

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-2-Acetyl-4-[(3-methylphenyl)diazenyl]phenol: an X-ray and DFT study

Serap Yazıcı,^a* Çiğdem Albayrak,^b İsmail Gümrükçüoğlu,^c İsmet Şenel^a and Orhan Büyükgüngör^a

^aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, ^bSinop University, Sinop Faculty of Education, TR-57000 Sinop, Turkey, and ^cDepartment of Chemistry, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey

Correspondence e-mail: yserap@omu.edu.tr

Received 21 January 2010; accepted 28 January 2010

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.003 Å; R factor = 0.060; wR factor = 0.175; data-to-parameter ratio = 14.3.

The title compound, C₁₅H₁₄N₂O₂, an azo dye, displays a trans configuration with respect to the N=N bridge. The dihedral angle between the aromatic rings is $0.18 (14)^{\circ}$. There is a strong intramolecular O-H···O hvdrogen bond. Geometrical parameters, determined using X-ray diffraction techniques, are compared with those calculated by density functional theory (DFT), using hybrid exchange-correlation functional, B3LYP and semi-empirical (PM3) methods.

Related literature

For general background to azo compounds, see: Klaus (2003); Catino & Farris (1985); Zollinger (2003); Bahatti & Seshadri (2004); Taniike et al. (1996); Fadda et al. (1994). For a related structure, see: El-Ghamry et al. (2008). For background to DFT calculations, see: Becke (1988, 1993); Lee et al. (1988); Schmidt & Polik (2007)

Experimental

Crystal data C15H14N2O2 $M_r = 254.28$ Monoclinic, $P2_1/c$ a = 8.6917 (3) Å b = 10.9728 (3) Å c = 14.6150 (5) Å $\beta = 112.881 (3)^{\circ}$

organic compounds

16525 measured reflections

 $R_{\rm int} = 0.040$

2519 independent reflections

2034 reflections with $I > 2\sigma(I)$

Data collection

Stoe IPDS II diffractometer Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{\min} = 0.957, \ T_{\max} = 0.986$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.060$	H atoms treated by a mixture of
$wR(F^2) = 0.175$	independent and constrained
S = 1.06	refinement
2519 reflections	$\Delta \rho_{\rm max} = 0.48 \text{ e } \text{\AA}^{-3}$
176 parameters	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	Н∙∙∙А	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1−H1···O2	0.84 (4)	1.78 (4)	2.567 (3)	156 (4)

Table 2

Selected geometric parameters (Å, °) calculated with X-ray, PM3 and DFT.

Parameters	X-ray	PM3	DFT/B3LYP*	
C4-O1	1.343 (3)	1.351	1.331	
C7-O2	1.235 (3)	1.228	1.242	
C7-C8	1.488 (3)	1.502	1.513	
C13-C15	1.493 (4)	1.486	1.511	
C1-N2	1.444 (3)	1.445	1.411	
N1-N2	1.242 (3)	1.232	1.263	
C9-N1	1.450 (3)	1.447	1.417	
O2-C7-C8	119.8 (2)	120.465	118.986	
O1-C4-C5	117.2 (2)	115.387	118.123	
C7-C3-C4-O1	1.7 (3)	-0.016	0.002	
C9-N1-N2-C1	-179.99(17)	-179.965	-179.975	
C2-C1-N2-N1	177.09 (19)	-178.543	179.996	
C10-C9-N1-N2	-177.6 (2)	-172.651	179.997	

*6-31G(d,p).

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and GAUSSIAN (Frisch et al., 2004).

The authors wish to acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant No. F279 of the University Research Fund).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5181).

References

Bahatti, H. S. & Seshadri, S. (2004). Coloration Technol. 120, 151-155.

- Becke, A. D. (1988). Phys. Rev. A38, 3098-100.
- Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.
- Catino, S. C. & Farris, R. E. (1985). Concise Encyclopedia of Chemical Technology, pp. 142-144. New York: John Wiley and Sons
- El-Ghamry, H., Issa, R., El-Baradie, K., Isagai, K., Masaoka, S. & Sakai, K. (2008). Acta Cryst. E64, 01673-01674.

- Fadda, A. A., Etmen, H. A., Amer, F. A., Barghout, M. & Mohammed, K. S. (1994). J. Chem. Technol. Biotechnol. 61, 343–349.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Frisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.
- Klaus, H. (2003). Industrial dyes, chemistry, properties, applications, pp. 20–35. New York: Wiley-VCH.
- Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B37, 785-789.
- Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro.WebMO, LLC: Holland, MI, USA; available from http://www.webmo.net.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany. Taniike, K., Matsumoto, T., Sato, T., Ozaki, Y., Nakashima, K. & Iriyama, K. (1996). J. Phys. Chem. 100, 15508–15516.
- Zollinger, H. (2003). *Color Chemistry*, 3rd revised ed. New York: Wiley-VCH.

supporting information

Acta Cryst. (2010). E66, 0559–0560 [doi:10.1107/S1600536810003491]

(E)-2-Acetyl-4-[(3-methylphenyl)diazenyl]phenol: an X-ray and DFT study

Serap Yazıcı, Çiğdem Albayrak, İsmail Gümrükçüoğlu, İsmet Şenel and Orhan Büyükgüngör

S1. Comment

Azo compounds are very important in the field of dyes, pigments and advanced materials (Klaus, 2003). It has been known for many years that the azo compounds are the most widely used class of dyes, due to their versatile applications in various fields such as the dyeing of textile fibers, the coloring of different materials, colored plastics and polymers, biological-medical studies and advanced applications in organic synthesis (Bahatti & Seshadri, 2004; Catino & Farris, 1985; Fadda *et al.*, 1994; Taniike *et al.*, 1996; Zollinger, 2003).

In the title compound, $C_{15}H_{14}N_2O_2$, the two aromatic groups atteched to the azo bridge are adopted (E) configuration. The molecule is planar and the dihedral angle between the two aromatic rings is $0.18(0.14)^\circ$. All the bond lengths are in agreement with reported for other azo compounds (El-Ghamry *et al.*, 2008). The title molecule (Fig. 1) has a strong intramolecular hydrogen bond between the hydroxyl group and the carbonyl O atom.

Density-functional theory (DFT) (Schmidt & Polik, 2007) and semi-empirical (PM3) calculations and full-geometry optimizations were performed by means of *GAUSSIAN* 03 W package (Frisch *et al.*, 2004). The selected bond lengths and angles (Table 2.) obtained from semi-empirical and DFT/B3LYP (Becke, 1988; Becke 1993; Lee *et al.* 1988) are given in Table 2. As can be seen Table 2. the bond lengths and angles achieved by DFT method are better than those values obtained from PM3 method.

S2. Experimental

A mixture of 3-methylaniline (0.83 g, 7.8 mmol), water (20 ml) and concentrated hydrochloric acid (1.97 ml, 23.4 mmol) was stirred until a clear solution was obtained. This solution was cooled down to 0-5 °C and a solution of sodium nitrite (0.75 g 7.8 mmol) in water was added dropwise while the temperature was maintained below 5 °C. The resulting mixture was stirred for 30 min in an ice bath. 2-hydroxyacetophenone (1.067 g, 7.8 mmol solution (pH 9) was gradually added to a cooled solution of 3-methylbenzenediazonium chloride, prepared as described above, and the resulting mixture was stirred at 0-5 °C for 2 h in ice bath. The product was recrystallized from ethyl alcohol to obtain solid (*E*)-2-Acetyl-4- (3-methylphenyldiazenyl)phenol. Crystals of (*E*)-2-Acetyl-4-(3-methylphenyldiazenyl)phenol were obtained after one day by slow evaporation from acetic acid (yield %45, m.p.= 377–379 K)

S3. Refinement

All H atoms (except for H1) were placed in calculated positions and constrained to ride on their parents atoms, with C— H = 0.93–0.97 Å, O—H = 0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$. The hydroxyl H atom was isotropically refined.

Figure 1

A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates the intramolecular hydrogen bond.

(E)-2-Acetyl-4-[(3-methylphenyl)diazenyl]phenol

Crystal data

C₁₅H₁₄N₂O₂ $M_r = 254.28$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.6917 (3) Å b = 10.9728 (3) Å c = 14.6150 (5) Å $\beta = 112.881$ (3)° V = 1284.19 (7) Å³ Z = 4

Data collection

Stoe IPDS II diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 6.67 pixels mm⁻¹ ω scan Absorption correction: integration (*X-RED32*; Stoe & Cie, 2002) $T_{\min} = 0.957, T_{\max} = 0.986$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.060$ $wR(F^2) = 0.175$ S = 1.062519 reflections 176 parameters 0 restraints F(000) = 536 $D_x = 1.315 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 20945 reflections $\theta = 1.9-28.0^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 150 KPrism, brown $0.67 \times 0.37 \times 0.21 \text{ mm}$

16525 measured reflections 2519 independent reflections 2034 reflections with $I > 2\sigma(I)$ $R_{int} = 0.040$ $\theta_{max} = 26.0^\circ, \ \theta_{min} = 2.4^\circ$ $h = -10 \rightarrow 10$ $k = -13 \rightarrow 13$ $l = -18 \rightarrow 18$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

 $w = 1/[\sigma^2(F_o^2) + (0.0859P)^2 + 0.7485P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$

$$\Delta \rho_{\text{max}} = 0.48 \text{ e } \text{\AA}^{-3}$$

 $\Delta \rho_{\text{min}} = -0.26 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. 330 frames, detector distance = 80 mm

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.7697 (3)	0.49666 (19)	0.56898 (15)	0.0354 (5)
C2	0.7798 (2)	0.48461 (19)	0.66522 (14)	0.0337 (5)
H2	0.7188	0.5371	0.6882	0.040*
C3	0.8796 (3)	0.39527 (19)	0.72861 (15)	0.0340 (5)
C4	0.9690 (3)	0.3160 (2)	0.69197 (16)	0.0385 (5)
C5	0.9567 (3)	0.3271 (2)	0.59383 (17)	0.0433 (5)
H5	1.0150	0.2737	0.5695	0.052*
C6	0.8588 (3)	0.4165 (2)	0.53369 (15)	0.0410 (5)
H6	0.8517	0.4240	0.4688	0.049*
C7	0.8963 (3)	0.3858 (2)	0.83278 (16)	0.0396 (5)
C8	0.8087 (3)	0.4746 (3)	0.87272 (17)	0.0506 (6)
H8A	0.8323	0.4560	0.9410	0.076*
H8B	0.6905	0.4695	0.8350	0.076*
H8C	0.8467	0.5556	0.8679	0.076*
C9	0.5627 (3)	0.7083 (2)	0.37340 (17)	0.0392 (5)
C10	0.5540 (3)	0.7208 (2)	0.27821 (17)	0.0460 (6)
H10	0.6146	0.6692	0.2543	0.055*
C11	0.4544 (3)	0.8107 (2)	0.21837 (18)	0.0482 (6)
H11	0.4465	0.8197	0.1534	0.058*
C12	0.3654 (3)	0.8882 (2)	0.25587 (17)	0.0447 (6)
H12	0.2970	0.9479	0.2148	0.054*
C13	0.3764 (3)	0.8785 (2)	0.35255 (17)	0.0426 (5)
C14	0.4774 (3)	0.7866 (2)	0.41242 (16)	0.0426 (5)
H14	0.4875	0.7778	0.4778	0.051*
C15	0.2821 (3)	0.9642 (3)	0.39089 (19)	0.0546 (7)
H15A	0.3037	0.9448	0.4588	0.082*
H15B	0.1647	0.9566	0.3517	0.082*
H15C	0.3171	1.0463	0.3868	0.082*
N1	0.6655 (2)	0.60844 (18)	0.42943 (14)	0.0435 (5)
N2	0.6666 (2)	0.59649 (18)	0.51418 (13)	0.0431 (5)
01	1.0685 (2)	0.22765 (17)	0.74768 (14)	0.0523 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

02	0.9858 (2)	0.30620 (17)	0.88764 (12)	0.0522 (5)	
H1	1.055 (4)	0.235 (3)	0.801 (3)	0.076 (11)*	

Atomic displacement parameters $(Å^2)$

	<i>L [</i> 11	I /22	1/33	1/12	1713	<i>L</i> /23
C1	0.0362 (10)	0.0347 (11)	0.0302 (10)	-0.0037 (8)	0.0074 (8)	0.0012 (8)
C2	0.0342 (10)	0.0327 (10)	0.0320 (10)	-0.0026 (8)	0.0106 (8)	-0.0006(8)
C3	0.0347 (10)	0.0348 (11)	0.0299 (10)	-0.0039 (8)	0.0098 (8)	0.0018 (8)
C4	0.0386 (11)	0.0354 (11)	0.0376 (11)	0.0018 (9)	0.0104 (9)	0.0055 (9)
C5	0.0475 (13)	0.0427 (13)	0.0401 (12)	0.0041 (10)	0.0174 (10)	-0.0026 (10)
C6	0.0460 (12)	0.0458 (13)	0.0286 (10)	-0.0039 (10)	0.0118 (9)	0.0002 (9)
C7	0.0359 (11)	0.0473 (13)	0.0320 (10)	-0.0061 (10)	0.0091 (9)	0.0061 (9)
C8	0.0533 (14)	0.0671 (16)	0.0326 (11)	0.0004 (12)	0.0181 (10)	0.0003 (11)
C9	0.0378 (11)	0.0343 (11)	0.0432 (11)	-0.0041 (9)	0.0133 (9)	0.0002 (9)
C10	0.0511 (13)	0.0437 (13)	0.0426 (12)	-0.0030 (11)	0.0177 (11)	-0.0016 (10)
C11	0.0524 (14)	0.0438 (13)	0.0435 (12)	-0.0035 (11)	0.0133 (11)	0.0023 (10)
C12	0.0467 (12)	0.0375 (12)	0.0401 (12)	-0.0023 (10)	0.0062 (10)	0.0058 (9)
C13	0.0404 (12)	0.0379 (12)	0.0430 (12)	-0.0038 (10)	0.0093 (10)	0.0027 (10)
C14	0.0436 (12)	0.0471 (13)	0.0341 (11)	-0.0097 (10)	0.0119 (9)	0.0002 (9)
C15	0.0554 (15)	0.0574 (16)	0.0500 (14)	0.0057 (12)	0.0196 (12)	0.0049 (12)
N1	0.0464 (11)	0.0442 (11)	0.0375 (10)	-0.0024 (9)	0.0137 (8)	0.0008 (8)
N2	0.0430 (10)	0.0478 (11)	0.0309 (9)	-0.0097 (9)	0.0060 (8)	0.0069 (8)
01	0.0587 (11)	0.0491 (10)	0.0484 (10)	0.0193 (8)	0.0201 (9)	0.0144 (8)
O2	0.0554 (10)	0.0611 (11)	0.0381 (8)	0.0056 (8)	0.0161 (8)	0.0179 (8)

Geometric parameters (Å, °)

C1—C2	1.381 (3)	C9—C10	1.371 (3)
C1—C6	1.396 (3)	C9—C14	1.393 (3)
C1—N2	1.444 (3)	C9—N1	1.450 (3)
C2—C3	1.395 (3)	C10—C11	1.378 (3)
С2—Н2	0.9300	C10—H10	0.9300
C3—C4	1.404 (3)	C11—C12	1.397 (4)
C3—C7	1.476 (3)	C11—H11	0.9300
C4—O1	1.343 (3)	C12—C13	1.383 (3)
C4—C5	1.402 (3)	C12—H12	0.9300
C5—C6	1.371 (3)	C13—C14	1.398 (3)
С5—Н5	0.9300	C13—C15	1.493 (4)
С6—Н6	0.9300	C14—H14	0.9300
C7—O2	1.235 (3)	C15—H15A	0.9600
C7—C8	1.488 (3)	C15—H15B	0.9600
C8—H8A	0.9600	C15—H15C	0.9600
C8—H8B	0.9600	N1—N2	1.242 (3)
C8—H8C	0.9600	01—H1	0.83 (4)
C2—C1—C6	119.43 (19)	C10—C9—C14	121.7 (2)
C2—C1—N2	114.66 (19)	C10—C9—N1	115.3 (2)

C6-C1-N2	125.89 (19)	C14—C9—N1	123.0 (2)
C1-C2-C3	121.3 (2)	C9-C10-C11	119.3 (2)
C1—C2—H2	119.3	C9—C10—H10	120.4
C3—C2—H2	119.3	С11—С10—Н10	120.4
C2-C3-C4	118.39 (19)	C10-C11-C12	119.6 (2)
C2—C3—C7	121.4 (2)	C10—C11—H11	120.2
C4—C3—C7	120.20 (19)	C12—C11—H11	120.2
O1—C4—C5	117.2 (2)	C13—C12—C11	121.7 (2)
Q1—C4—C3	122.5 (2)	C13—C12—H12	119.2
C5—C4—C3	120.23 (19)	C11—C12—H12	119.2
C6-C5-C4	120.0 (2)	C12—C13—C14	118.2 (2)
C6—C5—H5	120.0	C12—C13—C15	120.3 (2)
C4—C5—H5	120.0	C14—C13—C15	121.5(2)
C5—C6—C1	120.6 (2)	C9-C14-C13	119.5 (2)
С5—С6—Н6	119.7	C9—C14—H14	120.2
C1—C6—H6	119.7	C13—C14—H14	120.2
02	120.3 (2)	C13—C15—H15A	109.5
02	119.8 (2)	C13—C15—H15B	109.5
C3—C7—C8	119.90 (19)	H15A—C15—H15B	109.5
C7—C8—H8A	109.5	C13—C15—H15C	109.5
C7—C8—H8B	109.5	H15A—C15—H15C	109.5
H8A—C8—H8B	109.5	H15B—C15—H15C	109.5
С7—С8—Н8С	109.5	N2—N1—C9	114.0 (2)
H8A—C8—H8C	109.5	N1—N2—C1	113.3 (2)
H8B—C8—H8C	109.5	C4—O1—H1	102 (2)
C6—C1—C2—C3	1.1 (3)	C4—C3—C7—C8	176.5 (2)
N2—C1—C2—C3	-177.57 (18)	C14—C9—C10—C11	-2.0 (3)
C1—C2—C3—C4	-0.8 (3)	N1-C9-C10-C11	177.8 (2)
C1—C2—C3—C7	177.24 (19)	C9—C10—C11—C12	0.6 (3)
C2-C3-C4-O1	179.8 (2)	C10-C11-C12-C13	1.0 (4)
C7—C3—C4—O1	1.7 (3)	C11—C12—C13—C14	-1.3 (3)
C2—C3—C4—C5	-0.2 (3)	C11—C12—C13—C15	178.9 (2)
C7—C3—C4—C5	-178.3 (2)	C10-C9-C14-C13	1.8 (3)
O1—C4—C5—C6	-179.1 (2)	N1-C9-C14-C13	-178.01 (19)
C3—C4—C5—C6	0.9 (3)	C12—C13—C14—C9	-0.1 (3)
C4—C5—C6—C1	-0.5 (3)	C15—C13—C14—C9	179.7 (2)
C2-C1-C6-C5	-0.5 (3)	C10—C9—N1—N2	-177.6 (2)
N2-C1-C6-C5	178.1 (2)	C14—C9—N1—N2	2.2 (3)
C2—C3—C7—O2	-179.8 (2)	C9—N1—N2—C1	-179.99 (17)
C4—C3—C7—O2	-1.8 (3)	C2-C1-N2-N1	177.09 (19)
C2—C3—C7—C8	-1.4 (3)	C6—C1—N2—N1	-1.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
O1—H1…O2	0.84 (4)	1.78 (4)	2.567 (3)	156 (4)