metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diazidobis[(1-methyl-1H-benzimidazol-2-yl)methanol- $\kappa^2 N^3$, O]manganese(II)

Yan-Ling Zhou,^a Hong Liang^b and Ming-Hua Zeng^{b*}

^aSchool of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China, and ^bSchool of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China Correspondence e-mail: zmh@mailbox.gxnu.edu.cn

Received 12 January 2010; accepted 18 January 2010

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; R factor = 0.042; wR factor = 0.116; data-to-parameter ratio = 12.3.

The title complex, $[Mn(N_3)_2(C_9H_{10}N_2O)_2]$, possesses crystallographically imposed twofold symmetry. The Mn^{II} atom is coordinated by four N atoms and two O atoms in a distorted octahedral geometry. The crystal packing is stabilized by strong intermolecular $O-H \cdots N$ hydrogen bonds.

Related literature

For the synthesis of the ligand, see: van Albada et al. (1995) and literature cited therein. For the metal(II) complexes of a similar N-heterocycle, see: Zeng et al. (2006); Zhou et al. (2007); Alagna et al. (1984); Hamilton et al. (1979).

Experimental

Crystal data $[Mn(N_3)_2(C_9H_{10}N_2O)_2]$ $M_r = 463.38$ Monoclinic, C2/c a = 15.466 (3) Åb = 7.5438 (16) Å c = 18.095 (4) Å $\beta = 109.989 \ (4)^{\circ}$

Data collection

Bruker SMART APEX CCD area-	4125 measured reflections
detector diffractometer	1741 independent reflections
Absorption correction: multi-scan	1345 reflections with $I > 2\sigma(I)$
SADABS (Sheldrick, 1996)	$R_{\rm int} = 0.029$
$T_{\min} = 0.801, \ T_{\max} = 0.933$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	142 parameters
$wR(F^2) = 0.116$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.46 \text{ e } \text{\AA}^{-3}$
1741 reflections	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

Table 1

Selected bond lengths (Å).

O1-Mn1	2.302 (2)	Mn1-N1	2.176 (2)
Mn1-N3	2.172 (3)		
Symmetry code: (i) -	$-x, y, -z + \frac{1}{2}$		

Table 2

Hydrogen-bond	geometry	(Å,	°).
---------------	----------	-----	-----

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1\cdots N5^{ii}$	0.85	1.85	2.701 (4)	178
Symmetry code: (ii)	r v - 1 z			

Symmetry code: (ii) x, y - 1, z.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

We thank Central South University and Guangxi Normal University for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2238).

References

- Alagna, L., Hasnain, S. S., Piggott, B. & Williams, D. J. (1984). Biochem. J. 220, 591-595.
- Albada, G. A. van, Lakin, M. T., Veldman, N., Spek, A. J. & Reedijk, J. (1995). Inorg. Chem. 34, 4910-4917.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hamilton, G. J., Ferraro, J. R. & Sinn, E. (1979). J. Chem. Soc. Dalton Trans. pp. 515-519.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). publCIF. In preparation.
- Zeng, M.-H., Zhou, Y.-L. & Ng, S. W. (2006). Acta Cryst. E62, m2101-m2102.
- Zhou, Y.-L., Zeng, M.-H. & Ng, S. W. (2007). Acta Cryst. E63, m15-m16.

supporting information

Acta Cryst. (2010). E66, m188 [https://doi.org/10.1107/S1600536810002126] Diazidobis[(1-methyl-1*H*-benzimidazol-2-yl)methanol- $\kappa^2 N^3$,O]manganese(II)

Yan-Ling Zhou, Hong Liang and Ming-Hua Zeng

S1. Comment

The coordinated modes of (1-methyl-1*H*-benzimidazol-2-yl)methanol ligand are similar to our previously repored benzimidazol-2-yl methanol from the structural point, the latter has been shown to bind to cobalt(II) as a neutral chelate (Zeng *et al.*, 2006, Zhou *et al.*, 2007). This feature is also preserved in the present manganese(II) complex.

In the title compound, the ligand chelates through the hydroxyl O and imino N atoms, resulting in a N₄O₂Mn octahedral geometry at the metal center (Fig. 1, Table 1), like that observed in copper (Hamilton *et al.*, 1979) and nickel (Alagna *et al.*, 1984) adducts. In this structure, the azide anion as a terminal ligand coordinated to Mn^{II} atom, and N–N–N bond lengths and bond angle are close to compound $[Cu(tbz)(N_3)_2]_2(CH_3OH)_2$ (tbz = bis(2-benzimidazolyl)propane) (Albada *et al.*, 1995).The complex possesses crystallographically imposed twofold symmetry. The crystal packing is stabilized by strong intermolecular O—H···N hydrogen bonds which extend along the crystallographic twofold rotation axis (Fig. 2, Table 2).

S2. Experimental

(1-methyl-1*H*-benzimidazol-2-yl)methanol was purchased from a chemical supplier. This reagent (0.16 g, 1 mmol), manganese(II) nitrate hexahydrate (0.14 g, 0.5 mmol) and sodium azide (0.07 g, 1 mmol) were dissolved in water (10 ml) that was kept at about 333 K. Colorless blocks separated from the solution after one week.

S3. Refinement

The C-bound H atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and included in the refinement in the riding-model approximation, with $U_{iso}(H) = 1.2(1.5)U_{eq}(C, C_{methyl})$. The hydroxy H atom has been located in a difference Fourier map and refined isotropically with a distance restraint of O—H = 0.85 (1) Å, and $U_{iso}(H) = 1.2U_{eq}(O)$.

Figure 1

Anisotropic displacement ellipsoid plot of the $[Mn(II)(N_3)_2(C_9H_{10}N_2O)_2]$ molecule at the 50% probability level; hydrogen atoms are drawn as sphere of arbitrary radius. Symmetry codes: (i) -*x*, *y*, -*z* + 1/2, for the unlabelled atoms.

Figure 2

Part of the hydrogen bonded chain along [010] direction. Hydrogen bonds are shown as dashed lines. Symmetry codes: (i) x, y - 1, z.

Diazidobis[(1-methyl-1*H*-benzimidazol-2-yl)methanol- $\kappa^2 N^3$,O]manganese(II)

Crystal data F(000) = 956 $[Mn(N_3)_2(C_9H_{10}N_2O)_2]$ $D_{\rm x} = 1.551 {\rm Mg m^{-3}}$ $M_r = 463.38$ Monoclinic, C2/cMo *K* α radiation, $\lambda = 0.71073$ Å Hall symbol: -C 2yc Cell parameters from 1818 reflections $\theta = 2.4 - 26.7^{\circ}$ a = 15.466 (3) Å $\mu = 0.71 \text{ mm}^{-1}$ *b* = 7.5438 (16) Å c = 18.095 (4) Å T = 173 K $\beta = 109.989 \ (4)^{\circ}$ Block, colorless V = 1984.0 (7) Å³ $0.33 \times 0.22 \times 0.10 \text{ mm}$ Z = 4

Data collection

Bruker SMART APEX CCD area-detector	4125 measured reflections
diffractometer	1741 independent reflections
Radiation source: fine-focus sealed tube	1345 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.029$
phi and ω scans	$\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.8^{\circ}$
Absorption correction: multi-scan	$h = -16 \rightarrow 18$
<i>SADABS</i> (Sheldrick, 1996)	$k = -8 \rightarrow 8$
$T_{min} = 0.801, T_{max} = 0.933$	$l = -15 \rightarrow 21$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from
$wR(F^2) = 0.116$	neighbouring sites
S = 1.02	H-atom parameters constrained
1741 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0608P)^2 + 4.1072P]$
142 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.46$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.29$ e Å ⁻³

Special details

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. In Checkcif report, the following ALERTS were generated

PLAT230_ALERT_2_C Hirshfeld Test Diff for N3 – N4.. 5.98 su Author response: It is due to electron shift or resonance (N=N–N or N–N=N) bond lengths appear shorter than expected, see: Albada *et al.* (1995).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.12170 (15)	0.1356 (3)	0.26588 (12)	0.0324 (5)	
H1	0.1264	0.0343	0.2875	0.049*	
Mn1	0.0000	0.32504 (9)	0.2500	0.0247 (2)	
N1	-0.00030 (17)	0.2562 (3)	0.13315 (13)	0.0228 (6)	
N2	0.07803 (16)	0.1833 (3)	0.05480 (14)	0.0226 (5)	
N3	0.1101 (2)	0.5198 (4)	0.28397 (17)	0.0405 (7)	
N4	0.11891 (18)	0.6678 (4)	0.30523 (15)	0.0324 (7)	
N5	0.1360 (3)	0.8099 (4)	0.3311 (2)	0.0545 (9)	
C1	0.1524 (2)	0.1270 (5)	0.20037 (18)	0.0316 (8)	
H1A	0.1698	0.0038	0.1928	0.038*	
H1B	0.2070	0.2037	0.2096	0.038*	
C2	0.0761 (2)	0.1879 (4)	0.12911 (17)	0.0226 (6)	
C3	-0.05362 (19)	0.2995 (4)	0.05571 (17)	0.0208 (6)	
C4	-0.1407 (2)	0.3733 (4)	0.02570 (18)	0.0257 (7)	
H4A	-0.1745	0.4034	0.0590	0.031*	
C5	-0.1764 (2)	0.4013 (4)	-0.05442 (18)	0.0307 (7)	
H5A	-0.2359	0.4520	-0.0767	0.037*	

supporting information

C6	-0.1269 (2)	0.3569 (4)	-0.10337 (18)	0.0331 (8)	
H6A	-0.1538	0.3782	-0.1583	0.040*	
C7	-0.0403 (2)	0.2830 (4)	-0.07448 (18)	0.0289 (7)	
H7B	-0.0068	0.2526	-0.1080	0.035*	
C8	-0.0045 (2)	0.2554 (4)	0.00618 (17)	0.0230 (6)	
C9	0.1533 (2)	0.1183 (5)	0.03086 (19)	0.0309 (7)	
H9A	0.1617	-0.0089	0.0419	0.046*	
H9B	0.2100	0.1814	0.0602	0.046*	
H9C	0.1387	0.1388	-0.0256	0.046*	

Atomic displacement parameters $(Å^2)$

	T 711	1.72	1 733	1712	1713	1.723
	$U^{\prime\prime}$	U^{22}	055	U^{12}	015	025
01	0.0388 (13)	0.0343 (13)	0.0242 (11)	0.0082 (10)	0.0111 (10)	0.0071 (9)
Mn1	0.0313 (4)	0.0266 (4)	0.0185 (3)	0.000	0.0116 (3)	0.000
N1	0.0244 (13)	0.0266 (14)	0.0183 (12)	0.0014 (11)	0.0087 (10)	-0.0004 (10)
N2	0.0221 (13)	0.0260 (13)	0.0238 (12)	0.0008 (10)	0.0129 (10)	-0.0026 (10)
N3	0.0522 (19)	0.0308 (18)	0.0451 (18)	-0.0144 (14)	0.0254 (15)	-0.0073 (14)
N4	0.0325 (15)	0.043 (2)	0.0243 (14)	-0.0057 (14)	0.0135 (12)	0.0027 (13)
N5	0.081 (3)	0.0340 (19)	0.048 (2)	-0.0135 (18)	0.0225 (19)	-0.0063 (16)
C1	0.0296 (17)	0.0375 (19)	0.0296 (17)	0.0092 (14)	0.0125 (14)	0.0043 (14)
C2	0.0248 (16)	0.0230 (16)	0.0214 (14)	-0.0001 (13)	0.0096 (12)	-0.0014 (12)
C3	0.0216 (15)	0.0198 (15)	0.0221 (14)	-0.0029 (12)	0.0088 (12)	0.0016 (11)
C4	0.0231 (16)	0.0266 (17)	0.0295 (16)	-0.0012 (13)	0.0117 (13)	-0.0016 (13)
C5	0.0238 (16)	0.0314 (18)	0.0314 (17)	0.0006 (14)	0.0023 (14)	0.0036 (14)
C6	0.0376 (19)	0.036 (2)	0.0205 (15)	-0.0087 (15)	0.0031 (14)	0.0024 (13)
C7	0.0333 (18)	0.0334 (19)	0.0235 (15)	-0.0070 (14)	0.0140 (14)	-0.0023 (13)
C8	0.0233 (15)	0.0240 (15)	0.0237 (15)	-0.0033 (12)	0.0106 (12)	-0.0022 (12)
C9	0.0273 (17)	0.0376 (19)	0.0330 (17)	0.0039 (14)	0.0170 (14)	-0.0043 (14)

Geometric parameters (Å, °)

1.421 (4)	C1—H1A	0.9900
2.302 (2)	C1—H1B	0.9900
0.8500	C3—C4	1.385 (4)
2.172 (3)	C3—C8	1.399 (4)
2.172 (3)	C4—C5	1.380 (4)
2.176 (2)	C4—H4A	0.9500
2.176 (2)	C5—C6	1.395 (5)
2.302 (2)	C5—H5A	0.9500
1.314 (4)	C6—C7	1.379 (5)
1.400 (4)	C6—H6A	0.9500
1.355 (4)	C7—C8	1.388 (4)
1.389 (4)	C7—H7B	0.9500
1.459 (4)	С9—Н9А	0.9800
1.174 (4)	C9—H9B	0.9800
1.163 (4)	С9—Н9С	0.9800
1.492 (4)		
	$\begin{array}{c} 1.421 \ (4) \\ 2.302 \ (2) \\ 0.8500 \\ 2.172 \ (3) \\ 2.172 \ (3) \\ 2.176 \ (2) \\ 2.302 \ (2) \\ 1.314 \ (4) \\ 1.400 \ (4) \\ 1.355 \ (4) \\ 1.389 \ (4) \\ 1.459 \ (4) \\ 1.174 \ (4) \\ 1.163 \ (4) \\ 1.492 \ (4) \end{array}$	1.421 (4) $C1$ —H1A $2.302 (2)$ $C1$ —H1B 0.8500 $C3$ —C4 $2.172 (3)$ $C3$ —C8 $2.172 (3)$ $C4$ —C5 $2.176 (2)$ $C4$ —H4A $2.176 (2)$ $C5$ —C6 $2.302 (2)$ $C5$ —H5A $1.314 (4)$ $C6$ —C7 $1.400 (4)$ $C6$ —H6A $1.355 (4)$ $C7$ —C8 $1.389 (4)$ $C7$ —H7B $1.459 (4)$ $C9$ —H9A $1.174 (4)$ $C9$ —H9B $1.163 (4)$ $C9$ —H9C $1.492 (4)$ $C1$

C1—O1—Mn1	114.60 (17)	C2—C1—H1B	110.0
C1	110.0	H1A—C1—H1B	108.4
Mn1—O1—H1	123.6	N1	113.0 (3)
N3—Mn1—N3 ⁱ	94.89 (17)	N1-C2-C1	122.2 (3)
N3—Mn1—N1	100.23 (10)	N2-C2-C1	124.8 (3)
N3 ⁱ —Mn1—N1	98.36 (10)	C4—C3—C8	120.8 (3)
N3—Mn1—N1 ⁱ	98.36 (10)	C4—C3—N1	130.3 (3)
$N3^{i}$ — $Mn1$ — $N1^{i}$	100.23 (10)	C8—C3—N1	108.8 (3)
N1—Mn1—N1 ⁱ	152.37 (14)	C5—C4—C3	117.4 (3)
N3—Mn1—O1 ⁱ	169.59 (9)	C5—C4—H4A	121.3
N3 ⁱ —Mn1—O1 ⁱ	81.74 (10)	C3—C4—H4A	121.3
N1—Mn1—O1 ⁱ	90.02 (9)	C4—C5—C6	121.4 (3)
N1 ⁱ —Mn1—O1 ⁱ	72.72 (8)	C4—C5—H5A	119.3
N3—Mn1—O1	81.74 (10)	C6—C5—H5A	119.3
N3 ⁱ —Mn1—O1	169.59 (9)	C7—C6—C5	122.0 (3)
N1—Mn1—O1	72.72 (8)	С7—С6—Н6А	119.0
N1 ⁱ —Mn1—O1	90.02 (9)	С5—С6—Н6А	119.0
O1 ⁱ —Mn1—O1	103.23 (12)	C6—C7—C8	116.5 (3)
C2—N1—C3	105.6 (2)	С6—С7—Н7В	121.8
C2—N1—Mn1	116.39 (19)	С8—С7—Н7В	121.8
C3—N1—Mn1	136.2 (2)	C7—C8—N2	132.4 (3)
C2—N2—C8	106.9 (2)	C7—C8—C3	121.9 (3)
C2—N2—C9	126.4 (3)	N2—C8—C3	105.7 (2)
C8—N2—C9	126.6 (2)	N2—C9—H9A	109.5
N4—N3—Mn1	136.7 (3)	N2—C9—H9B	109.5
N5—N4—N3	173.4 (4)	H9A—C9—H9B	109.5
O1—C1—C2	108.4 (2)	N2—C9—H9C	109.5
O1—C1—H1A	110.0	Н9А—С9—Н9С	109.5
C2-C1-H1A	110.0	H9B—C9—H9C	109.5
O1—C1—H1B	110.0		

Symmetry code: (i) -x, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O1—H1···N5 ⁱⁱ	0.85	1.85	2.701 (4)	178

Symmetry code: (ii) x, y-1, z.