

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis{µ-4,4'-dibromo-2,2'-[o-phenylenebis-(nitrilomethylidyne)]diphenolato}bis-[chloridomanganese(III)] *N*,*N*-dimethylformamide disolvate

Kwang Ha

School of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea Correspondence e-mail: hakwang@chonnam.ac.kr

Received 26 January 2010; accepted 26 January 2010

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.006 Å; R factor = 0.045; wR factor = 0.111; data-to-parameter ratio = 19.2.

The asymmetric unit of the title compound, $[Mn_2(C_{20}H_{12}Br_2N_2O_2)_2Cl_2]\cdot 2C_3H_7NO$, contains one half of a centrosymmetric dinuclear Mn^{III} complex and an N,Ndimethylformamide solvent molecule. In the complex, the two Mn^{III} ions are bridged by two O atoms from two symmetry-related N,N'-bis(5-bromosalicylidene)-1,2-diiminobenzene dianionic ligands with the longer Mn-O distance of 2.703 (3) Å, thus each Mn ion is six-coordinated by two N and three O atoms from the two dianionic ligands and one capping Cl atom in a distorted octahedral environment. The crystal structure displays intermolecular π - π interactions between adjacent benzene rings, with a shortest centroid-centroid distance of 3.673 (2) Å, and intermolecular C-H···O, C- $H \cdots Cl$ and $C - H \cdots Br$ hydrogen bonds.

Related literature

For the crystal structure of dinuclear $[Mn(salen)(H_2O)]_2$ -(ClO₄)₂ (H₂salen = N,N'-bis(salicylidene)ethylenediimine), see: Shyu *et al.* (1999). For the crystal structures of 5-bromosalicylideneimine–Mn(III) complexes, see: Dang *et al.* (2005); Hwang & Ha (2007); Mitra *et al.* (2006).

17204 measured reflections

 $R_{\rm int} = 0.067$

5763 independent reflections

3286 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

Data collection

Bruker SMART 1000 CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{min} = 0.742, T_{max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	300 parameters
$wR(F^2) = 0.111$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.73 \ {\rm e} \ {\rm \AA}^{-3}$
5763 reflections	$\Delta \rho_{\rm min} = -0.87 \text{ e} \text{ \AA}^{-3}$

Table 1 Selected bond lengths (Å).

Mn1-O1	1.869 (3)	Mn1-N1	1.991 (3)
Mn1-O2	1.884 (3)	Mn1-N2	1.994 (3)
$Mn1-O2^{i}$	2.703 (3)	Mn1-Cl1	2.4268 (13)

Symmetry code: (i) -x + 1, -y, -z + 1.

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C7-H7···Cl1 ⁱⁱ	0.95	2.71	3.603 (4)	156
C12−H12···O3 ⁱⁱⁱ	0.95	2.54	3.468 (6)	165
C14−H14···O3 ⁱⁱⁱ	0.95	2.25	3.173 (5)	165
$C19-H19\cdots Br2^{iv}$	0.95	2.88	3.678 (4)	143

Symmetry codes: (ii) -x, -y, -z + 1; (iii) x, y, z + 1; (iv) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009–0074570).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2722).

References

Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Dang, L.-L., Huo, Y.-Q., Wang, W. & Li, J. (2005). Acta Cryst. E61, m332m334.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Hwang, I.-C. & Ha, K. (2007). Acta Cryst. E63, m2365.

Mitra, K., Biswas, S., Lucas, C. R. & Adhikary, B. (2006). Inorg. Chim. Acta, 359, 1997-2003.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Shyu, H.-L., Wei, H.-H. & Wang, Y. (1999). *Inorg. Chim. Acta*, **290**, 8–13. Spek, A. L. (2009). *Acta Cryst.* **D65**, 148–155.

supporting information

Acta Cryst. (2010). E66, m233–m234 [https://doi.org/10.1107/S1600536810003247]

Bis{µ-4,4'-dibromo-2,2'-[o-phenylenebis(nitrilomethylidyne)]diphenolato}bis-[chloridomanganese(III)] N,N-dimethylformamide disolvate

Kwang Ha

S1. Comment

The title compound, $[Mn(C_{20}H_{12}Br_2N_2O_2)Cl]_2.2(C_3H_7NO)$, consists of a structurally centrosymmetric dinuclear Mn^{III} complex and two *N*,*N*-dimethylformamide solvent molecules, and the asymmetric unit contains one half of the formula unit (Fig. 1). In the complex, two Mn^{III} ions are bridged by two phenolic O atoms from two symmetry-related *N*,*N*'-bis(5-bromosalicylidene)-1,2-diiminobenzene dianionic ligands, and the distance between the Mn atoms is 3.5277 (10) Å. Each Mn ion is six-coordinated by two N and three O atoms from the two dianionic ligands and one capping Cl atom in a distorted octahedral environment (Table 1). While the two Mn—N bond distances are nearly equal [1.991 (3) Å and 1.994 (3) Å], the three Mn—O bond lengths are somewhat different. The equatorial Mn1—O1/O2 bonds [1.869 (3) Å and 1.884 (3) Å] are considerably shorter than the axial Mn1—O2^a bond [Symmetry code: (a) 1 - x, -y, 1 - z; 2.703 (3) Å]. Within the equatorial plane, the chelating angles lie in the range of 82.42 (14)°–92.38 (14)° and the <O1—Mn1—O2 bond angle is 90.84 (12)°. The apical <Cl1—Mn1—O2^a bond angle is 173.85 (7)°. The crystal structure displays intermolecular π - π interactions between adjacent benzene rings, with a shortest centroid-centroid distance of 3.673 (2) Å, and intermolecular C—H···O/Cl/Br hydrogen bonds (Fig. 2 and Table 2).

S2. Experimental

 $Mn(CH_3CO_2)_{3.}2H_2O$ (0.50 g, 1.86 mmol), NaCl (0.11 g, 1.88 mmol) and *N*,*N*'-bis(5-bromosalicylidene)-1,2-diiminobenzene (0.89 g, 1.88 mmol) in EtOH (50 ml) and acetone (20 ml) were stirred for 2 h at room temperature. The formed precipitate was separated by filtration and washed with acetone and ether and dried under vacuum, to give a dark brown powder (1.02 g). Crystals suitable for X-ray analysis were obtained by slow evaporation under vacuum from an *N*,*N*-dimethylformamide solution.

S3. Refinement

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å (CH) or 0.98 Å (CH₃) and U_{iso} (H) = 1.2 U_{eq} (CH) or 1.5 U_{eq} (CH₃)].

Figure 1

The structure of the title compound, with displacement ellipsoids drawn at the 30% probability level for non-H atoms. Unlabelled atoms and $Mn1^a$ are related to labelled atoms by the symmetry operation [symmetry code: (a) 1 - x, -y, 1 - z].

Figure 2

View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.

 $Bis\{\mu-4,4'-dibromo-2,2'-[o-phenylenebis(nitrilomethylidyne)]diphenolato\}bis[chloridomanganese(III)] N, N-dimethylformamide disolvate$

F(000) = 1256

 $\theta = 2.3 - 27.8^{\circ}$

 $\mu = 4.13 \text{ mm}^{-1}$ T = 200 K

Block, brown

 $0.26 \times 0.10 \times 0.07 \text{ mm}$

 $D_{\rm x} = 1.808 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3984 reflections

Crystal data $[Mn_2(C_{20}H_{12}Br_2N_2O_2)_2Cl_2] \cdot 2C_3H_7NO$ $M_r = 1271.24$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 9.7804 (6) Å b = 20.1342 (12) Å c = 11.8593 (6) Å $\beta = 90.938$ (1)° V = 2335.0 (2) Å³ Z = 2Data collection

Dui	nie	cu	o	n	

Bruker SMART 1000 CCD	17204 measured reflections
diffractometer	5763 independent reflections
Radiation source: fine-focus sealed tube	3286 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.067$
φ and ω scans	$\theta_{\rm max} = 28.3^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -13 \rightarrow 13$
(SADABS; Bruker, 2000)	$k = -26 \rightarrow 25$
$T_{\min} = 0.742, \ T_{\max} = 1.000$	$l = -9 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from
$wR(F^2) = 0.111$	neighbouring sites
<i>S</i> = 1.01	H-atom parameters constrained
5763 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0372P)^2]$
300 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.73 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.87 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Mn1	0.33723 (7)	0.03642 (3)	0.48099 (5)	0.02156 (17)	
Br1	-0.07312 (5)	-0.20087 (3)	0.13904 (4)	0.04294 (17)	
Br2	0.80307 (6)	0.30297 (3)	0.65558 (4)	0.04307 (17)	

Cl1	0.20464 (11)	0.13541 (6)	0.43825 (9)	0.0301 (3)
01	0.3251 (3)	-0.00461 (15)	0.3398 (2)	0.0252 (7)
O2	0.5128 (3)	0.06888 (14)	0.4485 (2)	0.0225 (7)
N1	0.1887 (3)	-0.01986(17)	0.5427 (3)	0.0200 (8)
N2	0.3604 (3)	0.06227 (17)	0.6425 (3)	0.0200 (8)
C1	0.2337 (4)	-0.0470 (2)	0.3001 (3)	0.0212 (10)
C2	0.2434 (5)	-0.0675(2)	0.1874 (3)	0.0259 (11)
H2	0.3143	-0.0498	0.1425	0.031*
C3	0.1542 (5)	-0.1118(2)	0.1405 (4)	0.0276 (11)
H3	0.1631	-0.1250	0.0641	0.033*
C4	0.0485 (4)	-0.1379(2)	0.2063 (4)	0.0253 (10)
C5	0.0369(4)	-0.1213(2)	0.3164(4)	0.0262 (11)
Н5	-0.0331	-0.1407	0.3602	0.031*
C6	0.1289 (4)	-0.0750(2)	0.3666(4)	0.0227 (10)
C7	0.1164(4)	-0.0620(2)	0.4843(3)	0.0221 (10)
е <i>т</i> Н7	0.0489	-0.0863	0.5235	0.027*
C8	0 1754 (4)	-0.0142(2)	0.6626 (3)	0.027
C9	0.0778(4)	-0.0469(2)	0.7259(4)	0.0203(10) 0.0243(10)
H9	0.0126	-0.0751	0.6902	0.029*
C10	0.0767 (5)	-0.0378(2)	0.8416(4)	0.029
H10	0.0101	-0.0600	0.8854	0.035*
C11	0.0101 0.1716(5)	0.0000	0.8938 (4)	0.0294(11)
H11	0.1699	0.0085	0.9733	0.025*
C12	0.1099 0.2684 (5)	0.0009	0.8326 (4)	0.035 0.0267(11)
H12	0.3339	0.0636	0.8694	0.032*
C13	0.3337 0.2693 (4)	0.0050 0.0283(2)	0.0094	0.032
C14	0.2095(4) 0.4430(4)	0.0205(2) 0.1081(2)	0.7130(3)	0.0211(10)
H14	0.4422	0.1101	0.7550	0.0241 (10)
C15	0.4422 0.5364 (4)	0.1171 0.1440(2)	0.7550	0.022
C15	0.5304(4)	0.1440(2) 0.1077(2)	0.0007(3)	0.0223(10) 0.0253(10)
U16	0.5026	0.1977(2) 0.2104	0.0344 (4)	0.0203 (10)
C17	0.3920	0.2104 0.2217(2)	0.7302	0.030°
C17	0.7015(5) 0.7236(5)	0.2317(2) 0.2148(2)	0.3910(4) 0.4703(4)	0.0240(10) 0.0272(11)
	0.7250 (5)	0.2140(2)	0.4793 (4)	0.0272 (11)
П18 С10	0.7852	0.2401 0.1618 (2)	0.4334 0.4338 (4)	0.033°
U10	0.0304 (4)	0.1018 (2)	0.4328 (4)	0.0230 (10)
C20	0.0724 0.5642 (4)	0.1304 0.1227 (2)	0.3304	0.030°
C20	0.3042(4)	0.1237(2)	0.4949(3)	0.0218(10)
03	0.4905(4)	0.1580 (2)	-0.0/18(3)	0.0526(11)
N3 C21	0.3774(5)	0.1/20(2)	0.0910(3)	0.0434(11)
C21	0.4185 (5)	0.1909 (3)	-0.0094 (4)	0.0394 (13)
H21	0.3893	0.2332	-0.0358	0.04/*
C22	0.2859 (6)	0.2150 (3)	0.1564 (5)	0.0637 (19)
H22A	0.26/6	0.2561	0.1148	0.096*
H22B	0.3294	0.2255	0.2293	0.096*
H22C	0.1997	0.1915	0.1689	0.096*
C23	0.4163 (8)	0.1103 (3)	0.1379 (5)	0.078 (2)
H23A	0.4858	0.0897	0.0906	0.117*
H23B	0.3361	0.0813	0.1413	0.117*

supporting information

H23C	0.4539	0.1	170	0.2142	0.117*		
Atomic d	Atomic displacement parameters $(Å^2)$						
	U^{11}	U ²²	U ³³	U^{12}	U^{13}	<i>U</i> ²³	
Mn1	0.0221 (4)	0.0250 (4)	0.0177 (4)	-0.0037 (3)	0.0021 (3)	-0.0023 (3)	
Br1	0.0400 (3)	0.0505 (4)	0.0382 (3)	-0.0164 (3)	-0.0034 (2)	-0.0141 (3)	
Br2	0.0603 (4)	0.0382 (3)	0.0309 (3)	-0.0249 (3)	0.0080(2)	-0.0088(2)	
Cl1	0.0297 (6)	0.0288 (7)	0.0318 (7)	0.0011 (5)	0.0009 (5)	0.0034 (5)	
01	0.0263 (17)	0.0306 (19)	0.0187 (17)	-0.0060 (14)	-0.0014 (13)	-0.0034 (13)	
O2	0.0200 (16)	0.0275 (18)	0.0201 (16)	-0.0051 (13)	0.0049 (12)	-0.0089 (13)	
N1	0.0218 (19)	0.020 (2)	0.0180 (19)	0.0009 (16)	0.0016 (15)	0.0020 (15)	
N2	0.0219 (19)	0.018 (2)	0.020 (2)	0.0006 (16)	0.0005 (15)	0.0017 (15)	
C1	0.023 (2)	0.023 (3)	0.017 (2)	0.0026 (19)	-0.0062 (18)	0.0007 (18)	
C2	0.027 (3)	0.032 (3)	0.019 (2)	0.000(2)	0.0018 (19)	-0.0005 (19)	
C3	0.034 (3)	0.034 (3)	0.015 (2)	-0.003(2)	-0.003(2)	-0.0078 (19)	
C4	0.029 (3)	0.022 (3)	0.025 (3)	-0.001 (2)	-0.007(2)	-0.0041 (19)	
C5	0.023 (2)	0.029 (3)	0.026 (3)	-0.004 (2)	-0.0028 (19)	0.000 (2)	
C6	0.023 (2)	0.019 (3)	0.026 (3)	0.0016 (19)	0.0013 (19)	-0.0022 (18)	
C7	0.020 (2)	0.022 (3)	0.024 (3)	-0.0032 (19)	0.0052 (18)	0.0011 (18)	
C8	0.025 (2)	0.019 (2)	0.017 (2)	0.0045 (19)	0.0041 (18)	0.0002 (17)	
С9	0.021 (2)	0.024 (3)	0.029 (3)	0.0021 (19)	0.0034 (19)	0.0030 (19)	
C10	0.034 (3)	0.033 (3)	0.021 (3)	0.000(2)	0.010(2)	0.006 (2)	
C11	0.039 (3)	0.029 (3)	0.019 (2)	-0.001 (2)	0.005 (2)	0.000 (2)	
C12	0.029 (3)	0.031 (3)	0.020 (2)	0.002 (2)	0.0002 (19)	-0.002 (2)	
C13	0.026 (2)	0.020 (3)	0.018 (2)	0.0038 (19)	0.0045 (18)	0.0005 (18)	
C14	0.031 (3)	0.030 (3)	0.012 (2)	0.000 (2)	-0.0021 (18)	-0.0038 (18)	
C15	0.025 (2)	0.021 (3)	0.021 (2)	0.0032 (19)	0.0020 (18)	0.0026 (18)	
C16	0.031 (3)	0.025 (3)	0.020(2)	-0.001 (2)	0.0001 (19)	-0.0046 (19)	
C17	0.032 (3)	0.018 (2)	0.024 (3)	0.000(2)	0.001 (2)	-0.0014 (19)	
C18	0.037 (3)	0.021 (3)	0.023 (3)	-0.004 (2)	0.006 (2)	0.0027 (19)	
C19	0.031 (3)	0.028 (3)	0.017 (2)	-0.003(2)	0.0021 (19)	0.0000 (19)	
C20	0.022 (2)	0.024 (3)	0.020(2)	0.002 (2)	-0.0001 (18)	0.0000 (18)	
O3	0.059 (3)	0.065 (3)	0.033 (2)	-0.010 (2)	0.0096 (19)	-0.0239 (19)	
N3	0.057 (3)	0.046 (3)	0.027 (2)	-0.011 (2)	0.010 (2)	-0.001 (2)	
C21	0.043 (3)	0.047 (4)	0.028 (3)	-0.014 (3)	-0.005 (2)	-0.004 (2)	
C22	0.073 (5)	0.069 (5)	0.050 (4)	-0.009 (4)	0.026 (3)	-0.006 (3)	
C23	0.117 (7)	0.058 (5)	0.059 (5)	-0.005 (4)	-0.006 (4)	0.014 (4)	

Geometric parameters (Å, °)

Mn1—O1	1.869 (3)	C10-C11	1.380 (6)	
Mn1—O2	1.884 (3)	C10—H10	0.9500	
Mn1—O2 ⁱ	2.703 (3)	C11—C12	1.373 (6)	
Mn1—N1	1.991 (3)	C11—H11	0.9500	
Mn1—N2	1.994 (3)	C12—C13	1.397 (6)	
Mn1—Cl1	2.4268 (13)	C12—H12	0.9500	
Br1—C4	1.904 (4)	C14—C15	1.441 (6)	

supporting information

Br2—C17	1.896 (4)	C14—H14	0.9500
O1—C1	1.318 (5)	C15—C16	1.406 (6)
O2—C20	1.328 (5)	C15—C20	1.418 (6)
N1—C7	1.297 (5)	C16—C17	1.369 (6)
N1—C8	1.435 (5)	C16—H16	0.9500
N2—C14	1.290 (5)	C17—C18	1.395 (6)
N2—C13	1.429 (5)	C18—C19	1.366 (6)
C1—C2	1.403 (5)	C18—H18	0.9500
C1—C6	1.420 (6)	C19—C20	1.402 (6)
C2—C3	1.361 (6)	C19—H19	0.9500
C2—H2	0.9500	03-C21	1.217 (6)
C3—C4	1.406 (6)	N3—C21	1.316 (6)
С3—Н3	0.9500	N3—C23	1 422 (7)
C4-C5	1 355 (6)	N3—C22	1.122(7) 1 466(7)
C_{5}	1.555 (6)	C21_H21	0.9500
C5—H5	0.9500	C221 H22A	0.9800
C6 C7	1 428 (5)	C22 H22B	0.9800
C7 H7	0.0500	C22—H22C	0.9800
C^{*}	1 280 (6)	C22—H22A	0.9800
C_{0}	1.369 (0)	C23—H23A C22_H22B	0.9800
C_{0}	1.397 (0)	С23—П23В	0.9800
C9C10	1.364 (0)	С23—п23С	0.9800
С9—Н9	0.9500		
01 14-1 02	00.94(12)		110.0
OI - MinI - O2	90.84 (12)	CII—CI0—HI0	119.8
Ol—Mnl—Nl	92.38 (14)	С9—С10—Н10	119.8
O2—Mn1—N1	161.07 (14)	C12—C11—C10	121.0 (4)
Ol—Mnl—N2	168.61 (14)	C12—C11—H11	119.5
O2—Mn1—N2	90.93 (13)	C10—C11—H11	119.5
N1—Mn1—N2	82.42 (14)	C11—C12—C13	119.2 (4)
O1—Mn1—Cl1	98.63 (10)	C11—C12—H12	120.4
O2—Mn1—Cl1	99.10 (10)	C13—C12—H12	120.4
N1—Mn1—Cl1	98.84 (10)	C12—C13—C8	120.0 (4)
N2—Mn1—C11	92.20 (10)	C12—C13—N2	124.3 (4)
O1—Mn1—O2 ⁱ	87.52 (11)	C8—C13—N2	115.6 (4)
O2—Mn1—O2 ⁱ	81.01 (12)	N2—C14—C15	125.0 (4)
N1—Mn1—O2 ⁱ	80.51 (11)	N2—C14—H14	117.5
N2—Mn1—O2 ⁱ	81.65 (11)	C15—C14—H14	117.5
Cl1-Mn1-O2 ⁱ	173.85 (7)	C16—C15—C20	119.7 (4)
C1—O1—Mn1	129.7 (3)	C16—C15—C14	118.1 (4)
C20—O2—Mn1	122.9 (3)	C20-C15-C14	122.1 (4)
C7—N1—C8	121.5 (3)	C17—C16—C15	120.0 (4)
C7—N1—Mn1	124.8 (3)	C17—C16—H16	120.0
C8—N1—Mn1	113.5 (3)	C15-C16-H16	120.0
C14—N2—C13	122.9 (4)	C16—C17—C18	120.8 (4)
C14—N2—Mn1	123.6 (3)	C16—C17—Br2	120.6 (3)
C13—N2—Mn1	113.3 (3)	C18—C17—Br2	118.6 (3)
O1—C1—C2	118.3 (4)	C19—C18—C17	119.7 (4)
01—C1—C6	123.4 (4)	C19—C18—H18	120.2

C2—C1—C6	118.2 (4)	C17—C18—H18	120.2
C3—C2—C1	121.9 (4)	C18—C19—C20	121.7 (4)
С3—С2—Н2	119.0	C18—C19—H19	119.1
C1—C2—H2	119.0	C20—C19—H19	119.1
C2—C3—C4	119.4 (4)	O2—C20—C19	118.6 (4)
С2—С3—Н3	120.3	O2-C20-C15	123.4 (4)
C4—C3—H3	120.3	C19-C20-C15	117.9 (4)
$C_{5}-C_{4}-C_{3}$	121.1 (4)	C_{21} N3 C_{23}	121.1 (5)
$C_{5} - C_{4} - Br_{1}$	1204(3)	$C_{21} = N_{3} = C_{22}$	121.0(5)
$C_3 - C_4 - Br_1$	120.1(3) 1184(3)	C^{23} N3 C^{22}	127.0(5) 117.9(5)
C4-C5-C6	120.3(4)	O_{3} C_{21} N_{3}	126.1.(6)
C4-C5-H5	119.9	$O_3 - C_2 I - H_2 I$	116.9
C6-C5-H5	119.9	N3_C21_H21	116.9
$C_{5} = C_{5} = C_{1}$	119.9	$N_3 = C_{21} = H_{21}$	100.5
$C_{5} = C_{6} = C_{7}$	117.1(4)	N3 C22 H22R	109.5
$C_{3} = C_{0} = C_{7}$	117.9(4) 122.0(4)	$H_{22} \wedge C_{22} H_{22} B$	109.5
N1 C7 C6	122.9(4)	$N^2 C^2 D^2 D^2 C^2$	109.5
NI = C7 = U7	120.0 (4)	$N_3 = C_{22} = H_{22}C$	109.5
NI - C / - H /	117.0	H22A = C22 = H22C	109.5
$C_0 = C_1 = H_1$	117.0	H22B = C22 = H22C	109.5
$C_{2} = C_{3} = C_{13}$	119.9 (4)	$N_3 = C_{23} = H_{23}A$	109.5
C_{2} C_{3} N_{1}	125.0 (4)	$N_3 - C_{23} - H_{23B}$	109.5
C13—C8—N1	115.1 (4)	H23A - C23 - H23B	109.5
C10 - C9 - C8	119.4 (4)	N3—C23—H23C	109.5
С10—С9—Н9	120.3	H23A—C23—H23C	109.5
С8—С9—Н9	120.3	H23B—C23—H23C	109.5
C11—C10—C9	120.4 (4)		
Ω^{2} _Mn1_ Ω^{1} _C1	170 3 (4)	C8-N1-C7-C6	-175.0(4)
N1 - Mn1 - O1 - C1	89(4)	Mn1 - N1 - C7 - C6	-0.6(6)
N2 Mp1 Q1 C1	714(8)	$\frac{1}{1000} = \frac{1}{1000} = 1$	-177.7(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-904(3)	C_{1} C_{6} C_{7} N_{1}	62(7)
O^{2i} Mp1 O^{1} O^{1}	90.4 (<i>3</i>)	C1 - C0 - C7 - N1	-67(6)
02 - Mm - 01 - C1	152.2(2)	C_{1} M_{1} M_{1} C_{2} C_{3}	178.2(2)
$M_{\rm m1} = 02 = 020$	-107.0(5)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	178.3(3) 172.8(4)
N1 - M11 - O2 - C20	-107.0(3) -38.1(3)	$C = N_1 = C_0 = C_{13}$	1/3.8(4) -1.1(4)
$N_2 - M_{11} - O_2 - C_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O$	-36.1(3)	$MIII = N1 = C_0 = C_{13}$	-1.1(4)
C11 - M11 - O2 - C20	54.5(5)	C13 - C3 - C9 - C10	-1.3(0)
02 - Min - 02 - C20	-119.3(3)	N1 = C8 = C9 = C10	1/9.5(4)
OI = MinI = NI = C7	-5.4(4)	$C_{8} = C_{9} = C_{10} = C_{11}$	=0.1(7)
02-MHI-NI-C7	-105.0(5)	C_{9} C_{10} C_{11} C_{12} C_{12}	0.4 (7)
N_2 —Min1—N1—C7	-1/5.2(4)	C10-C11-C12-C13	0.7(7)
$\frac{\text{VII} - \text{WIII} - \text{NI} - \text{V}}{\text{O2i}} = \frac{\text{WIII} - \text{NI}}{\text{MII}} = \frac{\text{O2i}}{\text{O2i}}$	93.7 (3)	C11 - C12 - C13 - C8	-2.1(6)
U_2 Mini NI U_2	-92.5 (4)	C11 - C12 - C13 - N2	1/6.9 (4)
UI - MII - NI - C8	169.4 (3)	C9 - C8 - C13 - C12	2.4 (6)
U_2 —Min1—N1—C8	69.8 (5)	$N1 - C\delta - C13 - C12$	-1/8.1(4)
N2-Mn1-N1-C8	-0.5(3)	C9-C8-C13-N2	$-1^{7}/6.7$ (4)
U_{11} —MINI—NI—C8	-91.5 (3)	N1 - C8 - C13 - N2	2.8 (5)
02'—Mn1—N1—C8	82.3 (3)	C14—N2—C13—C12	-6.5 (7)
OI-MnI-N2-C14	122.9 (7)	Mn1—N2—C13—C12	177.8 (3)

O2—Mn1—N2—C14	24.0 (4)	C14—N2—C13—C8	172.6 (4)
N1—Mn1—N2—C14	-173.8 (4)	Mn1—N2—C13—C8	-3.2 (5)
Cl1—Mn1—N2—C14	-75.2 (4)	C13—N2—C14—C15	-179.8 (4)
O2 ⁱ —Mn1—N2—C14	104.8 (4)	Mn1—N2—C14—C15	-4.4 (6)
O1—Mn1—N2—C13	-61.4 (8)	N2-C14-C15-C16	172.8 (4)
O2—Mn1—N2—C13	-160.3 (3)	N2-C14-C15-C20	-11.8 (7)
N1—Mn1—N2—C13	1.9 (3)	C20-C15-C16-C17	2.4 (7)
Cl1—Mn1—N2—C13	100.6 (3)	C14—C15—C16—C17	177.8 (4)
O2 ⁱ —Mn1—N2—C13	-79.5 (3)	C15-C16-C17-C18	1.6 (7)
Mn1—O1—C1—C2	176.1 (3)	C15—C16—C17—Br2	-178.4 (3)
Mn1—O1—C1—C6	-6.3 (6)	C16—C17—C18—C19	-3.0 (7)
O1—C1—C2—C3	179.1 (4)	Br2-C17-C18-C19	177.0 (4)
C6—C1—C2—C3	1.4 (7)	C17—C18—C19—C20	0.4 (7)
C1—C2—C3—C4	0.3 (7)	Mn1—O2—C20—C19	-149.3 (3)
C2—C3—C4—C5	-2.2 (7)	Mn1-02-C20-C15	34.1 (5)
C2-C3-C4-Br1	-179.1 (3)	C18—C19—C20—O2	-173.3 (4)
C3—C4—C5—C6	2.3 (7)	C18—C19—C20—C15	3.5 (7)
Br1-C4-C5-C6	179.2 (3)	C16—C15—C20—O2	171.8 (4)
C4—C5—C6—C1	-0.6 (6)	C14—C15—C20—O2	-3.5 (7)
C4—C5—C6—C7	-176.8 (4)	C16—C15—C20—C19	-4.8 (6)
O1-C1-C6-C5	-178.8 (4)	C14—C15—C20—C19	179.9 (4)
C2-C1-C6-C5	-1.2 (6)	C23—N3—C21—O3	0.3 (9)
O1—C1—C6—C7	-2.8 (7)	C22—N3—C21—O3	-177.5 (5)
C2-C1-C6-C7	174.8 (4)		

Symmetry code: (i) -x+1, -y, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —H	H···A	$D \cdots A$	D—H··· A	
C7—H7···Cl1 ⁱⁱ	0.95	2.71	3.603 (4)	156	
C12—H12···O3 ⁱⁱⁱ	0.95	2.54	3.468 (6)	165	
C14—H14····O3 ⁱⁱⁱ	0.95	2.25	3.173 (5)	165	
C19—H19····Br 2^{iv}	0.95	2.88	3.678 (4)	143	

Symmetry codes: (ii) -*x*, -*y*, -*z*+1; (iii) *x*, *y*, *z*+1; (iv) *x*, -*y*+1/2, *z*-1/2.