Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

tert-Butyl 2-benzoyl-2-methylpropanoate

Marshall W. Logue, Rudy L. Luck,* Nicklaus S. Maynard, Sandra S. Orlowski, Louis R. Pignotti, Annie L. Putman and Kelli M. Whelan

Department of Chemistry, 1400 Townsend Drive, Michigan Technological
University, Houghton, MI 49931, USA
Correspondence e-mail: rluck@mtu.edu
Received 11 January 2010; accepted 25 January 2010
Key indicators: single-crystal X-ray study; $T=291 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.043 ; w R$ factor $=0.119$; data-to-parameter ratio $=15.5$.

The title compound, $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$, is bent with a dihedral angle of $67.28(9)^{\circ}$ between the mean planes of the phenyl ring and a group encompassing the ester functionality $(\mathrm{O}=\mathrm{C}-\mathrm{O}-\mathrm{C})$. In the crystal, molecules related by inversion symmetry are connected by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions into infinite chains. On one side of the molecule there are two adjacent interactions between neighbouring molecules involving the H atoms of methyl groups from the dimethyl groups and the O atoms of the ketone; on the other side, there are also two interactions to another adjacent molecule involving the H atoms on the phenyl rings and the carbonyl O atoms of the ester functionality.

Related literature

For the synthesis, spectroscopic characterization and reactivity of the title compound, see: Logue (1974); Logue et al. (1975). For related structures, see: Crosse et al. (2010a,b); Gould et al. (2010). For the syntheses and characterization of structurally similar indanone-derived β-keto ester derivatives, see: Mouri et al. (2009); Noritake et al. (2008); Rigby \& Dixon (2008). For weak hydrogen-bonded interactions, see: Karle et al. (2009).

Experimental

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$	$\alpha=73.25(4)^{\circ}$
$M_{r}=248.31$	$\beta=72.25(3)^{\circ}$
Triclinic, $P \overline{1}$	$\gamma=66.05(3)^{\circ}$
$a=8.616(3) \AA$	$V=724.3(5) \AA^{\circ}$
$b=8.696(3) \AA$	$Z=2$
$c=11.310(5) \AA$	Mo $K \alpha$ radiation

$\mu=0.08 \mathrm{~mm}^{-1}$
$T=291 \mathrm{~K}$
Data collection
Enraf-Nonius TurboCAD-4 diffractometer
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.965, T_{\text {max }}=0.979$
2735 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.119$
$S=1.02$
2548 reflections

164 parameters
$0.40 \times 0.35 \times 0.30 \mathrm{~mm}$

2548 independent reflections
1689 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$
3 standard reflections every 166 min intensity decay: 1%

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.12 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.12 \mathrm{e}_{\AA^{-3}}$

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C5-H5 $\cdots \mathrm{O}^{2}$	0.93	2.66	$3.317(3)$	128
C9-H9A O^{ii}	0.96	2.65	$3.557(3)$	158

Symmetry codes: (i) $-x+1,-y,-z+2$; (ii) $-x+1,-y,-z+1$.
Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Financial assistance from the Chemistry Department of Michigan Technological University is acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2265).

References

Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. \& Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.
Crosse, C. M., Kelly, E. C., Logue, M. W., Luck, R. L., Maass, J. S., Mehne, K. C. \& Pignotti, L. R. (2010b). Acta Cryst. E66, o493-0494.
Crosse, C. M., Logue, M. W., Luck, R. L., Pignotti, L. R. \& Waineo, M. F. (2010a). Acta Cryst. E66, o495-o496.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gould, G. B., Jackman, B. G., Logue, M. W., Luck, R. L., Pignotti, L. R., Smith, A. R. \& White, N. M. (2010). Acta Cryst. E66, o491-o492.

Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Karle, I. L., Huang, L., Venkateshwarlu, P., Sarma, A. V. S. \& Ranganathan, S. (2009). Heterocycles, 79, 471-486.

Logue, M. W. (1974). J. Org. Chem. 39, 3455-3456.
Logue, M. W., Pollack, R. M. \& Vitullo, V. P. (1975). J. Am. Chem. Soc. 97, 6868-6869.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Mouri, S., Chen, Z., Matsunage, S. \& Shibasaki, M. (2009). Chem. Commun. pp. 5138-5140.

organic compounds

Noritake, S., Shibata, N., Nakamura, S., Toru, T. \& Shiro, M. (2008). Eur. J. Org. Chem. pp. 3465-3468.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Rigby, C. L. \& Dixon, D. J. (2008). Chem. Commun. pp. 3798-3800. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). publCIF. In preparation.

supporting information

Acta Cryst. (2010). E66, o489-o490 [https://doi.org/10.1107/S1600536810003120]

tert-Butyl 2-benzoyl-2-methylpropanoate

Marshall W. Logue, Rudy L. Luck, Nicklaus S. Maynard, Sandra S. Orlowski, Louis R. Pignotti, Annie L. Putman and Kelli M. Whelan

S1. Comment

Treatment of 2,2-disubstituted t-butyl β-keto esters with trifluoroacetic acid at room temperature quantitatively generates the corresponding 2,2-disubstituted β-keto acids, which were used to probe the nature of the transition state for the thermal decarboxylation of β-keto acids (Logue et al., 1975). Structurally similar indanone-derived β-keto ester derivatives have been prepared recently (Mouri et al., 2009; Noritake et al., 2008; Rigby \& Dixon, 2008). The directing nature of weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ H-bonds has been noted to be of importance to afford the three dimensional structure observed in these kinds of molecules (Karle et al., 2009).

In this contribution we present the solid state structure of one such 2,2-disubstituted β-keto acid, i.e. the title compound being the unsubstituted phenyl derivative. This is the first paper in a series of four dealing with substituted derivatives (H- (this paper), $\mathrm{CH}_{3}-, \mathrm{Cl}$ - and $\mathrm{NO}_{2}-$ on the para-position of the phenyl ring) of the title compound. A more detailed comparison of all four substitution compounds will be given in the fourth paper of this series (Crosse et al., 2010a).
The molecule, Fig. 1, displays a bent geometry with a dihedral angle between the mean planes of the phenyl ring and a plane composed of the ester functionality of $67.28(9)^{\circ}$. Molecules are linked by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds generating infinite chains parallel to the c axis as shown in Fig. 2. On one side of the molecule there are two adjacent interactions between neighbouring molecules involving H -atoms on methyl groups from the dimethyl moiety and O atoms on the ketone; on the other side there are also two interactions to another adjacent molecule involving H -atoms on the phenyl rings and the carbonyl O -atoms on the ester functionality. The phenyl rings are not involved in intercalation or stacking interactions either within or between the chains. Instead neighbouring t-butyl groups on adjacent chains exhibit hydrophobic stacking.

S2. Experimental

Crystals of the material were synthesized as reported earlier and were grown by evaporation of a solution in hexane (Logue, 1974). IR (neat, cm^{-1}): 3439 (br), $3077(m), 2980(s), 2938(m), 1729(s), 1683(s), 1598(m) 1580(m), 1447(m)$, $1388(m), 1367(m), 1279(s), 1156(s), 987(m), 928(m), 845(m), 796(m), 709(s) .{ }^{1} \mathrm{H}^{\mathrm{NMR}\left(\mathrm{CDCl}_{3},\right)} \delta: 1.26(\mathrm{~s}, 9 H)$, $1.49(\mathrm{~s}, 6 H), 7.39(\mathrm{t}, 2 H, \mathrm{~J}=6.8 \mathrm{~Hz}), 7.49(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.85(\mathrm{~d}, 2 H, \mathrm{~J}=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 24.1,27.7,54.3$, 81.9, 128.5, 128.9, 132.7, 135.7, 174.2, 198.4.

S3. Refinement

All H atoms were placed at calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ (aromatic) or $0.96 \AA$ (methyl) and refined using a riding model with $U_{\text {iso }}(\mathrm{H})$ constrained to be $1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl groups and $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for all other C atoms. The quality of the data as reflected by only 66% of the reflections observed, large ADP's and inaccurate $\mathrm{C}-\mathrm{C}$ bond lengths is low. The data had been collected on a 30 year old single point detector instrument not equipped with a low temperature device
as part of a class project with undergraduate students. Due to the time constraints imposed by the class schedule a maximum exposure time of 60 s had to be alloted for measuring each reflection.

Figure 1
ORTEP-3 (Farrugia, 1997) drawing of the title compound with displacement ellipsoids drawn at the 50% probability level.

Figure 2
A Mercury (Macrae et al., 2008) illustration of the H-bonded linkages in the title compound using blue dashed lines showing the relationships between non-interacting chains.

tert-Butyl 2-benzoyl-2-methylpropanoate

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$
$M_{r}=248.31$
Triclinic, $P 1$
Hall symbol: -P 1
$a=8.616$ (3) \AA
$b=8.696(3) \AA$
$c=11.310(5) \AA$
$\alpha=73.25$ (4) ${ }^{\circ}$
$\beta=72.25(3)^{\circ}$
$\gamma=66.05(3)^{\circ}$
$V=724.3(5) \AA^{3}$

Data collection

Enraf-Nonius TurboCAD-4 diffractometer
Radiation source: Enraf Nonius FR590
Graphite monochromator
non-profiled $\omega / 2 \tau$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.965, T_{\text {max }}=0.979$
2735 measured reflections
$Z=2$
$F(000)=268$
$D_{\mathrm{x}}=1.139 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=10-15^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=291 \mathrm{~K}$
Prism, colourless
$0.40 \times 0.35 \times 0.30 \mathrm{~mm}$

2548 independent reflections
1689 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=1.9^{\circ}$
$h=0 \rightarrow 10$
$k=-9 \rightarrow 10$
$l=-12 \rightarrow 13$
3 standard reflections every 166 min
intensity decay: 1%

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.119$
$S=1.02$
2548 reflections
164 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

```
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0496 P)^{2}+0.1543 P\right]\)
where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}<0.001\)
\(\Delta \rho_{\text {max }}=0.12 \mathrm{e} \AA^{-3}\)
\(\Delta \rho_{\text {min }}=-0.12\) e \(\AA^{-3}\)
Extinction correction: SHELXL97 (Sheldrick, 2008)
Extinction coefficient: 0.064 (6)
```


Special details

Experimental. Number of psi-scan sets used was 5. Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C1	$1.0848(3)$	$-0.3377(3)$	$0.8308(3)$	$0.0843(7)$
H1	1.1732	-0.4115	0.8727	0.101^{*}
C2	$1.1205(3)$	$-0.2955(3)$	$0.7023(3)$	$0.0828(7)$
H2	1.2336	-0.3389	0.6568	0.099^{*}
C3	$0.9887(3)$	$-0.1880(3)$	$0.639(2)$	$0.0663(6)$
H3	1.0133	-0.1619	0.5511	0.08^{*}
C4	$0.8198(2)$	$-0.1190(2)$	$0.70634(18)$	$0.0499(5)$
C5	$0.7874(3)$	$-0.1610(3)$	$0.83672(19)$	$0.0572(5)$
H5	0.6759	-0.1144	0.8835	0.069^{*}
C6	$0.9192(3)$	$-0.2718(3)$	$0.8982(2)$	$0.0715(6)$
H6	0.8953	-0.3017	0.986	0.086^{*}
C7	$0.6830(3)$	$-0.0021(3)$	$0.63224(18)$	$0.0535(5)$
O1	$0.7093(2)$	$-0.0062(2)$	$0.52144(14)$	$0.0808(5)$
C8	$0.5114(2)$	$0.1223(2)$	$0.69448(18)$	$0.0521(5)$
C9	$0.4249(3)$	$0.2636(3)$	$0.5920(2)$	$0.0755(7)$
H9B	0.5024	0.3236	0.5419	0.113^{*}
H9C	0.3191	0.3425	0.6314	0.113^{*}
H9A	0.3993	0.2127	0.5387	0.113^{*}
C10	$0.3865(3)$	$0.0253(3)$	$0.7712(2)$	$0.0707(6)$
H10A	0.3667	-0.0282	0.7166	0.106^{*}
H10B	0.2779	0.1043	0.8075	0.106^{*}

H10C	0.4368	-0.0608	0.8375	0.106^{*}
C11	$0.5454(2)$	$0.2112(2)$	$0.77688(18)$	$0.0505(5)$
O2	$0.4621(2)$	$0.2339(2)$	$0.88045(14)$	$0.0736(5)$
O3	$0.67818(16)$	$0.26535(16)$	$0.71377(11)$	$0.0533(4)$
C12	$0.7438(3)$	$0.3557(3)$	$0.7690(2)$	$0.0616(6)$
C13	$0.8897(3)$	$0.3905(4)$	$0.6630(3)$	$0.0942(9)$
H13A	0.845	0.4548	0.5885	0.141^{*}
H13B	0.9783	0.2838	0.6455	0.141^{*}
H13C	0.9384	0.4551	0.6876	0.141^{*}
C14	$0.6027(4)$	$0.5217(3)$	$0.7977(3)$	$0.1024(10)$
H14A	0.5558	0.5852	0.724	0.154^{*}
H14B	0.6503	0.588	0.8214	0.154^{*}
H14C	0.512	0.4977	0.8659	0.154^{*}
C15	$0.8130(4)$	$0.2379(4)$	$0.8824(3)$	$0.1046(10)$
H15A	0.8952	0.1314	0.8593	0.157^{*}
H15B	0.7186	0.2168	0.9482	0.157^{*}
H15C	0.8692	0.2902	0.9121	0.157^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0638(15)$	$0.0716(16)$	$0.103(2)$	$-0.0149(12)$	$-0.0227(14)$	$-0.0031(14)$
C2	$0.0506(13)$	$0.0702(15)$	$0.104(2)$	$-0.0101(12)$	$0.0024(13)$	$-0.0182(14)$
C3	$0.0647(14)$	$0.0601(13)$	$0.0670(13)$	$-0.0244(12)$	$0.0047(11)$	$-0.0175(11)$
C4	$0.0526(11)$	$0.0448(10)$	$0.0568(11)$	$-0.0232(9)$	$-0.0039(9)$	$-0.0154(9)$
C5	$0.0517(11)$	$0.0579(12)$	$0.0588(12)$	$-0.0185(10)$	$-0.0068(10)$	$-0.0128(10)$
C6	$0.0676(15)$	$0.0702(14)$	$0.0704(14)$	$-0.0210(12)$	$-0.0186(12)$	$-0.0048(12)$
C7	$0.0608(12)$	$0.0618(12)$	$0.0526(11)$	$-0.0349(10)$	$-0.0080(9)$	$-0.0165(9)$
O1	$0.0838(11)$	$0.1121(13)$	$0.0602(10)$	$-0.0381(10)$	$-0.0145(8)$	$-0.0314(9)$
C8	$0.0507(11)$	$0.0547(11)$	$0.0587(11)$	$-0.0244(9)$	$-0.0149(9)$	$-0.0099(9)$
C9	$0.0812(16)$	$0.0708(15)$	$0.0853(16)$	$-0.0268(12)$	$-0.0395(13)$	$-0.0069(12)$
C10	$0.0558(12)$	$0.0752(15)$	$0.0921(16)$	$-0.0357(11)$	$-0.0118(11)$	$-0.0172(12)$
C11	$0.0473(11)$	$0.0503(11)$	$0.0544(11)$	$-0.0187(9)$	$-0.0091(9)$	$-0.0101(9)$
O2	$0.0743(10)$	$0.0925(11)$	$0.0624(9)$	$-0.0433(9)$	$0.0091(8)$	$-0.0310(8)$
O3	$0.0550(8)$	$0.0628(8)$	$0.0547(8)$	$-0.0329(7)$	$-0.0061(6)$	$-0.0173(6)$
C12	$0.0660(13)$	$0.0680(13)$	$0.0706(14)$	$-0.0348(11)$	$-0.0167(11)$	$-0.0229(11)$
C13	$0.0884(18)$	$0.121(2)$	$0.106(2)$	$-0.0729(18)$	$-0.0038(15)$	$-0.0332(17)$
C14	$0.097(2)$	$0.0794(18)$	$0.154(3)$	$-0.0341(16)$	$-0.0215(19)$	$-0.0580(18)$
C15	$0.119(2)$	$0.130(2)$	$0.100(2)$	$-0.064(2)$	$-0.0581(19)$	$-0.0060(18)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{C} 2$	$1.360(3)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	0.96
$\mathrm{C} 1-\mathrm{C} 6$	$1.368(3)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	0.96
$\mathrm{C} 1-\mathrm{H} 1$	0.93	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	0.96
$\mathrm{C} 2-\mathrm{C} 3$	$1.387(3)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	0.96
$\mathrm{C} 2-\mathrm{H} 2$	0.93	$\mathrm{C} 11-\mathrm{O} 2$	$1.197(2)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.391(3)$	$\mathrm{C} 11-\mathrm{O} 3$	$1.336(2)$

C3-H3	0.93
C4-C5	1.381 (3)
C4-C7	1.505 (3)
C5-C6	1.382 (3)
C5-H5	0.93
C6-H6	0.93
C7-O1	1.212 (2)
C7-C8	1.535 (3)
C8-C11	1.522 (3)
C8-C10	1.540 (3)
C8-C9	1.540 (3)
C9—H9B	0.96
C9-H9C	0.96
C2- $\mathrm{C} 1-\mathrm{C} 6$	120.1 (2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	119.9
C6- $\mathrm{C} 1-\mathrm{H} 1$	119.9
C1-C2-C3	120.2 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.9
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.9
C2-C3-C4	120.3 (2)
C2-C3-H3	119.8
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.8
C5-C4-C3	118.4 (2)
C5-C4-C7	123.82 (18)
C3-C4-C7	117.79 (18)
C4-C5-C6	120.6 (2)
C4-C5-H5	119.7
C6-C5-H5	119.7
C1-C6-C5	120.3 (2)
C1-C6-H6	119.8
C5-C6-H6	119.8
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 4$	119.24 (19)
O1-C7-C8	119.62 (19)
C4-C7-C8	121.14 (16)
C11-C8-C7	110.39 (15)
C11-C8-C10	111.49 (17)
C7-C8-C10	109.80 (16)
C11-C8-C9	106.87 (16)
C7-C8-C9	109.79 (17)
C10-C8-C9	108.42 (17)
C8-C9-H9B	109.5
C8-C9- H 9 C	109.5
H9B-C9-H9C	109.5
C8-C9-H9A	109.5
H9B-C9-H9A	109.5
H9C-C9-H9A	109.5
C8-C10-H10A	109.5

$\mathrm{O} 3-\mathrm{C} 12$	$1.479(2)$
$\mathrm{C} 12-\mathrm{C} 15$	$1.504(3)$
$\mathrm{C} 12-\mathrm{C} 14$	$1.507(3)$
$\mathrm{C} 12-\mathrm{C} 13$	$1.514(3)$
$\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	0.96
$\mathrm{C} 13-\mathrm{H} 13 \mathrm{~B}$	0.96
$\mathrm{C} 13-\mathrm{H} 13 \mathrm{C}$	0.96
$\mathrm{C} 14-\mathrm{H} 14 \mathrm{~A}$	0.96
$\mathrm{C} 14-\mathrm{H} 14 \mathrm{~B}$	0.96
$\mathrm{C} 14-\mathrm{H} 14 \mathrm{C}$	0.96
$\mathrm{C} 15-\mathrm{H} 15 \mathrm{~A}$	0.96
$\mathrm{C} 15-\mathrm{H} 15 \mathrm{~B}$	0.96
$\mathrm{C} 15-\mathrm{H} 15 \mathrm{C}$	0.96

$\begin{array}{ll}\mathrm{C} 8-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B} & 109.5 \\ \mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B} & 109.5\end{array}$
$\mathrm{C} 8-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C} \quad 109.5$
$\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C} \quad 109.5$
$\mathrm{H} 10 \mathrm{~B}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C} \quad 109.5$
$\mathrm{O} 2-\mathrm{C} 11-\mathrm{O} 3 \quad 125.43$ (18)
$\mathrm{O} 2-\mathrm{C} 11-\mathrm{C} 8 \quad 125.07$ (17)
O3-C11-C8 109.46 (16)
$\mathrm{C} 11-\mathrm{O} 3-\mathrm{C} 12 \quad 122.50$ (15)
O3-C12-C15 109.11 (18)
O3-C12-C14 109.65 (17)
C15-C12-C14 113.7 (2)
$\mathrm{O} 3-\mathrm{C} 12-\mathrm{C} 13 \quad 102.51$ (16)
$\mathrm{C} 15-\mathrm{C} 12-\mathrm{C} 13 \quad 110.8$ (2)
$\mathrm{C} 14-\mathrm{C} 12-\mathrm{C} 13 \quad 110.4$ (2)
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A} \quad 109.5$
C 12 - C13-H13B 109.5
$\mathrm{H} 13 \mathrm{~A}-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~B} \quad 109.5$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 13 \mathrm{C} \quad 109.5$
$\mathrm{H} 13 \mathrm{~A}-\mathrm{C} 13-\mathrm{H} 13 \mathrm{C} \quad 109.5$
$\mathrm{H} 13 \mathrm{~B}-\mathrm{C} 13-\mathrm{H} 13 \mathrm{C} \quad 109.5$
$\mathrm{C} 12-\mathrm{C} 14-\mathrm{H} 14 \mathrm{~A} \quad 109.5$
C12-C14—H14B 109.5
$\mathrm{H} 14 \mathrm{~A}-\mathrm{C} 14$ - H14B 109.5
$\mathrm{C} 12-\mathrm{C} 14-\mathrm{H} 14 \mathrm{C} \quad 109.5$
$\mathrm{H} 14 \mathrm{~A}-\mathrm{C} 14-\mathrm{H} 14 \mathrm{C} \quad 109.5$
$\mathrm{H} 14 \mathrm{~B}-\mathrm{C} 14-\mathrm{H} 14 \mathrm{C} \quad 109.5$
C12-C15—H15A 109.5
C12-C15—H15B 109.5
$\mathrm{H} 15 \mathrm{~A}-\mathrm{C} 15-\mathrm{H} 15 \mathrm{~B} \quad 109.5$
$\mathrm{C} 12-\mathrm{C} 15-\mathrm{H} 15 \mathrm{C} \quad 109.5$
H15A-C15-H15C 109.5
$\mathrm{H} 15 \mathrm{~B}-\mathrm{C} 15-\mathrm{H} 15 \mathrm{C} \quad 109.5$

supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 5 — \mathrm{H} 5 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.93	2.66	$3.317(3)$	128
$\mathrm{C} 9 — \mathrm{H} 9 A \cdots \mathrm{O}^{\mathrm{ii}}$	0.96	2.65	$3.557(3)$	158

Symmetry codes: (i) $-x+1,-y,-z+2$; (ii) $-x+1,-y,-z+1$.

