarrow 17$
$T_{\min} = 0.694, \ T_{\max} = 1.000$	$l = -22 \rightarrow 22$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.026$ Hydrogen site location: inferred from $wR(F^2) = 0.075$ neighbouring sites S = 1.08H-atom parameters constrained 3894 reflections $w = 1/[\sigma^2(F_0^2) + (0.0339P)^2 + 4.0704P]$ 236 parameters where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\text{max}} = 0.44 \text{ e} \text{ Å}^{-3}$ Primary atom site location: structure-invariant direct methods $\Delta \rho_{\rm min} = -0.31 \ {\rm e} \ {\rm \AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cul	0.133265 (16)	0.615605 (19)	0.469933 (13)	0.02095 (8)
Ti1	0.42419 (2)	0.63347 (3)	0.319688 (18)	0.01718 (9)
O1	0.39888 (10)	0.78937 (11)	0.30661 (8)	0.0241 (3)
O2	0.36186 (12)	0.91179 (12)	0.21923 (9)	0.0331 (4)
O3	0.38194 (10)	0.48763 (11)	0.28694 (8)	0.0254 (3)
O4	0.31766 (13)	0.38625 (12)	0.19110 (10)	0.0355 (4)
O5	0.31248 (10)	0.63343 (12)	0.37559 (8)	0.0263 (3)
O6	0.16254 (10)	0.64622 (12)	0.36729 (8)	0.0254 (3)
07	0.5000	0.63818 (16)	0.2500	0.0239 (4)
O8	0.50228 (10)	0.67667 (12)	0.41151 (8)	0.0280 (3)
09	0.49544 (10)	0.56625 (12)	0.40498 (8)	0.0296 (3)
O1w	0.00795 (10)	0.58467 (12)	0.40849 (8)	0.0254 (3)

H11	-0.0307	0.6261	0.4188	0.038*
H12	0.0096	0.5890	0.3607	0.038*
O2w	0.08783 (12)	0.58514 (13)	0.56735 (9)	0.0358 (4)
H21	0.0557	0.5363	0.5765	0.054*
H22	0.0908	0.6269	0.6039	0.054*
O3w	0.25339 (11)	0.62901 (14)	0.53336 (9)	0.0360 (4)
H31	0.2639	0.6289	0.5824	0.054*
H32	0.2965	0.6587	0.5181	0.054*
O4w	0.09054 (10)	0.77903 (12)	0.47459 (8)	0.0274 (3)
H4w1	0.0638	0.7931	0.5115	0.041*
H4w2	0.0566	0.7959	0.4325	0.041*
O5w	0.17335 (12)	0.44158 (13)	0.44550 (9)	0.0355 (4)
H51	0.1595	0.4244	0.3984	0.053*
H52	0.2304	0.4418	0.4585	0.053*
O6w	0.12472 (12)	0.30720 (14)	0.55409 (10)	0.0394 (4)
H61	0.1311	0.3329	0.5114	0.059*
H62	0.1168	0.2450	0.5476	0.059*
O7w	0.36239 (13)	0.41472 (15)	0.45757 (11)	0.0466 (5)
H71	0.3780	0.4405	0.4181	0.070*
H72	0.4018	0.4295	0.4970	0.070*
O8w	-0.01007 (15)	0.80955 (16)	0.33263 (11)	0.0542 (5)
H81	-0.0423	0.8616	0.3237	0.081*
H82	0.0404	0.8207	0.3196	0.081*
O9w	0.5000	1.04750 (17)	0.2500	0.0319 (5)
Н9	0.4536	1.0105	0.2432	0.048*
N1	0.30344 (11)	0.65163 (12)	0.21958 (9)	0.0170 (3)
C1	0.36250 (14)	0.82322 (15)	0.23904 (11)	0.0221 (4)
C2	0.32017 (14)	0.74543 (15)	0.17992 (11)	0.0224 (4)
H2A	0.2631	0.7709	0.1504	0.027*
H2B	0.3607	0.7322	0.1437	0.027*
C3	0.30488 (14)	0.56253 (15)	0.16936 (11)	0.0227 (4)
H3A	0.3465	0.5742	0.1337	0.027*
H3B	0.2445	0.5513	0.1387	0.027*
C4	0.33482 (14)	0.47085 (16)	0.21844 (11)	0.0227 (4)
C5	0.21789 (13)	0.65676 (17)	0.25076 (11)	0.0224 (4)
H5A	0.1768	0.6045	0.2264	0.027*
H5B	0.1888	0.7211	0.2368	0.027*
C6	0.23267 (13)	0.64436 (15)	0.33827 (11)	0.0191 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.01981 (13)	0.02595 (14)	0.01754 (13)	-0.00436 (9)	0.00469 (9)	-0.00037 (9)
Ti1	0.01574 (17)	0.02177 (18)	0.01442 (16)	0.00001 (13)	0.00386 (12)	0.00014 (12)
01	0.0284 (8)	0.0214 (7)	0.0208 (7)	0.0008 (6)	0.0002 (6)	-0.0029 (5)
O2	0.0396 (9)	0.0210 (8)	0.0352 (8)	-0.0057 (7)	-0.0017 (7)	0.0041 (6)
O3	0.0290 (8)	0.0202 (7)	0.0249 (7)	-0.0009 (6)	-0.0005 (6)	0.0013 (6)
O4	0.0464 (10)	0.0203 (8)	0.0360 (9)	0.0004 (7)	-0.0019 (7)	-0.0053 (6)

05	0.0173 (7)	0.0438 (9)	0.0180 (6)	0.0002 (6)	0.0042 (5)	0.0011 (6)
06	0.0192 (7)	0.0363 (8)	0.0220 (7)	-0.0003 (6)	0.0070 (5)	0.0019 (6)
O7	0.0205 (10)	0.0325 (11)	0.0195 (9)	0.000	0.0062 (8)	0.000
08	0.0249 (8)	0.0365 (9)	0.0213 (7)	-0.0015 (7)	0.0006 (6)	-0.0035 (6)
09	0.0281 (8)	0.0350 (9)	0.0243 (7)	0.0051 (7)	0.0013 (6)	0.0063 (6)
O1w	0.0247 (8)	0.0285 (8)	0.0241 (7)	-0.0044 (6)	0.0076 (6)	-0.0029 (6)
O2w	0.0535 (11)	0.0327 (9)	0.0258 (7)	-0.0203 (8)	0.0190 (7)	-0.0081 (7)
O3w	0.0266 (8)	0.0562 (11)	0.0233 (7)	-0.0132 (8)	0.0001 (6)	0.0062 (7)
O4w	0.0268 (8)	0.0330 (8)	0.0224 (7)	-0.0010 (6)	0.0049 (6)	-0.0035 (6)
O5w	0.0370 (9)	0.0380 (9)	0.0310 (8)	0.0004 (7)	0.0052 (7)	-0.0032 (7)
O6w	0.0345 (9)	0.0426 (10)	0.0420 (9)	-0.0011 (8)	0.0098 (7)	-0.0002 (8)
O7w	0.0379 (10)	0.0545 (12)	0.0443 (10)	-0.0041 (9)	-0.0006 (8)	0.0179 (9)
O8w	0.0553 (13)	0.0572 (13)	0.0454 (11)	0.0194 (10)	-0.0024 (9)	0.0064 (9)
O9w	0.0229 (11)	0.0308 (12)	0.0402 (12)	0.000	0.0008 (9)	0.000
N1	0.0187 (8)	0.0169 (8)	0.0159 (7)	-0.0022 (6)	0.0044 (6)	-0.0008 (6)
C1	0.0199 (10)	0.0219 (10)	0.0247 (9)	-0.0014 (8)	0.0047 (7)	0.0007 (8)
C2	0.0262 (10)	0.0216 (10)	0.0186 (9)	-0.0034 (8)	0.0020 (7)	0.0043 (8)
C3	0.0285 (11)	0.0207 (10)	0.0183 (9)	0.0008 (8)	0.0028 (7)	-0.0030(7)
C4	0.0211 (9)	0.0244 (10)	0.0233 (9)	0.0014 (8)	0.0060 (7)	-0.0022 (8)
C5	0.0161 (9)	0.0312 (11)	0.0198 (9)	0.0008 (8)	0.0033 (7)	0.0006 (8)
C6	0.0199 (9)	0.0183 (9)	0.0200 (9)	-0.0017 (7)	0.0060 (7)	-0.0010(7)

Geometric parameters (Å, °)

Cu1—O3w	1.9308 (16)	O3w—H31	0.8399
Cu1—O6	1.9639 (14)	O3w—H32	0.8400
Cu1—O2w	1.9862 (15)	O4w—H4w1	0.8400
Cu1—O1w	2.0163 (15)	O4w—H4w2	0.8399
Cu1—O4w	2.2693 (16)	O5w—H51	0.8401
Cu1—O5w	2.4462 (17)	O5w—H52	0.8400
Til—O7	1.8110 (3)	O6w—H61	0.8400
Ti1—09	1.8838 (14)	O6w—H62	0.8400
Til—O8	1.8850 (14)	O7w—H71	0.8400
Til—O5	2.0843 (14)	O7w—H72	0.8401
Ti1—O3	2.0845 (15)	O8w—H81	0.8400
Til—Ol	2.1106 (15)	O8w—H82	0.8400
Til—N1	2.2751 (16)	O9w—H9	0.8401
01—C1	1.283 (2)	N1—C2	1.470 (2)
O2—C1	1.226 (3)	N1—C3	1.475 (2)
O3—C4	1.287 (2)	N1—C5	1.481 (2)
O4—C4	1.229 (3)	C1—C2	1.512 (3)
O5—C6	1.254 (2)	C2—H2A	0.9700
O6—C6	1.246 (2)	C2—H2B	0.9700
O7—Ti1 ⁱ	1.8110 (3)	C3—C4	1.508 (3)
08—09	1.474 (2)	С3—НЗА	0.9700
O1w—H11	0.8400	С3—Н3В	0.9700
O1w—H12	0.8401	C5—C6	1.510 (3)
O2w—H21	0.8400	С5—Н5А	0.9700

O2w—H22	0.8400	С5—Н5В	0.9700
O3w—Cu1—O6	99.30 (6)	Cu1—O2w—H22	122.5
O3w—Cu1—O2w	87.61 (7)	H21—O2w—H22	108.5
O6—Cu1—O2w	173.02 (7)	Cu1—O3w—H31	124.0
O3w—Cu1—O1w	173.18 (7)	Cu1—O3w—H32	123.1
O6—Cu1—O1w	84.30 (6)	H31—O3w—H32	108.4
O2w—Cu1—O1w	88.93 (6)	Cu1—O4w—H4w1	114.7
O3w—Cu1—O4w	97.37 (7)	Cu1—O4w—H4w2	110.6
O6—Cu1—O4w	86.94 (6)	H4w1—O4w—H4w2	108.4
O2w—Cu1—O4w	91.20 (6)	Cu1—O5w—H51	113.8
O1w—Cu1—O4w	88.57 (6)	Cu1—O5w—H52	102.6
O3w— $Cu1$ — $O5w$	87.46 (7)	H51—O5w—H52	108.4
06—Cu1—O5w	86.18 (6)	H61 - O6w - H62	108.4
0^2 w—Cu1—O5w	95.19 (6)	H71 - O7w - H72	108.4
01w $Cu1$ $05w$	87.00(6)	H81 - O8w - H82	108.5
04w—Cu1—O5w	172 15 (5)	$C_2 = N_1 = C_3$	112 23 (14)
07-Ti1-09	102 42 (6)	$C_2 = N_1 = C_5$	111.62 (16)
07—Ti1—08	101.25(5)	$C_3 = N_1 = C_5$	111.02(10) 111.40(15)
09-Ti1-08	46.04 (7)	$C_2 = N_1 = T_1$	105 73 (11)
07—Ti1—05	165 95 (4)	$C_3 = N_1 = T_1^{-1}$	105.83 (11)
09—Ti1—05	90.75 (6)	C5-N1-Ti1	109.69 (11)
08—Ti1—05	91 38 (6)	$0^{2}-C_{1}-0^{1}$	125 10 (19)
07—Ti1—03	92 48 (8)	02 - C1 - C2	118 93 (18)
09-Ti1-03	82.68 (6)	01 - C1 - C2	115.95 (10)
08—Ti1—O3	128 55 (6)	N1-C2-C1	110.17(15)
05—Ti1—03	84 28 (6)	N1-C2-H2A	109.6
07—Ti1—01	90.88 (8)	C1 - C2 - H2A	109.6
09-Ti1-01	127 87 (6)	N1—C2—H2B	109.6
08-Ti1-01	82,10,(6)	C1-C2-H2B	109.6
05—Ti1—01	84 72 (6)	$H^2A - C^2 - H^2B$	108.1
03—Ti1—01	147.58 (6)	N1—C3—C4	110.31 (15)
07—Ti1—N1	89 21 (4)	N1—C3—H3A	109.6
09—Ti1—N1	154 83 (7)	C4—C3—H3A	109.6
08—Ti1—N1	153 44 (7)	N1—C3—H3B	109.6
05—Ti1—N1	76.74 (6)	C4—C3—H3B	109.6
03-Ti1-N1	74 50 (6)	H_{3A} C_{3} H_{3B}	108.1
01-Ti1-N1	73.32 (6)	04	123.8 (2)
C1-O1-Ti1	118 67 (13)	04-C4-C3	120.05(18)
C4-O3-Til	120.00 (13)	03-C4-C3	116.06 (18)
C6	121.52(12)	N1-C5-C6	113.20 (16)
C6	135 58 (13)	N1—C5—H5A	108.9
$Ti1-07-Ti1^{i}$	176.04 (14)	C6—C5—H5A	108.9
09—08—Til	66.94 (8)	N1—C5—H5B	108.9
08—09—Til	67.02 (8)	C6—C5—H5B	108.9
Cu1—O1w—H11	111.0	H5A—C5—H5B	107.8
Cu1—O1w—H12	108.4	06	125.48 (17)
H11—O1w—H12	108.4	O6—C6—C5	115.73 (17)

Cu1—O2w—H21	128.2	O5—C6—C5	118.79 (17)
07—Ti1—O1—C1	60.95 (14)	01—Ti1—N1—C2	34.18 (11)
09—Ti1—O1—C1	167.48 (14)	07—Ti1—N1—C3	62.26 (13)
O8—Ti1—O1—C1	162.18 (15)	O9—Ti1—N1—C3	-56.2 (2)
O5—Ti1—O1—C1	-105.68 (15)	O8—Ti1—N1—C3	176.38 (14)
O3—Ti1—O1—C1	-35.1 (2)	O5—Ti1—N1—C3	-118.19 (12)
N1—Ti1—O1—C1	-27.96 (14)	O3—Ti1—N1—C3	-30.53 (11)
O7—Ti1—O3—C4	-67.06 (15)	O1—Ti1—N1—C3	153.42 (13)
O9—Ti1—O3—C4	-169.27 (15)	O7—Ti1—N1—C5	-177.46 (14)
O8—Ti1—O3—C4	-173.57 (14)	O9—Ti1—N1—C5	64.1 (2)
O5—Ti1—O3—C4	99.23 (15)	O8—Ti1—N1—C5	-63.3 (2)
O1—Ti1—O3—C4	28.5 (2)	O5—Ti1—N1—C5	2.08 (12)
N1—Ti1—O3—C4	21.43 (14)	O3—Ti1—N1—C5	89.74 (13)
O7—Ti1—O5—C6	0.3 (4)	O1—Ti1—N1—C5	-86.31 (13)
O9—Ti1—O5—C6	-159.50 (16)	Ti1—O1—C1—O2	-163.57 (17)
O8—Ti1—O5—C6	154.45 (16)	Ti1—O1—C1—C2	14.5 (2)
O3—Ti1—O5—C6	-76.94 (16)	C3—N1—C2—C1	-152.71 (16)
O1—Ti1—O5—C6	72.52 (16)	C5—N1—C2—C1	81.41 (19)
N1—Ti1—O5—C6	-1.55 (15)	Ti1—N1—C2—C1	-37.80 (18)
O3w—Cu1—O6—C6	21.7 (2)	O2-C1-C2-N1	-163.33 (19)
O1w—Cu1—O6—C6	-152.5 (2)	O1—C1—C2—N1	18.4 (2)
O4w—Cu1—O6—C6	118.6 (2)	C2—N1—C3—C4	151.50 (17)
O5w—Cu1—O6—C6	-65.1 (2)	C5—N1—C3—C4	-82.5 (2)
O7—Ti1—O8—O9	-96.49 (10)	Ti1—N1—C3—C4	36.65 (18)
O5—Ti1—O8—O9	89.71 (9)	Ti1—O3—C4—O4	170.04 (17)
O3—Ti1—O8—O9	5.92 (11)	Ti1—O3—C4—C3	-6.4 (2)
O1—Ti1—O8—O9	174.19 (9)	N1-C3-C4-O4	160.50 (19)
N1—Ti1—O8—O9	152.02 (13)	N1-C3-C4-O3	-22.9 (2)
O7—Ti1—O9—O8	93.73 (10)	C2—N1—C5—C6	-119.28 (18)
O5—Ti1—O9—O8	-91.20 (9)	C3—N1—C5—C6	114.39 (18)
O3—Ti1—O9—O8	-175.33 (9)	Ti1—N1—C5—C6	-2.4 (2)
O1—Ti1—O9—O8	-7.30 (11)	Cu1—O6—C6—O5	-11.1 (3)
N1—Ti1—O9—O8	-150.44 (14)	Cu1—O6—C6—C5	169.07 (15)
O7—Ti1—N1—C2	-56.98 (13)	Ti1O5C6O6	-179.24 (16)
O9—Ti1—N1—C2	-175.44 (15)	Ti1—O5—C6—C5	0.6 (3)
O8—Ti1—N1—C2	57.15 (19)	N1—C5—C6—O6	-178.72 (17)
O5—Ti1—N1—C2	122.57 (13)	N1—C5—C6—O5	1.4 (3)
O3—Ti1—N1—C2	-149.77 (13)		

Symmetry code: (i) -x+1, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D····A	D—H…A
01 <i>w</i> —H11…O6 <i>w</i> ⁱⁱ	0.84	1.80	2.627 (2)	169
O1 <i>w</i> —H12···O9 <i>w</i> ⁱⁱⁱ	0.84	1.99	2.789(1)	159
$O2w$ —H21···O1 w^{ii}	0.84	1.91	2.746 (2)	173

O2w—H22····O1 ^{iv}	0.84	1.90	2.737 (2)	174	
O3 <i>w</i> —H31····O4 ^v	0.84	1.93	2.746 (2)	165	
$O3w$ —H32···O4 w^{iv}	0.84	1.86	2.658 (2)	158	
$O4w$ — $H4w1$ ··· $O8^{iv}$	0.84	1.85	2.693 (2)	176	
O4 <i>w</i> —H4 <i>w</i> 2···O8 <i>w</i>	0.84	1.85	2.675 (2)	169	
O5 <i>w</i> —H51····O2 ^{vi}	0.84	2.02	2.850 (2)	168	
O5 <i>w</i> —H52···O7 <i>w</i>	0.84	2.01	2.813 (3)	161	
O6 <i>w</i> —H61····O5 <i>w</i>	0.84	2.02	2.797 (2)	153	
O6 <i>w</i> —H62····O7 <i>w</i> ^{vii}	0.84	2.15	2.965 (3)	164	
O7 <i>w</i> —H71···O3	0.84	2.38	3.195 (2)	163	
O7 <i>w</i> —H72····O9 ^{viii}	0.84	2.07	2.900 (2)	168	
O8 <i>w</i> —H81····O3 ^{ix}	0.84	2.06	2.890 (2)	172	
O8 <i>w</i> —H82····O4 ^x	0.84	2.33	3.148 (3)	164	
O9 <i>w</i> —H9····O2	0.84	1.89	2.716 (2)	170	

Symmetry codes: (ii) -*x*, -*y*+1, -*z*+1; (iii) *x*-1/2, *y*-1/2, *z*; (iv) -*x*+1/2, -*y*+3/2, -*z*+1; (v) *x*, -*y*+1, *z*+1/2; (vi) -*x*+1/2, *y*-1/2, -*z*+1/2; (vii) -*x*+1/2, -*y*+1/2, -*z*+1/2; (viii) -*x*+1/2, -*y*+1/2; (viii) -*x*+1/2, -*y*+1/2; (viii) -*x*+1/2; (v