

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[N'-(5-Bromo-2-oxidobenzylidene- κ O)-3hydroxy-2-naphthohydrazidato- $\kappa^2 N'$,O]dimethyltin(IV)

See Mun Lee, Hapipah Mohd Ali and Kong Mun Lo*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: kmlo@um.edu.my

Received 19 November 2009; accepted 9 January 2010

Key indicators: single-crystal X-ray study; T = 145 K; mean σ (C–C) = 0.005 Å; R factor = 0.024; wR factor = 0.079; data-to-parameter ratio = 16.4.

The Sn^{IV} atom in the title compound, $[Sn(CH_3)_2-(C_{18}H_{11}BrN_2O_3)]$, shows a distorted *cis*-C₂NO₂Sn trigonalbipyramidal coordination geometry, with an axial O-Sn-O angle of 155.27 (9)°. The presence of an intramolecular O-H···N hydrogen bond between the amido N atom and hydroxy H atom in the Schiff base ligand helps to stabilize the overall molecular structure.

Related literature

For related structures, see Lee *et al.* (2009*a*,*b*). For similar hydrazone dianions acting as O,N,O'-chelate ligands to tin in organotin compounds, see: Labib *et al.* (1996); Samanta *et al.* (2007).

Experimental

Crystal data [Sn(CH₃)₂(C₁₈H₁₁BrN₂O₃)]

 $M_r = 531.96$

Triclinic, P1	$V = 927.84 (12) \text{ Å}^3$
a = 6.8662 (5) Å	Z = 2
$b = 11.7998 \ (9) \ \text{\AA}$	Mo $K\alpha$ radiation
c = 11.9365 (9) Å	$\mu = 3.55 \text{ mm}^{-1}$
$\alpha = 87.464 \ (1)^{\circ}$	T = 145 K
$\beta = 76.128 \ (1)^{\circ}$	$0.39 \times 0.37 \times 0.09 \text{ mm}$
$\gamma = 81.213 \ (1)^{\circ}$	
Data collection	
Bruker APEXII CCD area-detector	5350 measured reflections
diffractometer	4028 independent reflections

diffractometer4028 independent reflectionsAbsorption correction: multi-scan
(SADABS; Sheldrick, 1996)
 $T_{\min} = 0.338, T_{\max} = 0.740$ 3703 reflections with $I > 2\sigma(I)$
 $R_{int} = 0.016$

Refinement

ŀ

v S

4

1 restraint
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.63 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.76 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

		,		
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3−H3···N2	0.84	1.88	2.611 (4)	144

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 20080); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the University of Malaya (grant Nos. PS320/2008 C and RG020/09AFR) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2691).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Labib, L., Khalil, T. E., Iskander, M. F. & Refaat, L. S. (1996). *Polyhedron*, **21**, 3697–3707.

Lee, S. M., Lo, K. M., Mohd Ali, H. & Ng, S. W. (2009a). Acta Cryst. E65, m816.

Lee, S. M., Lo, K. M., Ali, H. M. & Ng, S. W. (2009b). Acta Cryst. E65, m862.Samanta, B., Chakraborty, J., Dey, D. K. & Mitra, S. (2007). Struct. Chem. 18, 287–297.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). publCIF. In preparation.

supporting information

Acta Cryst. (2010). E66, m161 [https://doi.org/10.1107/S1600536810001133]

[*N*'-(5-Bromo-2-oxidobenzylidene- κO)-3-hydroxy-2-naphthohydrazidato- $\kappa^2 N', O$]dimethyltin(IV)

See Mun Lee, Hapipah Mohd Ali and Kong Mun Lo

S1. Experimental

The Schiff base ligand was prepared by the condensation reaction of 3-hydroxy-2-naphthoyl hydrazide with 5-bromosalicylaldehyde. The title compound was prepared by refluxing the Schiff base (0.74 g, 2.0 mmol) with dimethyltin oxide (0.32 g, 2.0 mmol) in toluene for 6 h. The solution was filtered and left for recrystallization for a week during which yellow crystals were obtained.

S2. Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.95Å, $U_{iso} = 1.2U_{eq}$ (C) for aromatic 0.98Å, $U_{iso} = 1.5U_{eq}$ (C) for CH₃ atoms and 0.84Å, $U_{iso} = 1.5U_{eq}$ (O) for the OH group.

Figure 1

The molecular structure of [N'-(5-bromo-2-oxidobenzylidene- κO)-3-hydroxy-2- naphthohydrazidato- $\kappa^2 N'$,O]dimethyltin(IV) showing 70% probability displacement ellipsoids and the atom numbering. Hydrogen atoms are drawn as spheres of arbitrary radius.

 $[N'-(5-Bromo-2-oxidobenzylidene-\kappa O)-3-hydroxy-2-naphthohydrazidato-\kappa^2 N', O]dimethyltin(IV)$

Crystal data	
$[Sn(CH_3)_2(C_{18}H_{11}BrN_2O_3)]$ M _r = 531.96	Hall symbol: -P 1 <i>a</i> = 6.8662 (5) Å
Triclinic, P1	<i>b</i> = 11.7998 (9) Å

Mo *K* α radiation, $\lambda = 0.71073$ Å

 $\theta = 2.5 - 30.6^{\circ}$

 $\mu = 3.55 \text{ mm}^{-1}$

Plate, yellow

 $0.39 \times 0.37 \times 0.09 \text{ mm}$

T = 145 K

Cell parameters from 3900 reflections

c = 11.9365 (9) Å $\alpha = 87.464 (1)^{\circ}$ $\beta = 76.128 (1)^{\circ}$ $\gamma = 81.213 (1)^{\circ}$ $V = 927.84 (12) \text{ Å}^{3}$ Z = 2 F(000) = 520 $D_{x} = 1.904 \text{ Mg m}^{-3}$

Data collection

Bruker APEXII CCD area-detector	5350 measured reflections
diffractometer	4028 independent reflections
Radiation source: fine-focus sealed tube	3703 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.016$
ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 8$
(SADABS; Sheldrick, 1996)	$k = -10 \rightarrow 15$
$T_{\min} = 0.338, \ T_{\max} = 0.740$	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.024$	Hydrogen site location: inferred from
$wR(F^2) = 0.079$	neighbouring sites
S = 1.14	H-atom parameters constrained
4028 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0316P)^2 + 1.8608P]$
245 parameters	where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.63 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.76 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Sn1	0.75049 (3)	0.561594 (19)	0.670242 (18)	0.01412 (8)	
Br1	0.57215 (5)	-0.06224 (3)	0.64595 (3)	0.02011 (9)	
N1	0.5307 (4)	0.4692 (2)	0.7889 (2)	0.0141 (5)	
N2	0.3995 (4)	0.5332 (3)	0.8788 (2)	0.0172 (6)	
01	0.8546 (4)	0.4001 (2)	0.5966 (2)	0.0202 (5)	
02	0.5723 (4)	0.6809(2)	0.7987 (2)	0.0228 (5)	
O3	0.1095 (4)	0.5698 (2)	1.0656 (2)	0.0219 (5)	
H3	0.1750	0.5344	1.0054	0.033*	
C1	0.6138 (5)	0.2791 (3)	0.6996 (3)	0.0141 (6)	

~				
C2	0.7792 (5)	0.3027 (3)	0.6092 (3)	0.0152 (6)
C3	0.8681 (5)	0.2152 (3)	0.5277 (3)	0.0188 (7)
H3A	0.9776	0.2288	0.4655	0.023*
C4	0.7999 (5)	0.1105 (3)	0.5364 (3)	0.0158 (6)
H4	0.8593	0.0541	0.4790	0.019*
C5	0.6435 (5)	0.0871 (3)	0.6295 (3)	0.0164 (6)
C6	0.5524 (5)	0.1702 (3)	0.7093 (3)	0.0154 (6)
H6	0.4459	0.1540	0.7723	0.019*
C7	0.5032 (5)	0.3630 (3)	0.7853 (3)	0.0150 (6)
H7	0.3999	0.3379	0.8450	0.018*
C8	0.4332 (5)	0.6410 (3)	0.8761 (3)	0.0164 (6)
С9	0.3027 (5)	0.7184 (3)	0.9668 (3)	0.0151 (6)
C10	0.1483 (5)	0.6797 (3)	1.0581 (3)	0.0147 (6)
C11	0.0383 (5)	0.7555 (3)	1.1419 (3)	0.0154 (6)
H11	-0.0602	0.7291	1.2037	0.018*
C12	0.0673 (5)	0.8711 (3)	1.1392 (3)	0.0139 (6)
C13	-0.0460(5)	0.9515 (3)	1.2244 (3)	0.0189 (7)
H13	-0.1429	0.9267	1.2880	0.023*
C14	-0.0175 (5)	1.0647 (3)	1.2160 (3)	0.0190 (7)
H14	-0.0962	1.1174	1.2732	0.023*
C15	0.1279 (5)	1.1033 (3)	1.1232 (3)	0.0192 (7)
H15	0.1469	1.1816	1.1186	0.023*
C16	0.2407 (5)	1.0289 (3)	1.0405 (3)	0.0164 (6)
H16	0.3376	1.0558	0.9782	0.020*
C17	0.2153 (5)	0.9112 (3)	1.0461 (3)	0.0138 (6)
C18	0.3312 (5)	0.8320 (3)	0.9627 (3)	0.0152 (6)
H18	0.4322	0.8573	0.9017	0.018*
C19	1.0295 (5)	0.5826 (3)	0.7067 (3)	0.0201 (7)
H19A	1.0478	0.5367	0.7748	0.030*
H19B	1.0291	0.6637	0.7216	0.030*
H19C	1.1409	0.5572	0.6405	0.030*
C20	0.6241 (5)	0.6376 (3)	0.5344 (3)	0.0227 (7)
H20A	0.4933	0.6117	0.5391	0.034*
H20B	0.7165	0.6150	0.4601	0.034*
H20C	0.6040	0.7213	0.5412	0.034*
	-	-		

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.01425 (12)	0.01281 (13)	0.01497 (12)	-0.00358 (8)	-0.00180 (8)	-0.00023 (8)
Br1	0.02169 (17)	0.01283 (18)	0.02579 (18)	-0.00506 (13)	-0.00342 (14)	-0.00316 (13)
N1	0.0149 (12)	0.0107 (13)	0.0174 (13)	-0.0042 (10)	-0.0034 (10)	0.0001 (10)
N2	0.0154 (13)	0.0220 (15)	0.0131 (12)	-0.0028 (11)	-0.0010 (10)	-0.0018 (11)
01	0.0197 (12)	0.0140 (12)	0.0244 (12)	-0.0038 (9)	0.0011 (10)	-0.0017 (10)
O2	0.0216 (12)	0.0197 (13)	0.0232 (12)	-0.0073 (10)	0.0054 (10)	-0.0029 (10)
03	0.0292 (13)	0.0127 (12)	0.0214 (12)	-0.0114 (10)	0.0050 (10)	-0.0056 (9)
C1	0.0160 (14)	0.0122 (15)	0.0151 (14)	-0.0024 (12)	-0.0058 (12)	-0.0001 (12)
C2	0.0162 (15)	0.0134 (16)	0.0172 (15)	-0.0026 (12)	-0.0061 (12)	0.0000 (12)

supporting information

C3	0.0164 (15)	0.0223 (18)	0.0160 (15)	-0.0008 (13)	-0.0022 (12)	0.0031 (13)
C4	0.0175 (15)	0.0133 (16)	0.0168 (15)	-0.0006 (12)	-0.0051 (12)	-0.0014 (12)
C5	0.0173 (15)	0.0141 (16)	0.0194 (16)	-0.0024 (12)	-0.0075 (12)	-0.0002 (13)
C6	0.0146 (14)	0.0159 (16)	0.0171 (15)	-0.0062 (12)	-0.0042 (12)	0.0015 (12)
C7	0.0157 (14)	0.0140 (16)	0.0168 (15)	-0.0063 (12)	-0.0049 (12)	0.0033 (12)
C8	0.0131 (14)	0.0223 (18)	0.0143 (15)	-0.0037 (12)	-0.0040 (12)	0.0021 (13)
C9	0.0151 (14)	0.0150 (16)	0.0157 (15)	-0.0012 (12)	-0.0051 (12)	-0.0013 (12)
C10	0.0181 (15)	0.0119 (15)	0.0155 (15)	-0.0045 (12)	-0.0047 (12)	-0.0025 (12)
C11	0.0154 (14)	0.0174 (17)	0.0139 (14)	-0.0057 (12)	-0.0024 (12)	-0.0015 (12)
C12	0.0139 (14)	0.0144 (16)	0.0149 (14)	-0.0036 (12)	-0.0050 (11)	-0.0022 (12)
C13	0.0145 (15)	0.0284 (19)	0.0137 (15)	-0.0037 (13)	-0.0029 (12)	0.0001 (13)
C14	0.0202 (16)	0.0201 (18)	0.0178 (16)	-0.0024 (13)	-0.0059 (13)	-0.0044 (13)
C15	0.0207 (16)	0.0173 (17)	0.0206 (16)	-0.0011 (13)	-0.0073 (13)	-0.0035 (13)
C16	0.0182 (15)	0.0120 (16)	0.0202 (16)	-0.0047 (12)	-0.0051 (12)	-0.0025 (12)
C17	0.0162 (14)	0.0134 (15)	0.0125 (14)	-0.0016 (12)	-0.0049 (11)	-0.0024 (12)
C18	0.0147 (14)	0.0176 (17)	0.0132 (14)	-0.0020 (12)	-0.0035 (11)	-0.0007 (12)
C19	0.0173 (15)	0.0249 (19)	0.0193 (16)	-0.0090 (14)	-0.0031 (13)	-0.0007 (14)
C20	0.0225 (17)	0.0223 (19)	0.0238 (17)	-0.0015 (14)	-0.0079 (14)	0.0017 (14)

Geometric parameters (Å, °)

Sn1—O1	2.084 (2)	С8—С9	1.477 (5)
Sn1—C19	2.116 (3)	C9—C18	1.381 (5)
Sn1—C20	2.120 (3)	C9—C10	1.438 (4)
Sn1—O2	2.143 (2)	C10-C11	1.372 (5)
Sn1—N1	2.194 (3)	C11—C12	1.406 (5)
Br1—C5	1.890 (3)	C11—H11	0.9500
N1—C7	1.300 (4)	C12—C13	1.421 (5)
N1—N2	1.390 (4)	C12—C17	1.432 (4)
N2—C8	1.324 (5)	C13—C14	1.375 (5)
O1—C2	1.320 (4)	C13—H13	0.9500
O2—C8	1.290 (4)	C14—C15	1.412 (5)
O3—C10	1.358 (4)	C14—H14	0.9500
O3—H3	0.8400	C15—C16	1.360 (5)
C1—C6	1.404 (4)	C15—H15	0.9500
C1—C2	1.419 (4)	C16—C17	1.422 (5)
C1—C7	1.446 (5)	C16—H16	0.9500
С2—С3	1.413 (5)	C17—C18	1.405 (4)
С3—С4	1.377 (5)	C18—H18	0.9500
С3—НЗА	0.9500	C19—H19A	0.9800
C4—C5	1.399 (5)	C19—H19B	0.9800
C4—H4	0.9500	C19—H19C	0.9800
С5—С6	1.367 (5)	C20—H20A	0.9800
С6—Н6	0.9500	C20—H20B	0.9800
С7—Н7	0.9500	C20—H20C	0.9800
O1—Sn1—C19	95.10(12)	C18—C9—C8	118.2 (3)
01—Sn1—C20	97.09 (13)	C10—C9—C8	122.5 (3)

C19—Sn1—C20	127.84 (14)	O3—C10—C11	118.6 (3)
O1—Sn1—O2	155.27 (9)	O3—C10—C9	122.3 (3)
C19—Sn1—O2	94.33 (12)	C11—C10—C9	119.2 (3)
C20—Sn1—O2	95.04 (13)	C10—C11—C12	121.9 (3)
O1—Sn1—N1	83.01 (10)	C10-C11-H11	119.0
C19—Sn1—N1	121.63 (12)	C12—C11—H11	119.0
C20—Sn1—N1	110.12 (12)	C11—C12—C13	123.0 (3)
O2—Sn1—N1	72.59 (10)	C11—C12—C17	119.2 (3)
C7—N1—N2	115.3 (3)	C13—C12—C17	117.8 (3)
C7—N1—Sn1	128.8 (2)	C14—C13—C12	121.0 (3)
N2—N1—Sn1	115.9 (2)	C14—C13—H13	119.5
C8—N2—N1	112.2 (3)	C12—C13—H13	119.5
$C_2 = 01 = S_{n1}$	1331(2)	C13 - C14 - C15	120.6(3)
C_{8} O_{2} S_{n1}	115.9(2)	C13 - C14 - H14	119.7
C10-O3-H3	109.5	C_{15} C_{14} H_{14}	119.7
C_{6}	120.1 (3)	C_{16} C_{15} C_{14}	120.3 (3)
C6-C1-C7	1171(3)	C_{16} C_{15} H_{15}	110.9
$C_{0} = C_{1} = C_{7}$	117.1(3) 122.8(3)	$C_{10} = C_{15} = H_{15}$	119.9
$C_2 = C_1 = C_7$	122.0(3) 118.3(3)	$C_{14} = C_{15} = 1115$	119.9 120.7(3)
01 - 02 - 03	110.5(3)	$C_{15} = C_{16} = C_{17}$	120.7 (5)
$C_{1}^{2} = C_{1}^{2}$	124.3(3) 117.2(3)	$C_{13} = C_{10} = H_{10}$	119.0
$C_3 = C_2 = C_1$	117.2(3) 121.6(2)	$C_{1}^{1} = C_{10}^{10} = 110$	117.0 122.1(2)
C4 = C3 = C2	121.0 (5)	$C_{10} = C_{17} = C_{10}$	122.1(3)
$C_4 = C_5 = H_2 A$	119.2	$C_{16} - C_{17} - C_{12}$	110.5(3)
$C_2 = C_3 = C_4 = C_5$	119.2	$C_{10} - C_{17} - C_{12}$	119.0(3)
$C_3 = C_4 = C_5$	120.2 (3)	C_{9} C_{18} U_{18}	121.9 (3)
C_{3} — C_{4} — H_{4}	119.9	$C_{17} = C_{18} = H_{18}$	119.0
C5-C4-H4	119.9	C1/-C18H18	119.0
$C_{6} - C_{5} - C_{4}$	119.8 (3)	SnI—CI9—HI9A	109.5
C6-C5-Brl	121.4 (2)	SnI—CI9—HI9B	109.5
C4—C5—Br1	118.7 (3)	HI9A—CI9—HI9B	109.5
C5—C6—C1	120.9 (3)	Sn1—C19—H19C	109.5
С5—С6—Н6	119.5	H19A—C19—H19C	109.5
С1—С6—Н6	119.5	H19B—C19—H19C	109.5
N1—C7—C1	126.6 (3)	Sn1—C20—H20A	109.5
NI—C/—H7	116.7	Sn1—C20—H20B	109.5
C1—C7—H7	116.7	H20A—C20—H20B	109.5
02—C8—N2	123.4 (3)	Sn1—C20—H20C	109.5
02	119.1 (3)	H20A—C20—H20C	109.5
N2-C8-C9	117.5 (3)	H20B—C20—H20C	109.5
C18—C9—C10	119.4 (3)		
O1—Sn1—N1—C7	-5.4 (3)	Sn1—N1—C7—C1	-0.2 (5)
C19—Sn1—N1—C7	-97.1 (3)	C6—C1—C7—N1	-177.1 (3)
C20—Sn1—N1—C7	89.6 (3)	C2-C1-C7-N1	3.5 (5)
O2—Sn1—N1—C7	178.6 (3)	Sn1—O2—C8—N2	0.3 (4)
O1—Sn1—N1—N2	176.3 (2)	Sn1—O2—C8—C9	-179.4 (2)
C19—Sn1—N1—N2	84.6 (2)	N1—N2—C8—O2	0.0 (4)
C20—Sn1—N1—N2	-88.7 (2)	N1—N2—C8—C9	179.6 (3)

O2—Sn1—N1—N2	0.3 (2)	O2—C8—C9—C18	2.0 (4)
C7—N1—N2—C8	-178.8 (3)	N2-C8-C9-C18	-177.7 (3)
Sn1—N1—N2—C8	-0.3 (3)	O2—C8—C9—C10	-178.2 (3)
C19—Sn1—O1—C2	133.7 (3)	N2-C8-C9-C10	2.2 (5)
C20—Sn1—O1—C2	-97.1 (3)	C18—C9—C10—O3	178.5 (3)
O2—Sn1—O1—C2	21.7 (4)	C8—C9—C10—O3	-1.4 (5)
N1—Sn1—O1—C2	12.4 (3)	C18—C9—C10—C11	-2.7 (5)
O1—Sn1—O2—C8	-10.0 (4)	C8—C9—C10—C11	177.4 (3)
C19—Sn1—O2—C8	-122.1 (2)	O3—C10—C11—C12	-178.9 (3)
C20—Sn1—O2—C8	109.2 (2)	C9—C10—C11—C12	2.2 (5)
N1—Sn1—O2—C8	-0.3 (2)	C10-C11-C12-C13	179.4 (3)
Sn1—O1—C2—C3	166.5 (2)	C10-C11-C12-C17	0.2 (5)
Sn1—O1—C2—C1	-13.5 (5)	C11—C12—C13—C14	-177.7 (3)
C6-C1-C2-O1	-176.3 (3)	C17—C12—C13—C14	1.5 (5)
C7—C1—C2—O1	3.1 (5)	C12-C13-C14-C15	-1.0 (5)
C6—C1—C2—C3	3.7 (4)	C13-C14-C15-C16	0.4 (5)
C7—C1—C2—C3	-177.0 (3)	C14—C15—C16—C17	-0.3 (5)
O1—C2—C3—C4	178.9 (3)	C15—C16—C17—C18	-179.2 (3)
C1—C2—C3—C4	-1.1 (5)	C15-C16-C17-C12	0.9 (5)
C2—C3—C4—C5	-2.2 (5)	C11—C12—C17—C18	-2.1 (4)
C3—C4—C5—C6	2.8 (5)	C13—C12—C17—C18	178.7 (3)
C3—C4—C5—Br1	-174.0 (2)	C11—C12—C17—C16	177.8 (3)
C4—C5—C6—C1	-0.2 (5)	C13—C12—C17—C16	-1.4 (4)
Br1-C5-C6-C1	176.6 (2)	C10-C9-C18-C17	0.8 (5)
C2-C1-C6-C5	-3.1 (5)	C8—C9—C18—C17	-179.3 (3)
C7—C1—C6—C5	177.5 (3)	C16—C17—C18—C9	-178.3 (3)
N2—N1—C7—C1	178.1 (3)	C12—C17—C18—C9	1.6 (5)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O3—H3…N2	0.84	1.88	2.611 (4)	144