

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Mesitylmethyl-1Hbenzotriazole 3-oxide

B. Ravindran Durai Nayagam,^a* Samuel Robinson Jebas,^b J. Shakina,^c R. Murugesan.^d and Dieter Schollmeyer^e

^aDepartment of Chemistry, Popes College, Sawyerpuram 628251, Tamilnadu, India, ^bDepartment of Physics, Sethupathy Government Arts College, Ramanathapuram 623502, Tamilnadu, India, ^cDepartment of Chemistry, Sarah Tucker College, Tirunelveli 627007, Tamilnadu, India, ^dDepartment of Chemistry, T.D.M.N.S. College, T. Kallikulam, Tamilnadu, India, and ^eInstitut für Organische Chemie, Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germanv Correspondence e-mail: b_ravidurai@yahoo.com

Received 26 January 2010; accepted 7 February 2010

Key indicators: single-crystal X-ray study; T = 193 K; mean σ (C–C) = 0.002 Å; R factor = 0.046; wR factor = 0.132; data-to-parameter ratio = 13.8.

In the title compound, C₁₆H₁₇N₃O, the benzotriazole ring forms a dihedral angle of $77.25 (6)^{\circ}$ with the phenyl ring. The benzotriazole ring is essentially planar with a maximum deviation of 0.012 (19) Å. Weak intermolecular $C-H\cdots O$ hydrogen bonds form $R_2^2(10)$ motifs. The crystal packing is consolidated by $\pi - \pi$ interactions with centroid-centroid distances of 3.5994 (12) Å together with very weak C-H··· π interactions.

Related literature

For bond-length data, see: Allen et al. (1987). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Experimental

Crystal data C16H17N3O

 $M_r = 267.33$

Monoclinic, $P2_1/c$	
a = 8.6269 (19) Å	
b = 7.3422 (4) Å	
c = 21.890(5) Å	
$\beta = 103.133 \ (11)^{\circ}$	
V = 1350.2 (4) Å ³	

Data collection

Enraf–Nonius CAD-4	2722 measured reflections
diffractometer	2545 independent reflections
Absorption correction: ψ scan	2243 reflections with $I > 2\sigma(I)$
(CORINC; Draeger & Gattow	$R_{\rm int} = 0.091$
(1971)	3 standard reflections every 60 min
$T_{\min} = 0.799, \ T_{\max} = 0.936$	intensity decay: 2%

Z = 4

Cu $K\alpha$ radiation

 $0.35 \times 0.20 \times 0.10 \text{ mm}$

 $\mu = 0.67 \text{ mm}^{-1}$

T = 193 K

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	184 parameters
$wR(F^2) = 0.132$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.23 \text{ e} \text{ Å}^{-3}$
2546 reflections	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C12–C17 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot$	·A
$C6-H6\cdots O10^{i}$ $C16-H16\cdots O10^{ii}$ $C18-H18A\cdots Cg3^{iii}$	0.95 0.95 0.98	2.35 2.58 2.98	3.190 (2) 3.506 (2) 3.810 (18)	147 165 144	
Symmetry codes: (i) $-x + 2, y - \frac{1}{2}, -z + \frac{1}{2}.$	-x + 1, -x	y + 1, -z;	(ii) $-x + 1, y - \frac{1}{2}$	$, -z + \frac{1}{2};$ (i	ii)

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: CORINC (Draeger & Gattow, 1971); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5182).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem.Soc. Perkin Trans. 2, pp. S1-S19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Draeger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2010). E66, o637 [doi:10.1107/S1600536810004824]

1-Mesitylmethyl-1*H*benzotriazole 3-oxide

B. Ravindran Durai Nayagam, Samuel Robinson Jebas, J. Shakina, R. Murugesan. and Dieter Schollmeyer

S1. Comment

The asymmetric unit of (I) comprises of one molecule of the title compound (Fig 1). The bond lengths and angles are found to have normal values (Allen *et al.*, 1987). The benzotriazole ring is essentially planar with the maximum deviation from planarity being 0.012 (19) Å for atom C5. The mean plane of the benzotriazole ring (N1/N9/N8/C2—C7) forming a dihedral angle of 77.25 (6) Å with the mean plane of the phenyl ring (C12—C17). An intermolecular weak C—H···O hydrogen bonding generates a ring of motif $R_2^2(10)$ (Bernstein *et al.*, 1995)

The crystal packing is stabilized by π — π stacking interactions [Cg1— $Cg2^i$ = of 3.5994 (12) Å; Cg1: (N1/N9/N8/C7/C2); Cg2:(C2—C): Symmetry code:(i) 1-X, -Y, -Z] together with weak C—H··· π interactions.

S2. Experimental

A mixture of mono(bromomethyl)mesitylene (0.213 g, 1 mmol) and sodium salt of 1-Hydroxybenzotriazole (0.157,1 mmol) in ethanol (20 ml) was heated at 333 K with stirring for 30 min. The compound formed was filtered off, and dried. The compound was dissolved in ethanol and chloroform (1: 1v/v) and allowed to undergo slow evaporation. Colourless block shaped crystals were obtained after a week.

S3. Refinement

All the H atoms were positioned geometrically (C—H=0.95 Å (aromatic); C—H=0.98 (methyl) or C—H=0.99 Å (methylene) and refined using a riding model with, U_{iso} (H)=1.2U_{equ}(C, methylene) and 1.5U_{equ}(C_{methyl}). A rotating group model was used for the methyl groups.

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.

1-Mesitylmethyl-1Hbenzotriazole 3-oxide

Crystal data

C₁₆H₁₇N₃O $M_r = 267.33$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.6269 (19) Å b = 7.3422 (4) Å c = 21.890 (5) Å $\beta = 103.133 (11)^{\circ}$ $V = 1350.2 (4) \text{ Å}^3$ Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: rotating anode Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (CORINC; Draeger & Gattow (1971) $T_{\min} = 0.799, T_{\max} = 0.936$ 2722 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.132$ S = 1.092546 reflections 184 parameters 0 restraints F(000) = 568 $D_x = 1.315 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 25 reflections $\theta = 35-48^{\circ}$ $\mu = 0.67 \text{ mm}^{-1}$ T = 193 KBlock, colourless $0.35 \times 0.20 \times 0.10 \text{ mm}$

2545 independent reflections 2243 reflections with $I > 2\sigma(I)$ $R_{int} = 0.091$ $\theta_{max} = 69.9^{\circ}, \ \theta_{min} = 4.2^{\circ}$ $h = 0 \rightarrow 10$ $k = -8 \rightarrow 0$ $l = -26 \rightarrow 25$ 3 standard reflections every 60 min intensity decay: 2%

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0705P)^{2} + 0.4335P] \qquad \Delta \rho_{max} = 0.23 \text{ e} \text{ Å}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = -0.26 \text{ e} \text{ Å}^{-3}$ $(\Delta/\sigma)_{max} < 0.001$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement part	ırameters (Ų)
---	---------------

xyz U_{160}^{*}/U_{eq} NI0.70466 (16)-0.01341 (18)0.11411 (6)0.0277 (3)C20.71052 (18)0.0150 (2)0.05338 (7)0.0272 (3)C30.7611 (2)-0.0918 (2)0.00798 (8)0.0369 (4)H30.7999-0.21230.01670.044*C40.7513 (2)-0.0124 (3)-0.04902 (8)0.0411 (4)H40.7846-0.0801-0.08080.049*C50.6933 (2)0.1673 (3)-0.06290 (8)0.0364 (4)H50.69000.2166-0.10330.044*C60.64222 (18)0.2710 (2)-0.01957 (7)0.0317 (4)H60.60230.3909-0.02860.038*C70.65231 (17)0.1899 (2)0.03868 (7)0.0262 (3)N80.61389 (15)0.25395 (18)0.09300 (6)0.0285 (3)N90.64505 (16)0.13267 (18)0.13845 (6)0.0294 (3)O100.56088 (16)0.41370 (17)0.10077 (6)0.0416 (3)C110.7402 (2)-0.1818 (2)0.15108 (7)0.0308 (4)H11B0.6421-0.25620.14500.037*C120.80200 (18)-0.1471 (2)0.22014 (7)0.0258 (3)C130.96499 (17)-0.1154 (2)0.24416 (7)0.0278 (3)C141.01987 (18)-0.0911 (2)0.30840 (8)0.0307 (4)H141.1305-0.07280.32490.037*	
N1 $0.70466 (16)$ $-0.01341 (18)$ $0.11411 (6)$ $0.0277 (3)$ C2 $0.71052 (18)$ $0.0150 (2)$ $0.05338 (7)$ $0.0272 (3)$ C3 $0.7611 (2)$ $-0.0918 (2)$ $0.00798 (8)$ $0.0369 (4)$ H3 0.7999 -0.2123 0.0167 $0.044*$ C4 $0.7513 (2)$ $-0.0124 (3)$ $-0.04902 (8)$ $0.0411 (4)$ H4 0.7846 -0.0801 -0.0808 $0.049*$ C5 $0.6933 (2)$ $0.1673 (3)$ $-0.06290 (8)$ $0.0364 (4)$ H5 0.6900 0.2166 -0.1033 $0.044*$ C6 $0.64222 (18)$ $0.2710 (2)$ $-0.01957 (7)$ $0.0317 (4)$ H6 0.6023 0.3909 -0.0286 $0.038*$ C7 $0.65231 (17)$ $0.1899 (2)$ $0.03868 (7)$ $0.0262 (3)$ N8 $0.61389 (15)$ $0.25395 (18)$ $0.09300 (6)$ $0.2285 (3)$ N9 $0.64505 (16)$ $0.13267 (18)$ $0.13845 (6)$ $0.0294 (3)$ O10 $0.56088 (16)$ $0.41370 (17)$ $0.10077 (6)$ $0.0416 (3)$ C11 $0.7402 (2)$ $-0.1818 (2)$ $0.15108 (7)$ $0.0308 (4)$ H11B 0.6421 -0.2562 0.1450 $0.037*$ C12 $0.80200 (18)$ $-0.1471 (2)$ $0.22014 (7)$ $0.02258 (3)$ C13 $0.96499 (17)$ $-0.1154 (2)$ $0.24416 (7)$ $0.0278 (3)$ C14 $1.01987 (18)$ $-0.0911 (2)$ $0.30840 (8)$ $0.0307 (4)$	
C2 $0.71052 (18)$ $0.0150 (2)$ $0.05338 (7)$ $0.0272 (3)$ C3 $0.7611 (2)$ $-0.0918 (2)$ $0.00798 (8)$ $0.0369 (4)$ H3 0.7999 -0.2123 0.0167 $0.044*$ C4 $0.7513 (2)$ $-0.0124 (3)$ $-0.04902 (8)$ $0.0411 (4)$ H4 0.7846 -0.0801 -0.0808 $0.049*$ C5 $0.6933 (2)$ $0.1673 (3)$ $-0.06290 (8)$ $0.0364 (4)$ H5 0.6900 0.2166 -0.1033 $0.044*$ C6 $0.64222 (18)$ $0.2710 (2)$ $-0.01957 (7)$ $0.0317 (4)$ H6 0.6023 0.3909 -0.0286 $0.038*$ C7 $0.65231 (17)$ $0.1899 (2)$ $0.03868 (7)$ $0.0262 (3)$ N8 $0.61389 (15)$ $0.25395 (18)$ $0.09300 (6)$ $0.0285 (3)$ N9 $0.64505 (16)$ $0.13267 (18)$ $0.13845 (6)$ $0.0294 (3)$ O10 $0.56088 (16)$ $0.41370 (17)$ $0.10077 (6)$ $0.0416 (3)$ C11 $0.7402 (2)$ $-0.1818 (2)$ $0.15108 (7)$ $0.0308 (4)$ H11A 0.8203 -0.2529 0.1352 $0.037*$ H11B 0.6421 -0.2562 0.1450 $0.037*$ C12 $0.80200 (18)$ $-0.1471 (2)$ $0.22014 (7)$ $0.0258 (3)$ C13 $0.96499 (17)$ $-0.1154 (2)$ $0.30840 (8)$ $0.0307 (4)$ H14 1.1305 -0.0728 0.3249 $0.037*$	
C3 $0.7611(2)$ $-0.0918(2)$ $0.00798(8)$ $0.0369(4)$ H3 0.7999 -0.2123 0.0167 $0.044*$ C4 $0.7513(2)$ $-0.0124(3)$ $-0.04902(8)$ $0.0411(4)$ H4 0.7846 -0.0801 -0.0808 $0.049*$ C5 $0.6933(2)$ $0.1673(3)$ $-0.06290(8)$ $0.0364(4)$ H5 0.6900 0.2166 -0.1033 $0.044*$ C6 $0.64222(18)$ $0.2710(2)$ $-0.01957(7)$ $0.0317(4)$ H6 0.6023 0.3909 -0.0286 $0.038*$ C7 $0.65231(17)$ $0.1899(2)$ $0.03868(7)$ $0.0262(3)$ N8 $0.61389(15)$ $0.25395(18)$ $0.09300(6)$ $0.0285(3)$ N9 $0.64505(16)$ $0.13267(18)$ $0.13845(6)$ $0.0294(3)$ O10 $0.56088(16)$ $0.41370(17)$ $0.10077(6)$ $0.0308(4)$ H11A 0.8203 -0.2529 0.1352 $0.037*$ H11B 0.6421 -0.2562 0.1450 $0.037*$ C12 $0.80200(18)$ $-0.1471(2)$ $0.22014(7)$ $0.0228(3)$ C13 $0.96499(17)$ $-0.1154(2)$ $0.24416(7)$ $0.0278(3)$ C14 $1.01987(18)$ $-0.0911(2)$ $0.30840(8)$ $0.0307(4)$ H14 1.1305 -0.0728 0.3249 $0.037*$	
H3 0.7999 -0.2123 0.0167 $0.044*$ C4 $0.7513(2)$ $-0.0124(3)$ $-0.04902(8)$ $0.0411(4)$ H4 0.7846 -0.0801 -0.0808 $0.049*$ C5 $0.6933(2)$ $0.1673(3)$ $-0.06290(8)$ $0.0364(4)$ H5 0.6900 0.2166 -0.1033 $0.044*$ C6 $0.64222(18)$ $0.2710(2)$ $-0.01957(7)$ $0.317(4)$ H6 0.6023 0.3909 -0.0286 $0.038*$ C7 $0.65231(17)$ $0.1899(2)$ $0.03868(7)$ $0.262(3)$ N8 $0.61389(15)$ $0.25395(18)$ $0.09300(6)$ $0.2285(3)$ N9 $0.64505(16)$ $0.13267(18)$ $0.13845(6)$ $0.0294(3)$ O10 $0.56088(16)$ $0.41370(17)$ $0.10077(6)$ $0.0308(4)$ H11A 0.8203 -0.2529 0.1352 $0.037*$ H11B 0.6421 -0.2562 0.1450 $0.037*$ C12 $0.80200(18)$ $-0.1471(2)$ $0.22014(7)$ $0.0258(3)$ C13 $0.96499(17)$ $-0.1154(2)$ $0.24416(7)$ $0.0278(3)$ C14 $1.01987(18)$ $-0.0911(2)$ $0.30840(8)$ $0.0307(4)$ H14 1.1305 -0.0728 0.3249 $0.037*$	
C4 $0.7513 (2)$ $-0.0124 (3)$ $-0.04902 (8)$ $0.0411 (4)$ H4 0.7846 -0.0801 -0.0808 $0.049*$ C5 $0.6933 (2)$ $0.1673 (3)$ $-0.06290 (8)$ $0.0364 (4)$ H5 0.6900 0.2166 -0.1033 $0.044*$ C6 $0.64222 (18)$ $0.2710 (2)$ $-0.01957 (7)$ $0.0317 (4)$ H6 0.6023 0.3909 -0.0286 $0.038*$ C7 $0.65231 (17)$ $0.1899 (2)$ $0.03868 (7)$ $0.0262 (3)$ N8 $0.61389 (15)$ $0.25395 (18)$ $0.09300 (6)$ $0.0285 (3)$ N9 $0.64505 (16)$ $0.13267 (18)$ $0.13845 (6)$ $0.0294 (3)$ O10 $0.56088 (16)$ $0.41370 (17)$ $0.10077 (6)$ $0.0416 (3)$ C11 $0.7402 (2)$ $-0.1818 (2)$ $0.15108 (7)$ $0.0308 (4)$ H11A 0.8203 -0.2529 0.1352 $0.037*$ H11B 0.6421 -0.2562 0.1450 $0.037*$ C12 $0.80200 (18)$ $-0.1471 (2)$ $0.22014 (7)$ $0.0258 (3)$ C13 $0.96499 (17)$ $-0.1154 (2)$ $0.24416 (7)$ $0.0278 (3)$ C14 $1.01987 (18)$ $-0.0911 (2)$ $0.30840 (8)$ $0.0307 (4)$ H14 1.1305 -0.0728 0.3249 $0.037*$	
H4 0.7846 -0.0801 -0.0808 $0.049*$ C5 $0.6933 (2)$ $0.1673 (3)$ $-0.06290 (8)$ $0.0364 (4)$ H5 0.6900 0.2166 -0.1033 $0.044*$ C6 $0.64222 (18)$ $0.2710 (2)$ $-0.01957 (7)$ $0.0317 (4)$ H6 0.6023 0.3909 -0.0286 $0.038*$ C7 $0.65231 (17)$ $0.1899 (2)$ $0.03868 (7)$ $0.0262 (3)$ N8 $0.61389 (15)$ $0.25395 (18)$ $0.09300 (6)$ $0.0285 (3)$ N9 $0.64505 (16)$ $0.13267 (18)$ $0.13845 (6)$ $0.0294 (3)$ O10 $0.56088 (16)$ $0.41370 (17)$ $0.10077 (6)$ $0.0416 (3)$ C11 $0.7402 (2)$ $-0.1818 (2)$ $0.15108 (7)$ $0.0308 (4)$ H11B 0.6421 -0.2562 0.1450 $0.037*$ C12 $0.80200 (18)$ $-0.1471 (2)$ $0.22014 (7)$ $0.0258 (3)$ C13 $0.96499 (17)$ $-0.1154 (2)$ $0.24416 (7)$ $0.0278 (3)$ C14 $1.01987 (18)$ $-0.0911 (2)$ $0.30840 (8)$ $0.0307 (4)$ H14 1.305 -0.0728 0.3249 $0.037*$	
C5 $0.6933 (2)$ $0.1673 (3)$ $-0.06290 (8)$ $0.0364 (4)$ H5 0.6900 0.2166 -0.1033 $0.044*$ C6 $0.64222 (18)$ $0.2710 (2)$ $-0.01957 (7)$ $0.0317 (4)$ H6 0.6023 0.3909 -0.0286 $0.038*$ C7 $0.65231 (17)$ $0.1899 (2)$ $0.03868 (7)$ $0.0262 (3)$ N8 $0.61389 (15)$ $0.25395 (18)$ $0.09300 (6)$ $0.0285 (3)$ N9 $0.64505 (16)$ $0.13267 (18)$ $0.13845 (6)$ $0.0294 (3)$ O10 $0.56088 (16)$ $0.41370 (17)$ $0.10077 (6)$ $0.0416 (3)$ C11 $0.7402 (2)$ $-0.1818 (2)$ $0.15108 (7)$ $0.0308 (4)$ H11A 0.8203 -0.2529 0.1352 $0.037*$ H11B 0.6421 -0.2562 0.1450 $0.037*$ C12 $0.80200 (18)$ $-0.1471 (2)$ $0.22014 (7)$ $0.0258 (3)$ C13 $0.96499 (17)$ $-0.1154 (2)$ $0.30840 (8)$ $0.0307 (4)$ H14 1.1305 -0.0728 0.3249 $0.037*$	
H5 0.6900 0.2166 -0.1033 $0.044*$ C6 $0.64222 (18)$ $0.2710 (2)$ $-0.01957 (7)$ $0.0317 (4)$ H6 0.6023 0.3909 -0.0286 $0.038*$ C7 $0.65231 (17)$ $0.1899 (2)$ $0.03868 (7)$ $0.0262 (3)$ N8 $0.61389 (15)$ $0.25395 (18)$ $0.09300 (6)$ $0.0285 (3)$ N9 $0.64505 (16)$ $0.13267 (18)$ $0.13845 (6)$ $0.0294 (3)$ O10 $0.56088 (16)$ $0.41370 (17)$ $0.10077 (6)$ $0.0416 (3)$ C11 $0.7402 (2)$ $-0.1818 (2)$ $0.15108 (7)$ $0.0308 (4)$ H11A 0.8203 -0.2529 0.1352 $0.037*$ H11B 0.6421 -0.2562 0.1450 $0.0278 (3)$ C12 $0.80200 (18)$ $-0.1471 (2)$ $0.22014 (7)$ $0.0258 (3)$ C13 $0.96499 (17)$ $-0.1154 (2)$ $0.30840 (8)$ $0.0307 (4)$ H14 1.1305 -0.0728 0.3249 $0.037*$	
C6 $0.64222 (18)$ $0.2710 (2)$ $-0.01957 (7)$ $0.0317 (4)$ H6 0.6023 0.3909 -0.0286 $0.038*$ C7 $0.65231 (17)$ $0.1899 (2)$ $0.03868 (7)$ $0.0262 (3)$ N8 $0.61389 (15)$ $0.25395 (18)$ $0.09300 (6)$ $0.0285 (3)$ N9 $0.64505 (16)$ $0.13267 (18)$ $0.13845 (6)$ $0.0294 (3)$ O10 $0.56088 (16)$ $0.41370 (17)$ $0.10077 (6)$ $0.0416 (3)$ C11 $0.7402 (2)$ $-0.1818 (2)$ $0.15108 (7)$ $0.0308 (4)$ H11A 0.8203 -0.2529 0.1352 $0.037*$ C12 $0.80200 (18)$ $-0.1471 (2)$ $0.22014 (7)$ $0.0258 (3)$ C13 $0.96499 (17)$ $-0.1154 (2)$ $0.24416 (7)$ $0.0278 (3)$ C14 $1.01987 (18)$ -0.0728 0.3249 $0.037*$	
H6 0.6023 0.3909 -0.0286 $0.038*$ C7 $0.65231(17)$ $0.1899(2)$ $0.03868(7)$ $0.0262(3)$ N8 $0.61389(15)$ $0.25395(18)$ $0.09300(6)$ $0.0285(3)$ N9 $0.64505(16)$ $0.13267(18)$ $0.13845(6)$ $0.0294(3)$ O10 $0.56088(16)$ $0.41370(17)$ $0.10077(6)$ $0.0416(3)$ C11 $0.7402(2)$ $-0.1818(2)$ $0.15108(7)$ $0.0308(4)$ H11A 0.8203 -0.2529 0.1352 $0.037*$ C12 $0.80200(18)$ $-0.1471(2)$ $0.22014(7)$ $0.0258(3)$ C13 $0.96499(17)$ $-0.0911(2)$ $0.30840(8)$ $0.0307(4)$ H14 1.1305 -0.0728 0.3249 $0.037*$	
C7 $0.65231 (17)$ $0.1899 (2)$ $0.03868 (7)$ $0.0262 (3)$ N8 $0.61389 (15)$ $0.25395 (18)$ $0.09300 (6)$ $0.0285 (3)$ N9 $0.64505 (16)$ $0.13267 (18)$ $0.13845 (6)$ $0.0294 (3)$ O10 $0.56088 (16)$ $0.41370 (17)$ $0.10077 (6)$ $0.0416 (3)$ C11 $0.7402 (2)$ $-0.1818 (2)$ $0.15108 (7)$ $0.0308 (4)$ H11A 0.8203 -0.2529 0.1352 0.037^* C12 $0.80200 (18)$ $-0.1471 (2)$ $0.22014 (7)$ $0.0258 (3)$ C13 $0.96499 (17)$ $-0.1154 (2)$ $0.24416 (7)$ $0.0278 (3)$ C14 $1.01987 (18)$ $-0.0911 (2)$ $0.30840 (8)$ $0.0307 (4)$ H14 1.1305 -0.0728 0.3249 0.037^*	
N8 $0.61389(15)$ $0.25395(18)$ $0.09300(6)$ $0.0285(3)$ N9 $0.64505(16)$ $0.13267(18)$ $0.13845(6)$ $0.0294(3)$ O10 $0.56088(16)$ $0.41370(17)$ $0.10077(6)$ $0.0416(3)$ C11 $0.7402(2)$ $-0.1818(2)$ $0.15108(7)$ $0.0308(4)$ H11A 0.8203 -0.2529 0.1352 $0.037*$ H11B 0.6421 -0.2562 0.1450 $0.037*$ C12 $0.80200(18)$ $-0.1471(2)$ $0.22014(7)$ $0.0258(3)$ C13 $0.96499(17)$ $-0.1154(2)$ $0.24416(7)$ $0.0278(3)$ C14 $1.01987(18)$ $-0.0911(2)$ $0.30840(8)$ $0.0307(4)$ H14 1.1305 -0.0728 0.3249 $0.037*$	
N9 $0.64505(16)$ $0.13267(18)$ $0.13845(6)$ $0.0294(3)$ O10 $0.56088(16)$ $0.41370(17)$ $0.10077(6)$ $0.0416(3)$ C11 $0.7402(2)$ $-0.1818(2)$ $0.15108(7)$ $0.0308(4)$ H11A 0.8203 -0.2529 0.1352 0.037^* H11B 0.6421 -0.2562 0.1450 0.037^* C12 $0.80200(18)$ $-0.1471(2)$ $0.22014(7)$ $0.0258(3)$ C13 $0.96499(17)$ $-0.1154(2)$ $0.24416(7)$ $0.0278(3)$ C14 $1.01987(18)$ $-0.0911(2)$ $0.30840(8)$ $0.0307(4)$ H14 1.1305 -0.0728 0.3249 0.037^*	
O10 $0.56088(16)$ $0.41370(17)$ $0.10077(6)$ $0.0416(3)$ C11 $0.7402(2)$ $-0.1818(2)$ $0.15108(7)$ $0.0308(4)$ H11A 0.8203 -0.2529 0.1352 0.037^* H11B 0.6421 -0.2562 0.1450 0.037^* C12 $0.80200(18)$ $-0.1471(2)$ $0.22014(7)$ $0.0258(3)$ C13 $0.96499(17)$ $-0.1154(2)$ $0.24416(7)$ $0.0278(3)$ C14 $1.01987(18)$ $-0.0911(2)$ $0.30840(8)$ $0.0307(4)$ H14 1.1305 -0.0728 0.3249 0.037^*	
C11 $0.7402 (2)$ $-0.1818 (2)$ $0.15108 (7)$ $0.0308 (4)$ H11A 0.8203 -0.2529 0.1352 $0.037*$ H11B 0.6421 -0.2562 0.1450 $0.037*$ C12 $0.80200 (18)$ $-0.1471 (2)$ $0.22014 (7)$ $0.0258 (3)$ C13 $0.96499 (17)$ $-0.1154 (2)$ $0.24416 (7)$ $0.0278 (3)$ C14 $1.01987 (18)$ $-0.0911 (2)$ $0.30840 (8)$ $0.0307 (4)$ H14 1.1305 -0.0728 0.3249 $0.037*$	
H11A0.8203-0.25290.13520.037*H11B0.6421-0.25620.14500.037*C120.80200 (18)-0.1471 (2)0.22014 (7)0.0258 (3)C130.96499 (17)-0.1154 (2)0.24416 (7)0.0278 (3)C141.01987 (18)-0.0911 (2)0.30840 (8)0.0307 (4)H141.1305-0.07280.32490.037*	
H11B0.6421-0.25620.14500.037*C120.80200 (18)-0.1471 (2)0.22014 (7)0.0258 (3)C130.96499 (17)-0.1154 (2)0.24416 (7)0.0278 (3)C141.01987 (18)-0.0911 (2)0.30840 (8)0.0307 (4)H141.1305-0.07280.32490.037*	
C120.80200 (18)-0.1471 (2)0.22014 (7)0.0258 (3)C130.96499 (17)-0.1154 (2)0.24416 (7)0.0278 (3)C141.01987 (18)-0.0911 (2)0.30840 (8)0.0307 (4)H141.1305-0.07280.32490.037*	
C130.96499 (17)-0.1154 (2)0.24416 (7)0.0278 (3)C141.01987 (18)-0.0911 (2)0.30840 (8)0.0307 (4)H141.1305-0.07280.32490.037*	
C141.01987 (18)-0.0911 (2)0.30840 (8)0.0307 (4)H141.1305-0.07280.32490.037*	
H14 1.1305 -0.0728 0.3249 0.037*	
C15 0.9183 (2) -0.0928 (2) 0.34912 (7) 0.0311 (4)	
C16 0.75646 (19) -0.1203 (2) 0.32423 (7) 0.0307 (4)	
H16 0.6850 -0.1197 0.3515 0.037*	
C17 0.69733 (18) -0.1485 (2) 0.26051 (7) 0.0272 (3)	
C18 1.0814 (2) -0.1051 (2) 0.20228 (9) 0.0396 (4)	
H18A 1.0922 -0.2256 0.1844 0.059*	
H18B 1.1852 -0.0648 0.2269 0.059*	
H18C 1.0424 -0.0181 0.1683 0.059*	
C19 0.9812 (2) -0.0637 (3) 0.41845 (8) 0.0460 (5)	
H19A 0.9922 -0.1816 0.4400 0.069*	
H19B 0.9070 0.0132 0.4348 0.069*	

supporting information

THOSE STATES	1 00 50	0.000		0.0.00
HI9C	1.0853	-0.0039	0.4257	0.069*
C20	0.52065 (19)	-0.1764 (3)	0.23637 (8)	0.0393 (4)
H20A	0.4771	-0.0771	0.2076	0.059*
H20B	0.4684	-0.1772	0.2717	0.059*
H20C	0.5017	-0.2929	0.2141	0.059*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0360 (7)	0.0243 (7)	0.0232 (6)	0.0026 (5)	0.0075 (5)	0.0011 (5)
C2	0.0279 (7)	0.0279 (8)	0.0258 (7)	-0.0008 (6)	0.0060 (6)	-0.0003 (6)
C3	0.0467 (9)	0.0346 (9)	0.0297 (8)	0.0077 (7)	0.0096 (7)	-0.0025 (7)
C4	0.0477 (10)	0.0471 (11)	0.0304 (9)	0.0048 (8)	0.0131 (7)	-0.0050 (8)
C5	0.0394 (9)	0.0446 (10)	0.0249 (8)	-0.0020 (8)	0.0064 (7)	0.0047 (7)
C6	0.0304 (8)	0.0338 (9)	0.0290 (8)	0.0001 (6)	0.0028 (6)	0.0053 (7)
C7	0.0242 (7)	0.0283 (8)	0.0255 (7)	-0.0007 (6)	0.0042 (6)	-0.0001 (6)
N8	0.0315 (7)	0.0251 (7)	0.0284 (6)	0.0036 (5)	0.0060 (5)	0.0007 (5)
N9	0.0364 (7)	0.0255 (7)	0.0270 (6)	0.0032 (5)	0.0083 (5)	-0.0002 (5)
O10	0.0574 (8)	0.0284 (6)	0.0406 (7)	0.0164 (5)	0.0141 (6)	0.0016 (5)
C11	0.0442 (9)	0.0216 (8)	0.0261 (8)	0.0000 (6)	0.0070 (7)	0.0023 (6)
C12	0.0312 (8)	0.0195 (7)	0.0263 (7)	0.0013 (6)	0.0057 (6)	0.0023 (6)
C13	0.0304 (8)	0.0200 (7)	0.0344 (8)	0.0026 (6)	0.0099 (6)	0.0005 (6)
C14	0.0262 (7)	0.0231 (8)	0.0397 (9)	0.0012 (6)	0.0011 (6)	-0.0001 (6)
C15	0.0384 (8)	0.0250 (8)	0.0274 (8)	0.0030 (6)	0.0023 (6)	0.0019 (6)
C16	0.0349 (8)	0.0296 (8)	0.0295 (8)	0.0035 (6)	0.0112 (6)	0.0061 (6)
C17	0.0285 (7)	0.0250 (8)	0.0275 (8)	0.0003 (6)	0.0053 (6)	0.0065 (6)
C18	0.0378 (9)	0.0342 (9)	0.0523 (11)	-0.0014 (7)	0.0217 (8)	-0.0040 (8)
C19	0.0543 (11)	0.0473 (11)	0.0313 (9)	0.0008 (9)	-0.0006 (8)	-0.0014 (8)
C20	0.0290 (8)	0.0495 (11)	0.0383 (9)	-0.0042 (7)	0.0053 (7)	0.0096 (8)

Geometric parameters (Å, °)

N1—N9	1.3502 (18)	C12—C13	1.404 (2)
N1—C2	1.358 (2)	C13—C14	1.390 (2)
N1-C11	1.4713 (19)	C13—C18	1.508 (2)
С2—С7	1.390 (2)	C14—C15	1.384 (2)
C2—C3	1.411 (2)	C14—H14	0.9500
C3—C4	1.362 (2)	C15—C16	1.393 (2)
С3—Н3	0.9500	C15—C19	1.506 (2)
C4—C5	1.419 (3)	C16—C17	1.388 (2)
C4—H4	0.9500	C16—H16	0.9500
С5—С6	1.365 (2)	C17—C20	1.509 (2)
С5—Н5	0.9500	C18—H18A	0.9800
С6—С7	1.392 (2)	C18—H18B	0.9800
С6—Н6	0.9500	C18—H18C	0.9800
C7—N8	1.387 (2)	C19—H19A	0.9800
N8—O10	1.2842 (17)	C19—H19B	0.9800
N8—N9	1.3166 (18)	C19—H19C	0.9800

C11—H11A0.9900C20—H20BC11—H11B0.9900C20—H20CC12—C171.400 (2)	0.9800
C11—H11B 0.9900 C20—H20C C12—C17 1.400 (2)	
C12—C17 1.400 (2)	0.9800
N9—N1—C2 111.49 (12) C14—C13—C12	118.82 (14)
N9—N1—C11 120.06 (12) C14—C13—C18	119.21 (14)
C2—N1—C11 128.19 (13) C12—C13—C18	121.96 (15)
N1-C2-C7 106.08 (13) C15-C14-C13	122.03 (14)
N1-C2-C3 133.66 (15) C15-C14-H14	119.0
C7—C2—C3 120.26 (14) C13—C14—H14	119.0
C4—C3—C2 116.27 (16) C14—C15—C16	118.30 (14)
C4—C3—H3 121.9 C14—C15—C19	120.77 (15)
С2—С3—Н3 121.9 С16—С15—С19	120.92 (15)
C3—C4—C5 122.64 (16) C17—C16—C15	121.43 (14)
C3—C4—H4 118.7 C17—C16—H16	119.3
C5—C4—H4 118.7 C15—C16—H16	119.3
C6-C5-C4 121.56 (15) C16-C17-C12	119.41 (14)
C6—C5—H5 119.2 C16—C17—C20	118.91 (14)
C4—C5—H5 119.2 C12—C17—C20	121.67 (14)
C5—C6—C7 115.80 (16) C13—C18—H18A	109.5
С5—С6—Н6 122.1 С13—С18—Н18В	109.5
С7—С6—Н6 122.1 Н18А—С18—Н18В	109.5
N8—C7—C2 105.00 (13) C13—C18—H18C	109.5
N8—C7—C6 131.53 (15) H18A—C18—H18C	109.5
C2—C7—C6 123.47 (15) H18B—C18—H18C	109.5
O10—N8—N9 122.37 (13) C15—C19—H19A	109.5
O10—N8—C7 125.79 (13) C15—C19—H19B	109.5
N9—N8—C7 111.77 (13) H19A—C19—H19B	109.5
N8—N9—N1 105.66 (12) C15—C19—H19C	109.5
N1—C11—C12 113.08 (13) H19A—C19—H19C	109.5
N1—C11—H11A 109.0 H19B—C19—H19C	109.5
C12—C11—H11A 109.0 C17—C20—H20A	109.5
N1—C11—H11B 109.0 C17—C20—H20B	109.5
C12—C11—H11B 109.0 H20A—C20—H20B	109.5
H11A—C11—H11B 107.8 C17—C20—H20C	109.5
C17—C12—C13 119.98 (14) H20A—C20—H20C	109.5
C17—C12—C11 120.02 (14) H20B—C20—H20C	109.5
C13—C12—C11 120.00 (14)	
	-174.86 (13)
N9-N1-C2-C7 0.47 (17) C11-N1-N9-N8	-35.7 (2)
N9-N1-C2-C7 0.47 (17) C11-N1-N9-N8 C11-N1-C2-C7 174.51 (14) N9-N1-C11-C12	150.74(15)
N9—N1—C2—C7 0.47 (17) C11—N1—N9—N8 C11—N1—C2—C7 174.51 (14) N9—N1—C11—C12 N9—N1—C2—C3 -179.86 (17) C2—N1—C11—C12	100.77 (10)
N9—N1—C2—C7 0.47 (17) C11—N1—N9—N8 C11—N1—C2—C7 174.51 (14) N9—N1—C11—C12 N9—N1—C2—C3 -179.86 (17) C2—N1—C11—C12 C11—N1—C2—C3 -5.8 (3) N1—C11—C12—C17	95.32 (17)
N9-N1-C2-C7 $0.47 (17)$ C11-N1-N9-N8C11-N1-C2-C7174.51 (14)N9-N1-C11-C12N9-N1-C2-C3-179.86 (17)C2-N1-C11-C12C11-N1-C2-C3-5.8 (3)N1-C11-C12-C17N1-C2-C3-C4-178.70 (17)N1-C11-C12-C13	95.32 (17) -85.41 (18)
N9-N1-C2-C7 0.47 (17) C11-N1-N9-N8 C11-N1-C2-C7 174.51 (14) N9-N1-C11-C12 N9-N1-C2-C3 -179.86 (17) C2-N1-C11-C12 C11-N1-C2-C3 -5.8 (3) N1-C11-C12-C17 N1-C2-C3-C4 -178.70 (17) N1-C11-C12-C13 C7-C2-C3-C4 0.9 (2) C17-C12-C13-C14	95.32 (17) -85.41 (18) 1.8 (2)
N9-N1-C2-C7 $0.47 (17)$ C11-N1-N9-N8C11-N1-C2-C7174.51 (14)N9-N1-C11-C12N9-N1-C2-C3-179.86 (17)C2-N1-C11-C12C11-N1-C2-C3-5.8 (3)N1-C11-C12-C17N1-C2-C3-C4-178.70 (17)N1-C11-C12-C13C7-C2-C3-C40.9 (2)C17-C12-C13-C14C2-C3-C4-C5-0.2 (3)C11-C12-C13-C14	95.32 (17) -85.41 (18) 1.8 (2) -177.43 (13)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.6 (2)	C11—C12—C13—C18	3.2 (2)
	-0.46 (16)	C12—C13—C14—C15	-1.6 (2)
	179.81 (14)	C18—C13—C14—C15	177.75 (14)
	178.74 (14)	C13—C14—C15—C16	0.1 (2)
	-1.0 (2)	C13—C14—C15—C16	-179.23 (15)
	179.14 (15)	C14—C15—C16—C17	1.1 (2)
	0.2 (2)	C19—C15—C16—C17	-179.53 (16)
	177.40 (14)	C15—C16—C17	-0.8 (2)
C2—C7—N8—O10 C6—C7—N8—O10 C2—C7—N8—N9 C6—C7—N8—N9 O10—N8—N9—N1 C7—N8—N9—N1 C2—N1—N9—N8	$\begin{array}{c} -1.7 (3) \\ 0.32 (17) \\ -178.79 (15) \\ -177.24 (13) \\ -0.04 (17) \\ -0.28 (17) \end{array}$	C15—C16—C17—C12 C15—C16—C17—C20 C13—C12—C17—C16 C11—C12—C17—C16 C13—C12—C17—C20 C11—C12—C17—C20	$\begin{array}{c} -179.64 \ (15) \\ -0.7 \ (2) \\ 178.61 \ (14) \\ 178.11 \ (15) \\ -2.6 \ (2) \end{array}$

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C12–C17 ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
C6—H6…O10 ⁱ	0.95	2.35	3.190 (2)	147
C16—H16…O10 ⁱⁱ	0.95	2.58	3.506 (2)	165
C18—H18 <i>A</i> ··· <i>Cg</i> 3 ⁱⁱⁱ	0.98	2.98	3.810 (18)	144

Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, y-1/2, -z+1/2; (iii) -x+2, y-1/2, -z+1/2.