

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(pyridine- κN){ N^2 , $N^{2'}$ -[1,1'-(pyridine-2,6-diyl)diethylidyne]benzenesulfonohydrazonato- $\kappa^5 O$,N,N',N'',O'}nickel(II)

Juahir Yusnita,^a Hapipah Mohd Ali,^a Mahmood A. Abdulla,^b Ward T. Robinson^a and Hamid Khaledi^a*

^aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^bDepartment of Molecular Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: khaledi@perdana.um.edu.my

Received 14 December 2009; accepted 28 December 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; *R* factor = 0.024; *wR* factor = 0.065; data-to-parameter ratio = 13.1.

In the crystal structure of the title compound, $[Ni(C_{21}H_{19}-N_5O_4S_2)(C_5H_5N)_2]$, the metal center is seven-coordinate, with an approximate pentagonal-bipyramidal configuration. The Ni atom is chelated by a dianionic pentadentate Schiff base *via* the pyridine N atom, the two azomethine N atoms and the two sulfonyl O atoms. The latter coordinate to Ni at different distances, *viz.* 2.3337 (12) and 2.7988 (12) Å. Two apically coordinated pyridine molecules complete the seven-coordinate geometry. The dihedral angle between the two pyridine ring planes is 68.25 (6)°.

Related literature

For the structure of the ligand and its zinc(II) complex, see: Yusnita *et al.* (2009*a*). For the structure of copper(II) complex of a similar ligand, see: Yusnita *et al.* (2009*b*).

Experimental

Crystal data

[Ni(C₂₁H₁₉N₅O₄S₂)(C₅H₅N)₂] $M_r = 686.44$ Monoclinic, $P2_1/n$ a = 11.6029 (2) Å b = 15.8298 (3) Å c = 16.4156 (3) Å $\beta = 91.823$ (2)°

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T_{min} = 0.788, T_{max} = 0.858

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.065$ S = 1.055308 reflections $V = 3013.55 (9) Å^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.83 \text{ mm}^{-1}$ T = 100 K $0.30 \times 0.22 \times 0.19 \text{ mm}$

22997 measured reflections 5308 independent reflections 4815 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.020$

406 parameters H-atom parameters constrained
$$\begin{split} &\Delta \rho_{max}=0.34\ e\ \text{\AA}^{-3}\\ &\Delta \rho_{min}=-0.36\ e\ \text{\AA}^{-3} \end{split}$$

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The authors thank the University of Malaya for funding this study (UMRG grant No. RG136/09HTM).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2309).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). publCIF. In preparation.
- Yusnita, J., Puvaneswary, S., Abdulla, M. A., Robinson, W. T. & Ali, H. M. (2009a). J. Chem. Crystallogr. 39, 615-618.
- Yusnita, J., Puvaneswary, S., Ali, H. M., Robinson, W. T. & Kwai-Lin, T. (2009b). Polyhedron, 28, 3050–3054.

supporting information

Acta Cryst. (2010). E66, m129 [https://doi.org/10.1107/S1600536809055639]

Bis(pyridine- κN){ N^2 , N^2' -[1,1'-(pyridine-2,6-diyl)diethylidyne]benzenesulfonohydrazonato- $\kappa^5 O$,N,N',N'',O'}nickel(II)

Juahir Yusnita, Hapipah Mohd Ali, Mahmood A. Abdulla, Ward T. Robinson and Hamid Khaledi

S1. Experimental

2,6-Diacetylpyridinebis(benzenesulfonylhydrazide) (1.413 g, 3 mmol) was dissolved in ethanol (50 ml) and three droplets of triethylamine were added, followed by addition of an ethanolic solution of stoichiometric amount of hydrated nickel (II) acetate. The mixture was refluxed for 5 h. The resulting dark brown solids were filtered and dried over silica gel. Brown crystals of the title compound were grown by slow evaporation of a pyridine solution.

S2. Refinement

Hydrogen atoms were placed at calculated positions (C–H 0.95–0.98 Å), and were treated as riding on their parent atoms, with U(H) set to 1.2–1.5 times Ueq(C).

Figure 1

Thermal ellipsoid plot of the title compound at the 40% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Bis(pyridine- κN){ N^2 , N^2 -[1,1'-(pyridine-2,6- diyl)diethylidyne]benzenesulfonohydrazonato-

 $\kappa^5 O, N, N', N'', O'$ }nickel(II)

Crystal data	
$[Ni(C_{21}H_{19}N_5O_4S_2)(C_5H_5N)_2]$	F(000) = 1428
$M_r = 686.44$	$D_{\rm x} = 1.515 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 9879 reflections
a = 11.6029 (2) Å	$\theta = 2.5 - 28.3^{\circ}$
b = 15.8298 (3) Å	$\mu = 0.83 \text{ mm}^{-1}$
c = 16.4156 (3) Å	T = 100 K
$\beta = 91.823 \ (2)^{\circ}$	Block, brown
$V = 3013.55 (9) Å^3$	$0.30 \times 0.22 \times 0.19 \text{ mm}$
Z = 4	

Data collection

Bruker APEXII CCD	22997 measured reflections
diffractometer	5308 independent reflections
Radiation source: fine-focus sealed tube	4815 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int}=0.020$
φ and ω scans	$\theta_{\max} = 25.0^{\circ}, \ \theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan	$h = -13 \rightarrow 13$
(SADABS; Sheldrick, 1996)	$k = -18 \rightarrow 18$
$T_{\min} = 0.788, T_{\max} = 0.858$	$l = -19 \rightarrow 19$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.024$	Hydrogen site location: inferred from
$wR(F^2) = 0.065$	neighbouring sites
S = 1.05	H-atom parameters constrained
5308 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0291P)^2 + 2.4638P]$
406 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.36 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used

only for calculating R-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ni	0.410517 (18)	0.141485 (13)	0.215880 (12)	0.01157 (7)	
S 1	0.59292 (4)	-0.00687 (3)	0.18463 (3)	0.01400 (10)	
S2	0.27045 (4)	0.12194 (3)	0.40344 (2)	0.01272 (10)	
01	0.60699 (11)	-0.09339 (8)	0.16025 (8)	0.0207 (3)	
O2	0.49868 (10)	0.01082 (7)	0.23919 (7)	0.0157 (3)	
03	0.33543 (10)	0.06141 (7)	0.35665 (7)	0.0166 (3)	
O4	0.17478 (10)	0.08872 (8)	0.44772 (7)	0.0174 (3)	
N1	0.38858 (12)	0.24587 (9)	0.14898 (8)	0.0127 (3)	
N2	0.28461 (12)	0.21687 (9)	0.28339 (8)	0.0125 (3)	
N3	0.22201 (12)	0.19994 (9)	0.35170 (8)	0.0137 (3)	
N4	0.52548 (12)	0.12310 (9)	0.12007 (9)	0.0134 (3)	
N5	0.58722 (12)	0.05107 (9)	0.10487 (9)	0.0156 (3)	
N6	0.53749 (12)	0.19065 (9)	0.29575 (9)	0.0143 (3)	
N7	0.27701 (12)	0.07348 (9)	0.15452 (9)	0.0140 (3)	
C1	0.25986 (14)	0.28945 (11)	0.24972 (10)	0.0131 (3)	
C2	0.17637 (15)	0.35009 (11)	0.28509 (11)	0.0169 (4)	

H2A	0.1036	0.3209	0.2948	0.025*
H2B	0.1623	0.3968	0.2469	0.025*
H2C	0.2084	0.3723	0.3367	0.025*
C3	0.32043 (14)	0.30847 (11)	0.17453 (10)	0.0131 (3)
C4	0.31328 (15)	0.38448 (11)	0.13167 (11)	0.0166 (4)
H4	0.2653	0.4290	0.1494	0.020*
C5	0.37776 (15)	0.39357 (11)	0.06257 (11)	0.0182 (4)
H5	0.3742	0.4450	0.0328	0.022*
C6	0.44751 (15)	0.32834 (11)	0.03648 (10)	0.0163 (4)
H6	0.4913	0.3342	-0.0111	0.020*
C7	0 45153 (14)	0.25424(11)	0.08200 (10)	0.0139(3)
C8	0.52355(14)	0.18075 (11)	0.06200(10) 0.06381(10)	0.0135(3) 0.0145(4)
C9	0.52555 (14)	0.17241(12)	-0.01367(11)	0.0119(1)
НОА	0.5851	0.2268	-0.0421	0.0209 (4)
HOR	0.5473	0.1297	-0.0421	0.031*
HOC	0.6655	0.1551	-0.0017	0.031*
C10	0.00000	0.1331 0.02117(11)	0.0017	0.031
C10 C11	0.72211(15) 0.78134(15)	0.02117(11) 0.00477(12)	0.24000(11) 0.22277(11)	0.0109(4)
U11	0.78134 (13)	0.09477(12) 0.1204	0.22277 (11)	0.0208 (4)
C12	0.7330 0.97804 (17)	0.1304	0.1793	0.023°
U12	0.07094(17)	0.11360 (14)	0.20980 (12)	0.0273(3)
П12 С12	0.9197	0.1003	0.2390 0.22268(12)	0.033°
U15 U12	0.91080 (10)	0.00321 (13)	0.33208 (12)	0.0303 (3)
П13	0.9641	0.0773	0.3042	0.037
C14	0.85/30(1/)	-0.00988 (14)	0.34959 (12)	0.0288 (5)
H14	0.8834	-0.0455	0.3930	0.035*
	0.75943 (16)	-0.03152 (13)	0.30345 (11)	0.0227 (4)
HIS	0.7183	-0.0818	0.3150	0.027*
C16	0.36809 (14)	0.16219 (11)	0.48003 (10)	0.0140 (3)
C17	0.41986 (15)	0.10464 (12)	0.53378 (11)	0.0192 (4)
H17	0.4048	0.0459	0.5280	0.023*
C18	0.49334 (17)	0.13345 (13)	0.59570 (11)	0.0233 (4)
H18	0.5288	0.0945	0.6328	0.028*
C19	0.51522 (16)	0.21932 (13)	0.60359 (11)	0.0236 (4)
H19	0.5656	0.2392	0.6461	0.028*
C20	0.46384 (17)	0.27609 (12)	0.54965 (12)	0.0235 (4)
H20	0.4792	0.3348	0.5553	0.028*
C21	0.39001 (15)	0.24778 (11)	0.48730 (11)	0.0188 (4)
H21	0.3550	0.2867	0.4501	0.023*
C22	0.57825 (16)	0.26962 (12)	0.28800 (12)	0.0211 (4)
H22	0.5490	0.3033	0.2442	0.025*
C23	0.66049 (17)	0.30403 (13)	0.34058 (13)	0.0277 (5)
H23	0.6867	0.3603	0.3331	0.033*
C24	0.70418 (17)	0.25566 (13)	0.40424 (12)	0.0267 (4)
H24	0.7616	0.2776	0.4409	0.032*
C25	0.66268 (15)	0.17464 (12)	0.41350 (11)	0.0205 (4)
H25	0.6906	0.1400	0.4571	0.025*
C26	0.57989 (15)	0.14469 (11)	0.35850 (10)	0.0161 (4)
H26	0.5516	0.0889	0.3654	0.019*

C27	0.28759 (15)	0.04331 (11)	0.07836 (11)	0.0170 (4)	
H27	0.3566	0.0548	0.0508	0.020*	
C28	0.20283 (16)	-0.00357 (11)	0.03843 (11)	0.0197 (4)	
H28	0.2130	-0.0225	-0.0158	0.024*	
C29	0.10303 (16)	-0.02267 (12)	0.07827 (11)	0.0203 (4)	
H29	0.0444	-0.0561	0.0526	0.024*	
C30	0.09044 (16)	0.00798 (12)	0.15641 (12)	0.0205 (4)	
H30	0.0227	-0.0039	0.1854	0.025*	
C31	0.17797 (15)	0.05617 (11)	0.19157 (11)	0.0178 (4)	
H31	0.1677	0.0782	0.2447	0.021*	

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U ³³	<i>U</i> ¹²	U^{13}	<i>U</i> ²³
Ni	0.01215 (12)	0.01122 (12)	0.01132 (12)	0.00032 (8)	0.00009 (8)	0.00054 (8)
S 1	0.0129 (2)	0.0136 (2)	0.0155 (2)	0.00219 (16)	0.00011 (16)	-0.00047 (16)
S2	0.0127 (2)	0.0124 (2)	0.0131 (2)	-0.00030 (16)	0.00112 (16)	-0.00026 (16)
01	0.0209 (7)	0.0145 (6)	0.0266 (7)	0.0039 (5)	-0.0017 (5)	-0.0031 (5)
O2	0.0139 (6)	0.0156 (6)	0.0177 (6)	0.0009 (5)	0.0019 (5)	0.0016 (5)
O3	0.0159 (6)	0.0149 (6)	0.0191 (6)	0.0006 (5)	0.0013 (5)	-0.0028 (5)
O4	0.0165 (6)	0.0180 (6)	0.0180 (6)	-0.0024 (5)	0.0031 (5)	0.0015 (5)
N1	0.0128 (7)	0.0137 (7)	0.0113 (7)	0.0001 (6)	-0.0011 (6)	-0.0001 (6)
N2	0.0125 (7)	0.0146 (7)	0.0104 (7)	-0.0016 (6)	-0.0004(5)	-0.0016 (6)
N3	0.0140 (7)	0.0162 (7)	0.0110 (7)	0.0011 (6)	0.0018 (6)	-0.0008 (6)
N4	0.0117 (7)	0.0145 (7)	0.0140 (7)	0.0014 (6)	0.0000 (6)	-0.0017 (6)
N5	0.0153 (7)	0.0167 (8)	0.0149 (7)	0.0040 (6)	0.0022 (6)	-0.0016 (6)
N6	0.0126 (7)	0.0154 (7)	0.0150 (7)	0.0002 (6)	0.0025 (6)	-0.0004 (6)
N7	0.0150 (7)	0.0122 (7)	0.0147 (7)	0.0027 (6)	-0.0009 (6)	-0.0003 (6)
C1	0.0129 (8)	0.0146 (8)	0.0116 (8)	0.0003 (7)	-0.0024 (6)	-0.0024 (7)
C2	0.0184 (9)	0.0177 (9)	0.0146 (9)	0.0042 (7)	0.0006 (7)	-0.0011 (7)
C3	0.0117 (8)	0.0134 (8)	0.0140 (8)	-0.0004 (7)	-0.0029 (7)	-0.0022 (7)
C4	0.0180 (9)	0.0134 (9)	0.0181 (9)	0.0013 (7)	-0.0025 (7)	0.0001 (7)
C5	0.0211 (9)	0.0150 (9)	0.0183 (9)	-0.0024 (7)	-0.0037 (7)	0.0042 (7)
C6	0.0171 (9)	0.0177 (9)	0.0138 (9)	-0.0024 (7)	-0.0005 (7)	0.0029 (7)
C7	0.0121 (8)	0.0169 (9)	0.0126 (8)	-0.0023 (7)	-0.0018 (7)	-0.0004 (7)
C8	0.0133 (8)	0.0167 (9)	0.0136 (9)	-0.0022 (7)	0.0002 (7)	0.0007 (7)
C9	0.0228 (10)	0.0223 (10)	0.0179 (9)	0.0012 (8)	0.0058 (8)	0.0013 (8)
C10	0.0131 (8)	0.0220 (9)	0.0156 (9)	0.0043 (7)	0.0018 (7)	-0.0046 (7)
C11	0.0159 (9)	0.0259 (10)	0.0207 (10)	0.0005 (8)	0.0034 (7)	-0.0033 (8)
C12	0.0169 (9)	0.0357 (12)	0.0301 (11)	-0.0047 (8)	0.0054 (8)	-0.0115 (9)
C13	0.0138 (9)	0.0548 (14)	0.0226 (10)	0.0055 (9)	-0.0012 (8)	-0.0169 (10)
C14	0.0240 (10)	0.0454 (13)	0.0168 (10)	0.0133 (10)	-0.0029 (8)	-0.0057 (9)
C15	0.0223 (10)	0.0274 (10)	0.0184 (10)	0.0060 (8)	0.0023 (8)	-0.0016 (8)
C16	0.0124 (8)	0.0177 (9)	0.0120 (8)	0.0006 (7)	0.0021 (6)	-0.0001 (7)
C17	0.0200 (9)	0.0176 (9)	0.0201 (10)	-0.0009 (7)	0.0014 (7)	0.0039 (7)
C18	0.0224 (10)	0.0284 (11)	0.0188 (10)	0.0011 (8)	-0.0038 (8)	0.0077 (8)
C19	0.0223 (10)	0.0307 (11)	0.0173 (9)	-0.0025 (8)	-0.0058 (8)	-0.0014 (8)
C20	0.0268 (10)	0.0180 (9)	0.0254 (10)	-0.0020 (8)	-0.0055 (8)	-0.0034 (8)

supporting information

C21	0.0202 (9)	0.0170 (9)	0.0191 (9)	0.0018 (7)	-0.0028 (7)	0.0012 (7)
C22	0.0206 (9)	0.0197 (10)	0.0228 (10)	-0.0045 (8)	-0.0012 (8)	0.0045 (8)
C23	0.0260 (10)	0.0245 (10)	0.0324 (11)	-0.0115 (8)	-0.0042 (9)	0.0029 (9)
C24	0.0200 (10)	0.0345 (12)	0.0251 (11)	-0.0067 (9)	-0.0054 (8)	-0.0033 (9)
C25	0.0161 (9)	0.0290 (10)	0.0164 (9)	0.0024 (8)	-0.0012 (7)	0.0020 (8)
C26	0.0144 (9)	0.0183 (9)	0.0158 (9)	0.0021 (7)	0.0038 (7)	0.0000 (7)
C27	0.0188 (9)	0.0163 (9)	0.0160 (9)	0.0020 (7)	0.0019 (7)	-0.0006 (7)
C28	0.0234 (10)	0.0200 (9)	0.0156 (9)	0.0048 (8)	-0.0018 (7)	-0.0053 (7)
C29	0.0180 (9)	0.0174 (9)	0.0249 (10)	0.0018 (7)	-0.0062 (8)	-0.0059 (8)
C30	0.0152 (9)	0.0235 (10)	0.0227 (10)	0.0003 (8)	0.0012 (7)	-0.0034 (8)
C31	0.0184 (9)	0.0189 (9)	0.0163 (9)	0.0018 (7)	0.0015 (7)	-0.0036 (7)

Geometric parameters (Å, °)

Ni—N1	1.9959 (14)	С9—Н9С	0.9800
Ni—N6	2.0910 (14)	C10—C11	1.387 (3)
Ni—N4	2.1145 (14)	C10—C15	1.392 (3)
Ni—N7	2.1152 (14)	C11—C12	1.391 (3)
Ni—N2	2.2111 (14)	C11—H11	0.9500
Ni—O2	2.3337 (12)	C12—C13	1.387 (3)
Ni—O3	2.7988 (12)	C12—H12	0.9500
S1—O1	1.4376 (13)	C13—C14	1.380 (3)
S1—O2	1.4624 (12)	C13—H13	0.9500
S1—N5	1.5984 (15)	C14—C15	1.388 (3)
S1—C10	1.7847 (18)	C14—H14	0.9500
S2—O4	1.4450 (12)	C15—H15	0.9500
S2—O3	1.4538 (12)	C16—C21	1.383 (3)
S2—N3	1.5911 (15)	C16—C17	1.391 (2)
S2—C16	1.7832 (17)	C17—C18	1.383 (3)
N1—C3	1.343 (2)	C17—H17	0.9500
N1—C7	1.346 (2)	C18—C19	1.388 (3)
N2-C1	1.303 (2)	C18—H18	0.9500
N2—N3	1.3816 (19)	C19—C20	1.383 (3)
N4—C8	1.298 (2)	C19—H19	0.9500
N4—N5	1.374 (2)	C20—C21	1.388 (3)
N6-C26	1.342 (2)	C20—H20	0.9500
N6-C22	1.344 (2)	C21—H21	0.9500
N7-C31	1.345 (2)	C22—C23	1.378 (3)
N7—C27	1.348 (2)	C22—H22	0.9500
C1—C3	1.471 (2)	C23—C24	1.379 (3)
C1—C2	1.494 (2)	С23—Н23	0.9500
C2—H2A	0.9800	C24—C25	1.380 (3)
C2—H2B	0.9800	C24—H24	0.9500
C2—H2C	0.9800	C25—C26	1.381 (3)
C3—C4	1.395 (2)	С25—Н25	0.9500
C4—C5	1.386 (3)	C26—H26	0.9500
C4—H4	0.9500	C27—C28	1.381 (3)
C5—C6	1.388 (3)	С27—Н27	0.9500

supporting information

G6 116	0.0500	G00 G00	1 201 (2)
С5—Н5	0.9500	C28—C29	1.381 (3)
C6—C7	1.391 (2)	C28—H28	0.9500
С6—Н6	0.9500	C29—C30	1.384 (3)
C7—C8	1 469 (2)	C29—H29	0.9500
C° C°	1.109(2)	C_{20} C_{21}	1 282 (2)
	1.400 (2)	C30—C31	1.362 (3)
С9—Н9А	0.9800	C30—H30	0.9500
С9—Н9В	0.9800	C31—H31	0.9500
N1—Ni—N6	96.42 (6)	N4—C8—C7	114.16 (15)
N1 Ni NA	77 12 (6)	NA C8 C9	123 23 (16)
	77.12(0)		123.23(10)
N0—N1—N4	93.96 (5)	C/C8C9	122.58 (15)
NI-NI-N/	94.63 (6)	С8—С9—Н9А	109.5
N6—Ni—N7	168.17 (6)	С8—С9—Н9В	109.5
N4—Ni—N7	92.61 (5)	H9A—C9—H9B	109.5
N1—Ni—N2	75.77 (5)	С8—С9—Н9С	109.5
N6—Ni—N2	87.04 (5)	Н9А—С9—Н9С	109.5
N4_Ni_N2	152.81 (5)		109.5
N7 N: N2	152.01(5)		107.5
N/—NI—N2	91.59 (5)		120.81 (17)
N1 - N1 - O2	150.64 (5)	C11—C10—S1	121.21 (14)
N6—Ni—O2	86.02 (5)	C15—C10—S1	117.93 (14)
N4—Ni—O2	73.52 (5)	C10-C11-C12	119.19 (18)
N7—Ni—O2	86.42 (5)	C10-C11-H11	120.4
N2—Ni—O2	133.58 (5)	C12—C11—H11	120.4
N1NiO3	14234(5)	C_{13} C_{12} C_{11}	1202(2)
NG NG O2	(3)		120.2 (2)
	85.25 (5)		119.9
N4—N1—O3	140.54 (5)	C11—C12—H12	119.9
N7—Ni—O3	85.42 (5)	C14—C13—C12	120.28 (18)
N2—Ni—O3	66.59 (4)	C14—C13—H13	119.9
O2—Ni—O3	67.02 (4)	С12—С13—Н13	119.9
O1—S1—O2	116.53 (7)	C13—C14—C15	120.23 (19)
01 - 81 - N5	108 70 (8)	C13—C14—H14	1199
$O_2 S_1 N_5$	112 31 (7)	C15 $C14$ $H14$	110.0
02 - 51 - 10	112.31(7)	C14 - C15 - C10	119.9
	100.14 (8)		119.55 (19)
02—S1—C10	105.81 (8)	C14—C15—H15	120.3
N5—S1—C10	106.69 (8)	C10—C15—H15	120.3
O4—S2—O3	116.46 (7)	C21—C16—C17	120.82 (16)
O4—S2—N3	106.68 (7)	C21—C16—S2	121.46 (13)
O3—S2—N3	114.18 (7)	C17—C16—S2	117.71 (14)
04 - 82 - C16	104 86 (7)	C18—C17—C16	119 59 (17)
$O_3 S_2 C_{16}$	106.23 (7)	C_{18} C_{17} H_{17}	120.2
N2 S2 C1(100.25(7)		120.2
N3-S2-C10	107.75 (8)		120.2
81—02—N1	113.69 (7)	C1/—C18—C19	119.87 (17)
S2—O3—Ni	108.55 (6)	C17—C18—H18	120.1
C3—N1—C7	121.51 (15)	C19—C18—H18	120.1
C3—N1—Ni	120.33 (11)	C20—C19—C18	120.18 (18)
C7—N1—Ni	117.91 (11)	C20—C19—H19	119.9
C1—N2—N3	113.63 (14)	С18—С19—Н19	119.9
C1Ni	113 80 (11)	C19 - C20 - C21	120 38 (18)
VI 114 INI	112.00 (11)	(1) $(20$ (21)	120.00 (10)

N3—N2—Ni	132.44 (11)	С19—С20—Н20	119.8
N2—N3—S2	113.45 (11)	C21—C20—H20	119.8
C8—N4—N5	116.85 (14)	C16—C21—C20	119.16 (17)
C8—N4—Ni	115.81 (11)	C16—C21—H21	120.4
N5—N4—Ni	126.47 (11)	C20—C21—H21	120.4
N4—N5—S1	109.62 (11)	N6—C22—C23	123.16 (17)
C26—N6—C22	117.09 (15)	N6—C22—H22	118.4
C26—N6—Ni	120.89 (12)	C23—C22—H22	118.4
C22—N6—Ni	122.00 (12)	C22—C23—C24	119.05 (18)
C31—N7—C27	116.84 (15)	С22—С23—Н23	120.5
C31—N7—Ni	120.77 (12)	C24—C23—H23	120.5
C27—N7—Ni	122.36 (12)	C23—C24—C25	118.58 (18)
N2-C1-C3	115.57 (15)	C23—C24—H24	120.7
N2-C1-C2	122.58 (15)	C25—C24—H24	120.7
$C_{3}-C_{1}-C_{2}$	121.85 (15)	C_{24} C_{25} C_{26}	118.99 (17)
C1—C2—H2A	109.5	C24—C25—H25	120.5
C1—C2—H2B	109.5	C26—C25—H25	120.5
H_2A — C_2 — H_2B	109.5	N6-C26-C25	123.11 (17)
C1-C2-H2C	109.5	N6—C26—H26	118.4
H2A—C2—H2C	109.5	C25—C26—H26	118.4
H2B-C2-H2C	109.5	N7—C27—C28	123.12 (17)
N1—C3—C4	120.33 (15)	N7—C27—H27	118.4
N1—C3—C1	114.38 (15)	С28—С27—Н27	118.4
C4—C3—C1	125.27 (15)	C27—C28—C29	119.21 (17)
C5—C4—C3	118.51 (16)	С27—С28—Н28	120.4
C5—C4—H4	120.7	С29—С28—Н28	120.4
C3—C4—H4	120.7	C28—C29—C30	118.49 (17)
C4—C5—C6	120.69 (16)	С28—С29—Н29	120.8
С4—С5—Н5	119.7	С30—С29—Н29	120.8
С6—С5—Н5	119.7	C31—C30—C29	118.88 (17)
C5—C6—C7	118.14 (16)	С31—С30—Н30	120.6
С5—С6—Н6	120.9	С29—С30—Н30	120.6
С7—С6—Н6	120.9	N7—C31—C30	123.42 (16)
N1—C7—C6	120.81 (16)	N7—C31—H31	118.3
N1—C7—C8	114.53 (15)	C30—C31—H31	118.3
C6—C7—C8	124.65 (15)		
01—S1—O2—Ni	-145.14 (7)	O3—Ni—N7—C31	33.11 (13)
N5—S1—O2—Ni	-18.82 (10)	N1—Ni—N7—C27	72.98 (14)
C10—S1—O2—Ni	97.20 (8)	N6—Ni—N7—C27	-128.0 (3)
N1—Ni—O2—S1	8.70 (14)	N4—Ni—N7—C27	-4.30 (14)
N6—Ni—O2—S1	-87.33 (8)	N2—Ni—N7—C27	148.83 (13)
N4—Ni—O2—S1	7.99 (7)	O2—Ni—N7—C27	-77.61 (13)
N7—Ni—O2—S1	101.78 (8)	O3—Ni—N7—C27	-144.81 (13)
N2—Ni—O2—S1	-169.43 (6)	N3—N2—C1—C3	-177.23 (13)
O3—Ni—O2—S1	-171.68 (8)	Ni—N2—C1—C3	-0.80 (18)
O4—S2—O3—Ni	145.87 (6)	N3—N2—C1—C2	3.3 (2)
N3—S2—O3—Ni	20.78 (9)	Ni—N2—C1—C2	179.72 (12)

C16—S2—O3—Ni	-97.82 (7)	C7—N1—C3—C4	0.0 (2)
N1—Ni—O3—S2	-12.32 (11)	Ni—N1—C3—C4	174.16 (12)
N6—Ni—O3—S2	79.45 (7)	C7—N1—C3—C1	-178.66 (15)
N4—Ni—O3—S2	167.49 (7)	Ni—N1—C3—C1	-4.52 (19)
N7—Ni—O3—S2	-103.97 (7)	N2—C1—C3—N1	3.3 (2)
N2—Ni—O3—S2	-10.24 (6)	C2-C1-C3-N1	-177.22 (15)
O2—Ni—O3—S2	167.98 (8)	N2—C1—C3—C4	-175.31 (16)
N6—Ni—N1—C3	-82.17 (13)	C2—C1—C3—C4	4.2 (3)
N4—Ni—N1—C3	-174.78 (13)	N1—C3—C4—C5	0.0 (3)
N7—Ni—N1—C3	93.59 (13)	C1—C3—C4—C5	178.56 (16)
N2—Ni—N1—C3	3.12 (12)	C3—C4—C5—C6	0.3 (3)
O2—Ni—N1—C3	-175.48 (10)	C4—C5—C6—C7	-0.6 (3)
O3—Ni—N1—C3	5.10 (17)	C3—N1—C7—C6	-0.4(2)
N6—Ni—N1—C7	92.18 (12)	Ni—N1—C7—C6	-174.65 (12)
N4—Ni—N1—C7	-0.43(12)	C3—N1—C7—C8	178.48 (14)
N7—Ni—N1—C7	-92.05 (12)	Ni—N1—C7—C8	4.20 (19)
N2—Ni—N1—C7	177.47 (13)	C5—C6—C7—N1	0.6 (3)
02—Ni—N1—C7	-1.13 (19)	C5—C6—C7—C8	-178.08(16)
03—Ni—N1—C7	179.45 (10)	N5—N4—C8—C7	177.13 (14)
N1 - Ni - N2 - C1	-1.11 (11)	Ni—N4—C8—C7	7.13 (19)
N6—Ni—N2—C1	96.28 (12)	N5—N4—C8—C9	-1.0(2)
N4—Ni—N2—C1	3.37 (19)	Ni—N4—C8—C9	-171.04(13)
N7—Ni—N2—C1	-95.48 (12)	N1—C7—C8—N4	-7.5 (2)
02—Ni—N2—C1	177.94 (10)	C6-C7-C8-N4	171.34 (16)
03—Ni—N2—C1	-179.80(13)	N1-C7-C8-C9	170.72 (16)
N1—Ni—N2—N3	174.46 (15)	C6-C7-C8-C9	-10.5(3)
N6—Ni—N2—N3	-88.15(14)	01 - 10 - 10 - 11	130.91(15)
N4—Ni—N2—N3	178 94 (12)	02 - 10 - 10 - 11	$-104\ 67\ (15)$
N7—Ni—N2—N3	80.09(14)	$N_{5}=S_{1}=C_{10}=C_{11}$	15 11 (17)
Ω^2 _Ni_N2_N3	-6.49(17)	01 - 10 - 10 - 11	-5150(16)
03—Ni—N2—N3	-4.23(13)	02 - 10 - 10 - 15	72 92 (15)
C1 - N2 - N3 - S2	-16749(12)	$N_{5} = S_{1} = C_{10} = C_{15}$	-167 30 (14)
Ni_N2_N3_\$2	16 94 (18)	$C_{15} - C_{10} - C_{11} - C_{12}$	-0.2(3)
04 = S2 = N3 = N2	-155.04(11)	$S_1 = C_1 = C_{11} = C_{12}$	177.28(14)
03 - 82 - N3 - N2	-24.92(14)	C10-C11-C12-C13	0.7(3)
C16 = S2 = N3 = N2	92 82 (12)	C_{11} C_{12} C_{13} C_{14}	-0.8(3)
N1_Ni_N4_C8	-3.93(12)	C12 - C13 - C14 - C15	0.0(3)
$N_{1} N_{1} N_{2} C_{3}$	-99.62 (13)	$C_{12} = C_{13} = C_{14} = C_{15}$	0.0(3)
N7NiN4C8	90.22 (13)	C_{11} C_{10} C_{15} C_{14}	-0.1(3)
$N_2 N_1 N_4 C_8$	-84(2)	S1 - C10 - C15 - C14	-17772(14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	175 71 (13)	04 S2 C16 C21	-112.04(15)
$O_2 = N_1 = N_4 = C_8$	176.10 (10)	03 S2 C16 C21	112.94(13) 123.10(15)
N1_Ni_N4_N5	-172 83 (1/)	$N_3 S_2 C_{10} C_{21}$	0.43(17)
N6_Ni_N4_N5	91 48 (13)	$04 - S^2 - C16 - C17$	65 61 (15)
$N7_Ni_N4$ N5	-78.68(13)	03 - 52 - 010 - 017	-58.26(15)
$N_2 N_1 N_4 N_5$	-177 28 (11)	$N_3 S_2 C_{16} C_{17}$	$178 \ 98 \ (13)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 81 (12)	$C_{21} = C_{16} = C_{17} = C_{18}$	1/0.90(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.20(17)	C_{21} C_{10} C_{17} C_{10}	-177.06(14)
05—INI—IN4—IN3	1.29 (17)	52-U10-U1/-U18	-1//.90(14)

C8—N4—N5—S1	172.91 (12)	C16—C17—C18—C19	-0.2 (3)
Ni—N4—N5—S1	-18.29 (16)	C17—C18—C19—C20	-0.1 (3)
O1—S1—N5—N4	153.45 (11)	C18—C19—C20—C21	0.1 (3)
O2—S1—N5—N4	23.01 (13)	C17—C16—C21—C20	-0.6 (3)
C10-S1-N5-N4	-92.48 (12)	S2-C16-C21-C20	177.89 (14)
N1—Ni—N6—C26	176.50 (13)	C19—C20—C21—C16	0.3 (3)
N4—Ni—N6—C26	-106.03 (13)	C26—N6—C22—C23	0.4 (3)
N7—Ni—N6—C26	17.5 (3)	Ni-N6-C22-C23	178.89 (15)
N2—Ni—N6—C26	101.19 (13)	N6-C22-C23-C24	0.3 (3)
O2—Ni—N6—C26	-32.88 (13)	C22—C23—C24—C25	-0.8 (3)
O3—Ni—N6—C26	34.42 (12)	C23—C24—C25—C26	0.5 (3)
N1—Ni—N6—C22	-1.92 (14)	C22—N6—C26—C25	-0.7 (2)
N4—Ni—N6—C22	75.54 (14)	Ni-N6-C26-C25	-179.16 (13)
N7—Ni—N6—C22	-160.9 (2)	C24—C25—C26—N6	0.2 (3)
N2—Ni—N6—C22	-77.23 (14)	C31—N7—C27—C28	-0.2 (3)
O2—Ni—N6—C22	148.70 (14)	Ni—N7—C27—C28	177.80 (13)
O3—Ni—N6—C22	-144.00 (14)	N7—C27—C28—C29	-1.6 (3)
N1—Ni—N7—C31	-109.10 (13)	C27—C28—C29—C30	1.7 (3)
N6—Ni—N7—C31	49.9 (3)	C28—C29—C30—C31	-0.2 (3)
N4—Ni—N7—C31	173.62 (13)	C27—N7—C31—C30	1.8 (3)
N2—Ni—N7—C31	-33.25 (13)	Ni—N7—C31—C30	-176.19 (14)
O2—Ni—N7—C31	100.31 (13)	C29—C30—C31—N7	-1.7 (3)