

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,4-Dichloro-6-(8-quinolylaminomethylene)cyclohexa-2,4-dien-1-one methanol solvate

Takashi Shibahara,^a* Masayuki Takahashi,^a Atsushi Maekawa^a and Hideaki Takagi^b

^aDepartment of Chemistry, Okayama University of Science, Ridai-cho, Kita-ku, Okayama 700-0005, Japan, and ^bDepartment of International Conservation Studies for Cultural Properties, Kibi International University, Igamachi 8, Takahashi-shi, Okayama 716-8508, Japan

Correspondence e-mail: shiba@chem.ous.ac.jp

Received 18 December 2009; accepted 18 January 2010

Key indicators: single-crystal X-ray study; T = 93 K; mean σ (C–C) = 0.002 Å; R factor = 0.028; wR factor = 0.078; data-to-parameter ratio = 16.1.

The main molecule of the title methanol solvate, $C_{16}H_{10}Cl_2N_2O\cdot CH_3OH$, exists in the keto form and the C=O and N-H bonds are mutually *cis* in the crystal structure. The dihedral angle between the quinoline and benzene rings is 11.17 (3)°. A bifurcated intramolecular N-H···(O,N) hydrogen bond is present as well as an O-H···O hydrogen bond. In the crystal, C-H···O interactions link the 3,5-dichlorosalicylidene-8-aminoquinoline and methanol molecules.

Related literature

For a related structure, see: Sakane et al. (2006).

a = 7.044 (2) Å

b = 8.139 (3) Å

c = 13.935 (5) Å

Experimental

Crystal data $C_{16}H_{10}Cl_2N_2O\cdot CH_4O$ $M_r = 349.22$ Triclinic, $P\overline{1}$

$\alpha = 88.030 \ (11)^{\circ}$	
$\beta = 80.205 \ (9)^{\circ}$	
$\gamma = 73.611 \ (7)^{\circ}$	
V = 755.2 (4) Å ³	
7 - 2	

Data collection

Rigaku Mercury diffractometer Absorption correction: multi-scan (*REQAB*; Jacobson, 1998) $T_{min} = 0.745, T_{max} = 0.925$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.078$ S = 1.013357 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O2−H14…O1	0.82	1.95	2.7694 (14)	179
$N2 - H7 \cdot \cdot \cdot O1$	0.86	1.92	2.6094 (12)	137
$N2 - H7 \cdot \cdot \cdot N1$	0.86	2.28	2.6758 (13)	108
$C8 - H6 \cdot \cdot \cdot O2^{i}$	0.97	2.70	3.6425 (14)	166
$C10-H8\cdots O2^{i}$	0.98	2.27	3.2026 (13)	160

Symmetry code: (i) x, y + 1, z.

Data collection: *CrystalClear* (Rigaku, 1999); cell refinement: *CrystalClear*; data reduction: *CrystalStructure* (Rigaku/MSC, 2007); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *CrystalStructure*; software used to prepare material for publication: *CrystalStructure*.

The authors thank the Japan Private School Promotion Foundation for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2250).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Jacobson, R. (1998). *REQAB*. Private communication to the Rigaku Corporation, Tokyo, Japan.
- Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sakane, G., Kawasaki, H. & Shibahara, T. (2006). Acta Cryst. E62, o2736o2737.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Mo $K\alpha$ radiation $\mu = 0.44 \text{ mm}^{-1}$

 $0.71 \times 0.24 \times 0.18 \text{ mm}$

7177 measured reflections

3357 independent reflections

3262 reflections with $F^2 > 2\sigma(F^2)$

H-atom parameters not refined

T = 93 K

 $R_{\rm int}=0.022$

209 parameters

 $\Delta \rho_{\text{max}} = 0.42 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.28 \text{ e } \text{\AA}^{-3}$

supporting information

Acta Cryst. (2010). E66, o429 [https://doi.org/10.1107/S1600536810002345]

2,4-Dichloro-6-(8-quinolylaminomethylene)cyclohexa-2,4-dien-1-one methanol solvate

Takashi Shibahara, Masayuki Takahashi, Atsushi Maekawa and Hideaki Takagi

S1. Comment

In the present work, the title compound, (I), was prepared and its crystal structure determined, to explore the modification effect of Schiff base ligand on the fluorescence of metal complexes of 2-hydroxy-1-naphthaldehydene-8-aminoquinoline ($C_{20}H_{14}N_2O$), (II) (Sakane *et al.*, 2006). The molecule of (I) (Fig. 1) exists in the keto form and the C=O and N—H bonds are mutually *cis* which is similar to that found in the structure of (II). In the structure of (I), *N*—*H*…O carbonyl and *N*—*H*…N pyridine intramolecular hydrogen bonds exist (Table 1). In addition, there is a formal intermolecular hydrogenbonding association between the molecules of 3,5-dichlorosalicylidene-8-aminoquinoline and methanol solvate (Table 1 and Fig. 2).

S2. Experimental

Refluxing a suspension of 8-aminoquinoline (145 mg, 1.0 mmol) and 3,5-dichloro-salicylaldehyde (191 mg, 1.0 mmol) in methanol (3 ml) at 338 K for one hour gave vivid red powder. Slow evaporation of the supernatant solution gave vivid red plate like crystals of $C_{16}H_{10}Cl_2N_2O$ (I).CH₃OH. Yield 302 mg (95%). Anal. Found: C, 58.03; H, 3.73; N, 8.21%. Calcd for $C_{17}H_{14}N_2O_2$: C, 58.47; H, 4.04; N, 8.02%.

S3. Refinement

The positions of all H atoms were located from difference maps and refined with restrained distances (N–H = 0.86 Å; C– H = 0.92-1.00 Å). The isotropic displacement parameters for H atoms were fixed at $1.2U_{eq}$ of their carrier atoms.

Figure 1

Molecular configuration and atom-numbering scheme for (I). CH_3OH with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Figure 2

Molecular packing of (I).CH₃OH in the unit cell.

2,4-Dichloro-6-(8-quinolylaminomethylene)cyclohexa-2,4-dien-1-one methanol solvate

Crystal data	
$C_{16}H_{10}Cl_2N_2O\cdot CH_4O$	Z = 2
$M_r = 349.22$	F(000) = 360.00
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.536 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71070$ Å
a = 7.044 (2) Å	Cell parameters from 1999 reflections
b = 8.139(3) Å	$\theta = 5.6 - 27.5^{\circ}$
c = 13.935 (5) Å	$\mu=0.44~\mathrm{mm^{-1}}$
$\alpha = 88.030 \ (11)^{\circ}$	T = 93 K
$\beta = 80.205 \ (9)^{\circ}$	Platelet, red
$\gamma = 73.611 \ (7)^{\circ}$	$0.71 \times 0.24 \times 0.18 \text{ mm}$
V = 755.2 (4) Å ³	

Data collection

Rigaku Mercury diffractometer	7177 measured reflections 3357 independent reflections
Radiation source: Mo K α	3262 reflections with $F^2 > 2\sigma(F^2)$
Detector resolution: 14.63 pixels mm ⁻¹	$R_{\rm int} = 0.022$
ω scans	$\theta_{\rm max} = 27.5^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 9$
(REQAB; Jacobson, 1998)	$k = -10 \rightarrow 10$
$T_{\min} = 0.745, \ T_{\max} = 0.925$	$l = -18 \rightarrow 17$
Refinement	
Refinement on F^2	H-atom parameters not refined
$R[F^2 > 2\sigma(F^2)] = 0.028$	$w = 1/[\sigma^2(F_0^2) + (0.043P)^2 + 0.4083P]$
$wR(F^2) = 0.078$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.01	$(\Delta/\sigma)_{\rm max} = 0.001$
3357 reflections	$\Delta \rho_{\rm max} = 0.42 \text{ e} \text{ Å}^{-3}$
209 parameters	$\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$
Special details	

Geometry. The dihedral angle between the quinoline (C1~C9, N1) and the benzene rings (C11~C16) is 11.17 (3)°: Mean deviations of the atoms from the former and latter planes are 0.014 and 0.004 Å, respectively.

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

En alter 1		1:					. 1:			182	١
<i>Fractional</i> а	uomic	coorainates	ana isotre	opic or (equivaieni	sotropic	c ais	placement	parameters	(A²)	,

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl(2)	1.24813 (4)	0.00187 (3)	0.581434 (19)	0.01543 (8)
Cl(1)	1.28180 (4)	0.62464 (3)	0.452063 (19)	0.01392 (8)
O(1)	1.03744 (12)	0.19010 (10)	0.76600 (6)	0.01351 (16)
O(2)	0.81786 (14)	-0.04501 (11)	0.77301 (6)	0.01778 (18)
N(1)	0.83476 (14)	0.24199 (12)	1.01752 (7)	0.01204 (18)
N(2)	0.88903 (14)	0.46400 (12)	0.87656 (7)	0.01041 (17)
C(1)	0.80423 (17)	0.13097 (15)	1.08523 (9)	0.0146 (2)
C(2)	0.68177 (18)	0.17741 (16)	1.17744 (8)	0.0161 (2)
C(3)	0.59125 (17)	0.34651 (16)	1.19956 (8)	0.0149 (2)
C(4)	0.62125 (16)	0.47193 (15)	1.12960 (8)	0.0119 (2)
C(5)	0.74388 (16)	0.41182 (14)	1.03902 (8)	0.0105 (2)
C(6)	0.53722 (17)	0.65040 (15)	1.14652 (8)	0.0146 (2)
C(7)	0.57568 (17)	0.76438 (14)	1.07635 (9)	0.0150 (2)
C(8)	0.69577 (17)	0.70710 (14)	0.98534 (8)	0.0128 (2)
C(9)	0.77592 (16)	0.53372 (14)	0.96660 (8)	0.0104 (2)
C(10)	0.94877 (16)	0.54862 (14)	0.80119 (8)	0.0111 (2)
C(11)	1.05243 (16)	0.46773 (14)	0.71172 (8)	0.0109 (2)
C(16)	1.09174 (16)	0.28530 (14)	0.69891 (8)	0.0106 (2)
C(15)	1.19770 (17)	0.21966 (14)	0.60378 (8)	0.0118 (2)
C(14)	1.25470 (16)	0.32146 (14)	0.53118 (8)	0.0118 (2)
C(13)	1.20940 (16)	0.49959 (14)	0.54743 (8)	0.0114 (2)
C(12)	1.11163 (16)	0.57250 (14)	0.63530 (8)	0.0114 (2)

supporting information

C(17)	0.72759 (19)	-0.02464 (16)	0.68811 (9)	0.0184 (2)
H(1)	0.8725	0.0177	1.0721	0.018*
H(2)	0.6749	0.0946	1.2238	0.019*
H(3)	0.5055	0.3897	1.2617	0.018*
H(4)	0.4564	0.6860	1.2066	0.018*
H(5)	0.5203	0.8855	1.0900	0.018*
H(6)	0.7140	0.7905	0.9363	0.015*
H(7)	0.9237	0.3548	0.8700	0.012*
H(8)	0.9221	0.6724	0.8071	0.013*
H(10)	1.3178	0.2802	0.4703	0.014*
H(9)	1.0851	0.6895	0.6459	0.014*
H(11)	0.6033	0.0671	0.6913	0.022*
H(12)	0.6853	-0.1289	0.6783	0.022*
H(13)	0.8203	-0.0129	0.6303	0.022*
H(14)	0.8844	0.0234	0.7709	0.021*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl(2)	0.02066 (16)	0.00883 (14)	0.01551 (14)	-0.00396 (10)	0.00090 (10)	-0.00332 (10)
Cl(1)	0.01419 (14)	0.01408 (14)	0.01329 (14)	-0.00503 (10)	-0.00052 (10)	0.00295 (10)
O(1)	0.0180 (4)	0.0099 (3)	0.0130 (3)	-0.0053 (3)	-0.0011 (3)	-0.0001 (2)
O(2)	0.0235 (4)	0.0142 (4)	0.0197 (4)	-0.0104 (3)	-0.0062 (3)	0.0020 (3)
N(1)	0.0115 (4)	0.0102 (4)	0.0138 (4)	-0.0022 (3)	-0.0018 (3)	-0.0008 (3)
N(2)	0.0114 (4)	0.0082 (4)	0.0114 (4)	-0.0023 (3)	-0.0015 (3)	-0.0019 (3)
C(1)	0.0127 (5)	0.0123 (5)	0.0171 (5)	-0.0012 (4)	-0.0018 (4)	0.0009 (4)
C(2)	0.0153 (5)	0.0181 (5)	0.0141 (5)	-0.0044 (4)	-0.0017 (4)	0.0046 (4)
C(3)	0.0126 (5)	0.0200 (5)	0.0117 (5)	-0.0043 (4)	-0.0011 (4)	0.0001 (4)
C(4)	0.0102 (4)	0.0148 (5)	0.0114 (4)	-0.0038 (4)	-0.0026 (3)	-0.0019 (4)
C(5)	0.0089 (4)	0.0113 (5)	0.0117 (4)	-0.0027 (3)	-0.0029 (3)	-0.0015 (3)
C(6)	0.0131 (5)	0.0164 (5)	0.0136 (5)	-0.0031 (4)	-0.0004 (4)	-0.0057 (4)
C(7)	0.0148 (5)	0.0110 (5)	0.0187 (5)	-0.0025 (4)	-0.0018 (4)	-0.0054 (4)
C(8)	0.0131 (4)	0.0114 (5)	0.0145 (5)	-0.0041 (4)	-0.0026 (4)	-0.0012 (3)
C(9)	0.0087 (4)	0.0118 (5)	0.0111 (4)	-0.0030 (3)	-0.0019 (3)	-0.0021 (3)
C(10)	0.0108 (4)	0.0099 (4)	0.0135 (4)	-0.0031 (3)	-0.0034 (3)	-0.0010 (3)
C(11)	0.0107 (4)	0.0101 (4)	0.0123 (4)	-0.0030 (3)	-0.0028 (3)	-0.0006 (3)
C(16)	0.0104 (4)	0.0104 (4)	0.0116 (4)	-0.0032 (3)	-0.0029 (3)	-0.0004 (3)
C(15)	0.0121 (4)	0.0090 (4)	0.0144 (5)	-0.0028 (3)	-0.0024 (3)	-0.0027 (3)
C(14)	0.0107 (4)	0.0132 (5)	0.0115 (4)	-0.0031 (4)	-0.0015 (3)	-0.0024 (3)
C(13)	0.0109 (4)	0.0121 (4)	0.0119 (4)	-0.0043 (3)	-0.0026 (3)	0.0027 (3)
C(12)	0.0113 (4)	0.0088 (4)	0.0145 (5)	-0.0030 (3)	-0.0032 (3)	-0.0001 (3)
C(17)	0.0188 (5)	0.0170 (5)	0.0199 (5)	-0.0049 (4)	-0.0043 (4)	-0.0017 (4)

Geometric parameters (Å, °)

Cl(2)—C(15)	1.7350 (11)	C(11)—C(12)	1.4220 (15)
Cl(1)—C(13)	1.7411 (11)	C(16)—C(15)	1.4446 (14)
O(1)—C(16)	1.2714 (14)	C(15)—C(14)	1.3650 (16)

O(2)—C(17)	1.4193 (16)	C(14)—C(13)	1.4114 (15)
N(1)—C(1)	1.3172 (15)	C(13) - C(12)	1.3631 (14)
N(1)—C(5)	1.3690 (13)	O(2)—H(14)	0.820
N(2)—C(9)	1.4088 (13)	N(2)—H(7)	0.856
N(2)—C(10)	1.3107 (14)	C(1)—H(1)	0.920
C(1) - C(2)	1.4179 (15)	C(2)—H(2)	0.923
C(2)—C(3)	1.3649 (16)	C(3)—H(3)	0.980
C(3)—C(4)	1.4214 (16)	C(6)—H(4)	0.933
C(4)—C(5)	1.4184 (14)	C(7)—H(5)	0.965
C(4)—C(6)	1.4166 (15)	C(8)—H(6)	0.965
C(5)—C(9)	1.4261 (15)	C(10)—H(8)	0.975
C(6)—C(7)	1.3709 (16)	С(14)—Н(10)	0.915
C(7)—C(8)	1.4122 (15)	C(12)—H(9)	0.929
C(8)—C(9)	1.3798 (15)	С(17)—Н(11)	0.973
C(10)—C(11)	1.4130 (14)	C(17)—H(12)	0.996
C(11)—C(16)	1.4431 (16)	C(17)—H(13)	0.967
C(1) N(1) $C(5)$	117 22 (0)	C(14) C(12) C(12)	121 14 (10)
C(1) = N(1) = C(3) C(0) = N(2) = C(10)	117.32(9) 126.88(0)	C(14) - C(12) - C(12)	121.14(10) 110.52(10)
N(1) = C(1) = C(10)	120.88(9) 123.85(10)	C(17) = C(12) = C(13)	108.2
N(1) - C(1) - C(2) C(1) - C(2) - C(3)	123.83(10) 110.18(11)	C(17) = O(2) = H(14) C(0) = N(2) = H(7)	108.2
C(1) - C(2) - C(3)	119.10 (11)	C(3) = N(2) = H(7) C(10) = N(2) = H(7)	117.1
C(2) - C(3) - C(4)	119.30(9) 117.05(9)	N(1) - C(1) - H(1)	117.0
C(3) - C(4) - C(6)	123 46 (9)	C(2) - C(1) - H(1)	119.1
C(5) - C(4) - C(6)	123.40(9) 119.49(10)	C(2) = C(1) = H(2)	119.1
N(1) - C(5) - C(4)	123 28 (10)	C(3) - C(2) - H(2)	120.8
N(1) - C(5) - C(9)	118.02 (9)	C(2) - C(3) - H(3)	124.5
C(4) - C(5) - C(9)	118.70 (9)	C(4) - C(3) - H(3)	116.2
C(4) - C(6) - C(7)	120 33 (9)	C(4) - C(6) - H(4)	117.5
C(6) - C(7) - C(8)	121.05 (9)	C(7) - C(6) - H(4)	122.2
C(7) - C(8) - C(9)	119.58 (10)	C(6) - C(7) - H(5)	119.1
N(2) - C(9) - C(5)	115.40 (9)	C(8) - C(7) - H(5)	119.9
N(2) - C(9) - C(8)	123.77 (10)	C(7) - C(8) - H(6)	118.9
C(5)-C(9)-C(8)	120.81 (9)	C(9)—C(8)—H(6)	121.4
N(2) - C(10) - C(11)	122.74 (10)	N(2) - C(10) - H(8)	118.8
C(10) - C(11) - C(16)	120.40 (10)	C(11) - C(10) - H(8)	118.4
C(10) - C(11) - C(12)	117.76 (10)	C(15)-C(14)-H(10)	122.9
C(16) - C(11) - C(12)	121.83 (9)	C(13)—C(14)—H(10)	117.2
O(1)—C(16)—C(11)	122.66 (9)	C(11)—C(12)—H(9)	119.8
O(1)—C(16)—C(15)	122.74 (10)	C(13)—C(12)—H(9)	120.6
C(11)—C(16)—C(15)	114.60 (9)	O(2)—C(17)—H(11)	115.5
Cl(2)—C(15)—C(16)	117.70 (8)	O(2)—C(17)—H(12)	108.9
Cl(2)—C(15)—C(14)	119.29 (8)	O(2)—C(17)—H(13)	112.0
C(16)—C(15)—C(14)	123.00 (10)	H(11)—C(17)—H(12)	103.0
C(15)—C(14)—C(13)	119.89 (9)	H(11)—C(17)—H(13)	109.7
Cl(1)—C(13)—C(14)	118.23 (7)	H(12)—C(17)—H(13)	107.0
Cl(1)—C(13)—C(12)	120.63 (8)		

C(1) - N(1) - C(5) - C(4) C(1) - N(1) - C(5) - C(9)	0.26 (18)	C(6) - C(7) - C(8) - C(9) C(7) - C(8) - C(9) - N(2)	-0.04(15)
C(1) - N(1) - C(3) - C(9) C(5) - N(1) - C(1) - C(2)	0.84 (19)	C(7) - C(8) - C(9) - C(5)	-1.86(19)
C(9) - N(2) - C(10) - C(11)	-176.33 (11)	N(2) - C(10) - C(11) - C(16)	1.95 (18)
C(10) - N(2) - C(9) - C(5)	-175.47 (11)	N(2) - C(10) - C(11) - C(12)	-179.38 (11)
C(10) - N(2) - C(9) - C(8)	5.9 (2)	C(10)—C(11)—C(16)—O(1)	-0.39 (18)
N(1) - C(1) - C(2) - C(3)	-1.1 (2)	C(10) - C(11) - C(16) - C(15)	179.62 (10)
C(1) - C(2) - C(3) - C(4)	0.22 (19)	C(10) - C(11) - C(12) - C(13)	-179.06 (11)
C(2) - C(3) - C(4) - C(5)	0.77 (18)	C(16) - C(11) - C(12) - C(13)	-0.41 (17)
C(2) - C(3) - C(4) - C(6)	-178.65 (12)	C(12) - C(11) - C(16) - O(1)	-179.01 (11)
C(3) - C(4) - C(5) - N(1)	-1.05 (18)	C(12) - C(11) - C(16) - C(15)	1.00 (16)
C(3) - C(4) - C(5) - C(9)	179.40 (11)	O(1) - C(16) - C(15) - Cl(2)	0.90 (16)
C(3) - C(4) - C(6) - C(7)	178.72 (12)	O(1) - C(16) - C(15) - C(14)	179.36 (11)
C(5) - C(4) - C(6) - C(7)	-0.68 (19)	C(11) - C(16) - C(15) - Cl(2)	-179.10 (8)
C(6) - C(4) - C(5) - N(1)	178.39 (11)	C(11) - C(16) - C(15) - C(14)	-0.64 (17)
C(6) - C(4) - C(5) - C(9)	-1.16 (18)	Cl(2) - C(15) - C(14) - C(13)	178.14 (9)
N(1)—C(5)—C(9)—N(2)	4.16 (16)	C(16) - C(15) - C(14) - C(13)	-0.30 (18)
N(1)—C(5)—C(9)—C(8)	-177.13 (11)	C(15) - C(14) - C(13) - Cl(1)	-179.04 (9)
C(4) - C(5) - C(9) - N(2)	-176.26 (11)	C(15) - C(14) - C(13) - C(12)	0.97 (18)
C(4)—C(5)—C(9)—C(8)	2.45 (18)	Cl(1)—C(13)—C(12)—C(11)	179.40 (9)
C(4)—C(6)—C(7)—C(8)	1.31 (19)	C(14)—C(13)—C(12)—C(11)	-0.61 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
02—H14…O1	0.82	1.95	2.7694 (14)	179
N2—H7…O1	0.86	1.92	2.6094 (12)	137
N2—H7…N1	0.86	2.28	2.6758 (13)	108
C8—H6…O2 ⁱ	0.97	2.70	3.6425 (14)	166
C10—H8…O2 ⁱ	0.98	2.27	3.2026 (13)	160

Symmetry code: (i) x, y+1, z.