Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Ethyl 3-methyl-4-oxo-4,5-dihydro-1H-pyrrolo[2,3-d]pyridazine-2-carboxylate

Shi-Quan Chen, ${ }^{\text {a }}$ Kai Jiang ${ }^{b}$ and Shi-Fan Wang ${ }^{\text {c,a* }}$
${ }^{\text {a }}$ Key Laboratory of Tropical Biological Resources of the Ministry of Education, Hainan University, Haikou 570228, People's Republic of China, ${ }^{\text {b }}$ Experimental Teaching Center of Marine Biology, Hainan University, Haikou 570228, People's Republic of China, and ${ }^{\text {c }}$ School of Ocean, Hainan University, Haikou 570228, People's Republic of China
Correspondence e-mail: wangsf777@gmail.com

Received 18 December 2009; accepted 22 December 2009
Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.044 ; w R$ factor $=0.120 ;$ data-to-parameter ratio $=13.1$.

The title compound, $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$, was synthesized by the reaction of 3,5-bis(ethoxycarbonyl)-2-formyl-4-methyl- 1 H pyrrole and hydrazine hydrate. The angle between the pyrrole ring and the pyridazinone ring is $0.93(9)^{\circ}$. In the crystal, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bond interactions link the molecules into a two-dimensional network.

Related literature

For the biological activity of pyrrolopyridazine compounds, see: Chen et al. (2006); Hu et al. (2004); Swamy et al. (2005). For bond-length data, see Allen et al. (1987).

Experimental

$$
\begin{array}{ll}
\text { Crystal data } & \\
\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3} & a=8.0030(16) \AA \\
M_{r}=221.22 & b=9.774(2) \AA \\
\text { Monoclinic, } P 2_{1} / c & c=13.370(3) \AA
\end{array}
$$

$\beta=90.17$ (3) ${ }^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$V=1045.8$ (4) \AA^{3}
$T=295 \mathrm{~K}$
$Z=4$
$0.40 \times 0.26 \times 0.06 \mathrm{~mm}$
Mo $K \alpha$ radiation

Data collection
Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.959, T_{\max }=0.994$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.120$
$S=1.06$
2045 reflections
156 parameters

6834 measured reflections 2045 independent reflections 1676 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.031$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.90(3)$	$1.90(3)$	$2.804(2)$	$175(2)$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N}^{\mathrm{ii}}$	$0.86(2)$	$2.08(2)$	$2.925(2)$	$166.2(17)$

Symmetry codes: (i) $-x,-y,-z+2$; (ii) $-x, y+\frac{1}{2},-z+\frac{3}{2}$.

Data collection: SMART (Bruker 2002); cell refinement: SAINT (Bruker 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

This research was supported financially by the National Natural Science Foundation of China (30660215).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2715).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, Z., Kim, S. H., Barbosa, S. A., Huynh, T., Tortolani, D. R., Leavitt, K. J., Wei, D. D., Manne, V., Ricca, C. S., Gullo-Brown, J., Poss, M. A., Vaccaro, W. \& Salvati, M. E. (2006). Bioorg. Med. Chem. Lett. 16, 628-632.
Hu, T., Stearns, B. A., Campbell, B. T., Arruda, J. M., Chen, C., Aiyar, J., Bezverkov, R. E., Santini, A., Schaffhauser, H., Liu, W., Venkatraman, S. \& Munoz, B. (2004). Bioorg. Med. Chem. Lett. 14, 2031-2034.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Swamy, K. M. K., Park, M. S., Han, S. J., Kim, S. K., Kim, J. H., Lee, C., Bang, H., Kim, Y., Kim, S.-J. \& Yoon, J. (2005). Tetrahedron, 61, 10227-10234.

supporting information

Acta Cryst. (2010). E66, 0259 [https://doi.org/10.1107/S1600536809055081]

Ethyl 3-methyl-4-oxo-4,5-dihydro-1H-pyrrolo[2,3-d] pyridazine-2-carboxylate

Shi-Quan Chen, Kai Jiang and Shi-Fan Wang

S1. Comment

Pyridazine and its derivatives play an important role play an important role in medicine and as pesticides. One of the main techniques to synthesize pyridazines is to react 1,4-dicarbonyl compounds with hydrazine hydrate. Recently, the synthesis of pyrrolopyridazine compounds has aroused great interest because of their significant biological activity (Chen et al., 2006; Hu et al., 2004; Swamy et al., 2005). As part of our work to develop new types of pyrrolopyridazine compounds with potential biological activity, we report here the synthesis and structure of the title compound (1). In the molecule of compound (1), the torsion angles are $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3179.21$ (14) and $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 50.20(18)^{\circ}$. The dihedral angle between the pyrrole and pyridazinone rings is $0.93(9)^{\circ}$, an indication that the pyrrolopyridazine system is reasonably planar. The $\mathrm{C} 4=\mathrm{N} 2$ and $\mathrm{C} 3=\mathrm{O} 1$ bond lengths in the molecule are 1.291 (2) and $1.2397(19)^{\circ}$, respectively, showing their double-bond character (Allen et al., 1987). In the crystal structure, $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds form a two-dimensional network structure, Fig. 2.

S2. Experimental

$2.39 \mathrm{~g}(10 \mathrm{mmol})$ of the 3,5-bis(ethoxycarbonyl)-2,4- dimethyl-1 (H)-pyrrole was added to a mixed solvent of 60 ml THF and 60 ml glacial acetic acid at room temperature under stirring until all of the solid was dissolved. Then, 60 ml water and $21.93 \mathrm{~g}(40 \mathrm{mmol})$ cerous ammonium nitrate (CAN) were added consecutively and the mixture stirred at room temperature for 1.5 h until the reaction was complete. The reaction mixture was poured into ice water and the white solid was separated ($2.13 \mathrm{~g}, 84 \%$). Recrystallization of the white solid from ethanol gave the compound 3,5-bis(ethoxy-carbonyl)-2-formyl-4-methyl-1 (H)-pyrrole.
An aqueous solution of hydrazine hydrate ($80 \%, 0.5 \mathrm{ml}$) was added into a solution of 3,5-bis(ethoxycarbonyl)-2-formyl-4-methyl- $1(H)$-pyrrole $(0.25 \mathrm{~g}, 1.0 \mathrm{mmol})$ in glacial acetic acid $(20 \mathrm{ml})$ under stirring at room temperature. The reaction mixture was refluxed for 3 h till the reaction was complete. The reaction mixture was evaporated to remove the solvent of water and acetic acid at reduced pressure to yield the title compound (1) as a white solid ($0.18 \mathrm{~g}, 82 \%$). Recrystallization of the white solid from hot ethanol yielded colorless plate-like crystals suitable for X-ray diffraction analysis.

S3. Refinement

The H atoms bound to N 1 and N 3 were located in a difference Fourier map and refined freely with isotropic displacement parameters. All other H atoms were visible in difference maps and were subsequently treated as riding atoms with distances $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$. $U_{\text {iso }}(\mathrm{H})$ was set equal to $x U_{\text {eq }}$ (parent atom), where $x=1.2-1.5$.

Figure 1
The structure of the title compound (1), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
A packing diagram of compound (1) showing the chain of molecules linked by $\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{O} 1$ and $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 2$ hydrogen bonds. Hydrogen bonds are shown as dashed lines.

Ethyl 3-methyl-4-oxo-4,5-dihydro-1H-pyrrolo[2,3-d]pyridazine-2-carboxylate

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$

$M_{r}=221.22$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=8.0030(16) \AA$
$b=9.774$ (2) \AA
$c=13.370(3) \AA$
$\beta=90.17$ (3) ${ }^{\circ}$
$V=1045.8(4) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator
$F(000)=464$
$D_{\mathrm{x}}=1.405 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 7501 reflections
$\theta=2.6-26.4^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Plate, colourless
$0.40 \times 0.26 \times 0.06 \mathrm{~mm}$

$$
\begin{aligned}
& \varphi \text { and } \omega \text { scans } \\
& \text { Absorption correction: multi-scan } \\
& \quad(S A D A B S ; \text { Sheldrick, 1996) } \\
& T_{\min }=0.959, T_{\max }=0.994
\end{aligned}
$$

6834 measured reflections
2045 independent reflections
1676 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$

$$
\begin{aligned}
& \theta_{\max }=26.0^{\circ}, \theta_{\min }=2.6^{\circ} \\
& h=-9 \rightarrow 9 \\
& k=-11 \rightarrow 12 \\
& l=-16 \rightarrow 15
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.120$
$S=1.06$
2045 reflections
156 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0631 P)^{2}+0.2196 P\right]$ where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.27 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e} \AA^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.007 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C1	$0.0960(2)$	$0.38216(17)$	$0.86245(11)$	$0.0291(4)$
C2	$0.14214(19)$	$0.33040(17)$	$0.95543(11)$	$0.0277(4)$
C3	$0.0970(2)$	$0.19196(17)$	$0.97885(11)$	$0.0295(4)$
C4	$0.0078(2)$	$0.30214(18)$	$0.79200(12)$	$0.0348(4)$
H2	-0.0209	0.3395	0.7303	0.042^{*}
C5	$0.22621(19)$	$0.43535(17)$	$1.00880(11)$	$0.0287(4)$
C6	$0.2266(2)$	$0.54646(17)$	$0.94508(11)$	$0.0293(4)$
C7	$0.2897(2)$	$0.68717(18)$	$0.95437(12)$	$0.0324(4)$
C8	$0.4347(2)$	$0.8457(2)$	$1.05488(15)$	$0.0473(5)$
H8A	0.3500	0.9150	1.0436	0.057^{*}
H8B	0.5247	0.8602	1.0076	0.057^{*}
C9	$0.4995(3)$	$0.8551(3)$	$1.15900(17)$	$0.0665(7)$
H9A	0.5831	0.7860	1.1694	0.100^{*}
H9B	0.4094	0.8414	1.2052	0.100^{*}
H9C	0.5478	0.9438	1.1696	0.100^{*}
C10	$0.2976(2)$	$0.4242(2)$	$1.11193(12)$	$0.0380(4)$
H10A	0.2233	0.4670	1.1587	0.057^{*}
H10B	0.4043	0.4690	1.1142	0.057^{*}
H10C	0.3111	0.3295	1.1291	0.057^{*}

N1	$0.14838(18)$	$0.51266(15)$	$0.85690(10)$	$0.0318(4)$
N2	$-0.03348(19)$	$0.17759(15)$	$0.81245(10)$	$0.0362(4)$
N3	$0.01190(19)$	$0.12734(16)$	$0.90363(10)$	$0.0349(4)$
O1	$0.12783(16)$	$0.13034(12)$	$1.05782(8)$	$0.0397(4)$
O2	$0.27522(18)$	$0.77051(14)$	$0.88893(10)$	$0.0506(4)$
O3	$0.36361(16)$	$0.71015(13)$	$1.04147(9)$	$0.0409(4)$
H1	$0.132(2)$	$0.565(2)$	$0.8057(15)$	$0.038(5)^{*}$
H3	$-0.028(3)$	$0.042(3)$	$0.9145(16)$	$0.067(7)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0348(9)$	$0.0251(9)$	$0.0274(8)$	$0.0005(7)$	$-0.0006(6)$	$0.0008(7)$
C2	$0.0313(8)$	$0.0261(9)$	$0.0256(8)$	$0.0013(7)$	$-0.0007(6)$	$0.0005(7)$
C3	$0.0342(9)$	$0.0275(9)$	$0.0268(8)$	$-0.0004(7)$	$-0.0005(6)$	$0.0017(7)$
C4	$0.0503(10)$	$0.0287(10)$	$0.0253(8)$	$-0.0019(8)$	$-0.0054(7)$	$0.0011(7)$
C5	$0.0299(8)$	$0.0271(9)$	$0.0290(8)$	$0.0013(6)$	$-0.0012(6)$	$-0.0003(7)$
C6	$0.0321(8)$	$0.0273(9)$	$0.0286(8)$	$-0.0002(7)$	$-0.0028(6)$	$-0.0013(7)$
C7	$0.0347(9)$	$0.0285(10)$	$0.0340(9)$	$-0.0017(7)$	$-0.0022(7)$	$-0.0007(7)$
C8	$0.0492(11)$	$0.0365(12)$	$0.0562(12)$	$-0.0114(9)$	$-0.0071(9)$	$-0.0098(9)$
C9	$0.0655(14)$	$0.0758(18)$	$0.0581(14)$	$-0.0170(13)$	$-0.0081(11)$	$-0.0236(13)$
C10	$0.0447(10)$	$0.0367(11)$	$0.0325(9)$	$-0.0025(8)$	$-0.0098(7)$	$0.0021(8)$
N1	$0.0432(8)$	$0.0254(8)$	$0.0268(7)$	$-0.0024(6)$	$-0.0058(6)$	$0.0050(6)$
N2	$0.0515(9)$	$0.0298(9)$	$0.0272(7)$	$-0.0048(7)$	$-0.0059(6)$	$-0.0008(6)$
N3	$0.0502(9)$	$0.0255(9)$	$0.0290(7)$	$-0.0063(6)$	$-0.0053(6)$	$0.0023(6)$
O1	$0.0569(8)$	$0.0305(7)$	$0.0317(7)$	$-0.0077(6)$	$-0.0101(5)$	$0.0078(5)$
O2	$0.0723(10)$	$0.0319(8)$	$0.0475(8)$	$-0.0113(6)$	$-0.0173(7)$	$0.0092(6)$
O3	$0.0514(8)$	$0.0324(8)$	$0.0389(7)$	$-0.0092(6)$	$-0.0101(6)$	$-0.0006(5)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 1-\mathrm{N} 1$	$1.345(2)$	$\mathrm{C} 7-\mathrm{O} 3$	$1.324(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.391(2)$	$\mathrm{C} 8-\mathrm{O} 3$	$1.453(2)$
$\mathrm{C} 1-\mathrm{C} 4$	$1.412(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.487(3)$
$\mathrm{C} 2-\mathrm{C} 5$	$1.418(2)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9700
$\mathrm{C} 2-\mathrm{C} 3$	$1.435(2)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9700
$\mathrm{C} 3-\mathrm{O} 1$	$1.2396(19)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	0.9600
$\mathrm{C} 3-\mathrm{N} 3$	$1.368(2)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	0.9600
$\mathrm{C} 4-\mathrm{N} 2$	$1.291(2)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{C}$	0.9600
$\mathrm{C} 4-\mathrm{H} 2$	0.9300	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	0.9600
$\mathrm{C} 5-\mathrm{C} 6$	$1.380(2)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	0.9600
$\mathrm{C} 5-\mathrm{C} 10$	$1.495(2)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	0.9600
$\mathrm{C} 6-\mathrm{N} 1$	$1.374(2)$	$\mathrm{N} 2-\mathrm{H} 1$	$0.86(2)$
$\mathrm{C} 6-\mathrm{C} 7$	$1.470(2)$	$\mathrm{N} 3-\mathrm{H} 3$	$1.3626(19)$
$\mathrm{C} 7-\mathrm{O} 2$	$1.201(2)$	$\mathrm{O} 3-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	$0.90(3)$
		$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 2$	$108.20(14)$		110.1
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 4$	$130.09(15)$		110.1

C2- $\mathrm{C} 1-\mathrm{C} 4$	121.71 (16)
C1-C2-C5	108.11 (15)
C1-C2-C3	118.14 (14)
C5-C2-C3	133.74 (14)
O1-C3-N3	119.96 (16)
O1-C3-C2	126.47 (15)
N3-C3-C2	113.57 (14)
N2-C4-C1	120.59 (15)
N2-C4-H2	119.7
$\mathrm{C} 1-\mathrm{C} 4-\mathrm{H} 2$	119.7
C6-C5-C2	105.10 (14)
C6-C5-C10	128.68 (15)
C2-C5-C10	126.22 (15)
N1-C6-C5	109.79 (15)
N1-C6-C7	116.94 (14)
C5-C6-C7	133.26 (15)
O2-C7-O3	124.61 (16)
O2-C7-C6	122.72 (16)
O3-C7-C6	112.68 (14)
O3-C8-C9	107.89 (17)
O3-C8-H8A	110.1
C9-C8-H8A	110.1
N1-C1-C2-C5	0.20 (18)
C4- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 5$	-179.24 (15)
N1-C1-C2-C3	179.22 (14)
C4- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-0.2 (2)
C1-C2-C3-O1	-179.84 (16)
C5-C2-C3-O1	-1.1 (3)
C1-C2-C3-N3	0.1 (2)
C5-C2-C3-N3	178.82 (16)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 4-\mathrm{N} 2$	-179.01 (17)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4-\mathrm{N} 2$	0.3 (3)
C1-C2-C5-C6	0.09 (18)
C3-C2-C5-C6	-178.72 (17)
C1-C2-C5-C10	-179.86 (15)
C3-C2-C5-C10	1.3 (3)
C2-C5-C6-N1	-0.35 (18)
C10-C5-C6-N1	179.60 (15)
C2-C5-C6-C7	178.60 (17)

H8A-C8-H8B	108.4
C8-C9-H9A	109.5
C8-C9-H9B	109.5
H9A-C9-H9B	109.5
C8-C9-H9C	109.5
H9A-C9-H9C	109.5
H9B-C9-H9C	109.5
C5-C10-H10A	109.5
C5-C10-H10B	109.5
H10A-C10-H10B	109.5
C5-C10-H10C	109.5
H10A-C10-H10C	109.5
H10B-C10-H10C	109.5
C1-N1-C6	$108.79(14)$
C1-N1-H1	$123.8(13)$
C6-N1-H1	$127.4(13)$
C4-N2-N3	$117.50(14)$
N2-N3-C3	$128.49(16)$
N2-N3-H3	$112.6(14)$
C3-N3-H3	$118.8(14)$
C7-O3-C8	$115.92(14)$

$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-1.4(3)$
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 2$	$-0.1(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 2$	$-178.97(18)$
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 3$	$-179.76(14)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 3$	$1.3(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 6$	$-0.42(18)$
$\mathrm{C} 4-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 6$	$178.97(17)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 1$	$0.49(19)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 1$	$-178.65(14)$
$\mathrm{C} 1-\mathrm{C} 4-\mathrm{N} 2-\mathrm{N} 3$	$-0.3(2)$
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 3$	$0.2(3)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{N} 3-\mathrm{N} 2$	$179.87(16)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 3-\mathrm{N} 2$	$-0.1(2)$
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{O} 3-\mathrm{C} 8$	$-1.8(3)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 3-\mathrm{C} 8$	$177.84(15)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{O} 3-\mathrm{C} 7$	$175.68(16)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3 — \mathrm{H} 3 \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.90(3)$	$1.90(3)$	$2.804(2)$	$175(2)$
$\mathrm{N} 1 — \mathrm{H} 1 \cdots \mathrm{~N} 2^{\mathrm{ii}}$	$0.86(2)$	$2.08(2)$	$2.925(2)$	$166.2(17)$

Symmetry codes: (i) $-x,-y,-z+2$; (ii) $-x, y+1 / 2,-z+3 / 2$.

