Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tricyclo[3.3.1.0^{3,7}]nonane-3,7-diyl bis(methanesulfonate)

Savvas Ioannou,* Athanassios V. Nicolaides and Manolis J. Manos*

Department of Chemistry, University of Cyprus, 1678 Nicosia, Cyprus Correspondence e-mail: ioannou.savvas@ucy.ac.cy, emmanouil.manos@ucy.acy.cy

Received 6 December 2009; accepted 11 January 2010

Key indicators: single-crystal X-ray study: T = 100 K: mean $\sigma(C-C) = 0.003$ Å: R factor = 0.029; wR factor = 0.073; data-to-parameter ratio = 13.4.

The crystal structure of the title compound, $C_{11}H_{18}O_6S_2$, was determined to investigate the effect of the eclipsed mesyl groups on the bond length of the vicinal quaternary C atoms. The two quaternary C atoms of the noradamantane skeleton and the two O atoms to which they are connected all located essentially in the same plane [maximum deviation 0.01 Å], resulting in an eclipsing conformation of the C–O bonds. The C-C bond of the quaternary C atoms is 1.597(3) Å is considerably longer than the other C-C bonds of the molecule.

Related literature

For reviews on noradamantene and analogous pyramidalized alkenes, see: Borden (1989, 1996); Vázquez & Camps (2005). For the syntheses of mesylate esters of acyclic alcohols, see: Danheiser et al. (1988); Marshall & Chobanian (2005). For the synthesis of the precursor diol (tricyclo-[3.3.1.0^{3,7}]nonane-3,7diol), an important intermediate in the synthetic route towards the generation of noradamantene, see: Zalikowski et al. (1980); Bertz (1985). For the synthesis of the title compound, see: Ioannou & Nicolaides (2009).

Experimental

Crystal data

$C_{11}H_{18}O_6S_2$	V = 1311.60 (5) Å ³
$M_r = 310.37$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 8.8017 (2) Å	$\mu = 0.43 \text{ mm}^{-1}$
b = 10.3107 (2) Å	$T = 100 { m K}$
c = 14.4623 (3) Å	$0.18 \times 0.06 \times 0.04$
$\beta = 92.092 \ (2)^{\circ}$	

Data collection

Oxford Diffraction Xcalibur-3 diffractometer Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) $T_{\min} = 0.919, \ T_{\max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.073$ S = 1.002308 reflections

 3 mm^{-1} Κ $0.06 \times 0.04 \text{ mm}$

8431 measured reflections 2308 independent reflections 1791 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.032$

172 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.34$ e Å⁻³

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrvsAlis RED: program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: WinGX.

Financial support from the Research Promotion Foundation of Cyprus and the European Union via grant ΠΕΝΕΚ/ ENI X/0308/01 and the University of Cyprus via a SRP grant is gratefully acknowledged. The A. G. Leventis Foundation is gratefully acknowledged for a generous donation which enabled the purchase of the NMR spectrometer at the University of Cyprus.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2172).

References

- Bertz, S. H. (1985). J. Org. Chem. 50, 3585-3592.
- Borden, W. T. (1989). Chem. Rev. 89, 1095-1109.
- Borden, W. T. (1996). Synlett, pp. 711-719.
- Danheiser, R. L., Tsai, Y.-M. & Fink, D. M. (1988). Org. Synth. 66, 1-7.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Ioannou, S. & Nicolaides, A. V. (2009). Tetrahedron Lett. 50, 6938-6940.
- Marshall, J. A. & Chobanian, H. (2005). Org. Synth. 82, 43-54.
- Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Vázquez, S. & Camps, P. (2005). Tetrahedron, 61, 5147-5208.
- Zalikowski, J. A., Gilbert, K. E. & Borden, W. T. (1980). J. Org. Chem. 45, 346-347.

Acta Cryst. (2010). E66, o409 [https://doi.org/10.1107/S1600536810001261] Tricyclo[3.3.1.0^{3,7}]nonane-3,7-diyl bis(methanesulfonate)

Savvas Ioannou, Athanassios V. Nicolaides and Manolis J. Manos

S1. Experimental

Synthesis of tricyclo- $[3.3.1.0^{3.7}]$ nonane-3,7-diyl dimesylate (1). To a solution of tricyclo- $[3.3.1.0^{3.7}]$ nonane-3,7-diol (1.00 g, 6.49 mmol) in pyridine (10 ml), mesyl chloride (CH₃SO₂Cl)(5.02 ml, 65 mmol) was added slowly with stirring at ambient temperature. The mixture was then heated at 120 °C for 5 h. After cooling, crushed ice (100 g) was added and the mixture extracted with CH₂Cl₂ (5 *x* 20 ml). The combined organic phase was washed with 2*M* HCl (2 *x* 40 ml), H₂O (2 *x* 20 ml), saturated aqueous NaHCO₃ (2 *x* 20 ml), and dried (Na₂SO₄). After filtration and removal of the solvent under reduced pressure, a brown solid (1.92 g, 96%) was isolated. Recrystallization from THF/hexane afforded pure 1 (1.71 g, 85%) as colorless crystals m.p. 127–128 °C. Elemental analysis (%): Calculated for C₁₁H₁₈O₆S₂: C,42.6; H, 5.8; O, 30.9; S, 20.7. Found: C, 42.3; H, 5.7; S,20.3. High-resolution Mass Spectrometry (TOF MS ES+): Calculated for C₁₁H₁₉O₆S₂ 311.0623 found: 311.0629. v_{max} (KBr) 3449, 2943, 1464, 1414, 1341, 1190, 1169, 1101, 1018, 976, 955, 856, 824, 802, 760, 669, 615, 565, 515, 474 cm⁻¹; δ H(300 MHz, CDCl₃) 3.10 (6*H*, –CH₃, s), 2.50 (6H(4eq+2CH), d, J 6.9 Hz), 2.26 (4Hax,d, J 9.0 Hz), 1.51 (2Hbridge, s); δ^{13} C (75.5 MHz, CDCl₃) 91.30 (–CO), 47.42(–CH₂),40.60 (–CH₃), 34.98 (–CH), 32.28 (–CH₂ bridge).

S2. Refinement

The H atoms were positioned with idealized geometry and refined using a riding model with $U_{iso}(H) = 1.2$ or 1.5 (methyl H atoms) of $U_{eq}(C)$.

Figure 1

Structure of the title compound tricyclo-[3.3.1.0^{3,7}]nonane-3,7-diyldimesylate with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity.

Tricyclo[3.3.1.0^{3,7}]nonane-3,7-diyl bis(methanesulfonate)

Crystal data

F(000) = 656 $C_{11}H_{18}O_6S_2$ $M_r = 310.37$ $D_{\rm x} = 1.572 {\rm ~Mg} {\rm ~m}^{-3}$ Monoclinic, $P2_1/n$ Mo *K* α radiation, $\lambda = 0.71073$ Å Hall symbol: -P 2yn Cell parameters from 4520 reflections *a* = 8.8017 (2) Å $\theta = 3.0 - 30.2^{\circ}$ *b* = 10.3107 (2) Å $\mu = 0.43 \text{ mm}^{-1}$ T = 100 Kc = 14.4623 (3) Å $\beta = 92.092 \ (2)^{\circ}$ Plate, colorless $V = 1311.60 (5) Å^3$ $0.18 \times 0.06 \times 0.04 \text{ mm}$ Z = 4Data collection Oxford Diffraction Xcalibur-3 Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) diffractometer Radiation source: fine-focus sealed tube $T_{\min} = 0.919, T_{\max} = 1.000$ 8431 measured reflections Graphite monochromator Detector resolution: 16.0288 pixels mm⁻¹ 2308 independent reflections 1791 reflections with $I > 2\sigma(I)$ ω scans $R_{\rm int} = 0.032$

$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$	$k = -12 \rightarrow 12$
$h = -6 \rightarrow 10$	$l = -17 \rightarrow 17$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.029$	Hydrogen site location: inferred from
$wR(F^2) = 0.073$	neighbouring sites
S = 1.00	H-atom parameters constrained
2308 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0414P)^2]$
172 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.31 \ m e \ m \AA^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.15096 (6)	0.16605 (5)	-0.14000 (3)	0.01491 (14)	
S2	0.58045 (5)	0.26342 (5)	0.01791 (4)	0.01445 (14)	
01	0.24294 (14)	0.17383 (12)	-0.04474 (9)	0.0127 (3)	
O2	-0.00837 (15)	0.17596 (14)	-0.12494 (10)	0.0203 (4)	
03	0.20781 (16)	0.05237 (15)	-0.18235 (10)	0.0263 (4)	
O4	0.46545 (14)	0.19451 (13)	0.08427 (9)	0.0147 (3)	
05	0.50094 (15)	0.33931 (14)	-0.05052 (10)	0.0204 (3)	
O6	0.69589 (15)	0.32558 (14)	0.07372 (10)	0.0213 (4)	
C1	0.1867 (2)	0.23973 (19)	0.03658 (13)	0.0118 (4)	
C2	0.0669 (2)	0.16160 (19)	0.08527 (13)	0.0141 (5)	
H2A	0.0827	0.0690	0.0784	0.017*	
H2B	-0.0351	0.1838	0.0629	0.017*	
C3	0.0968 (2)	0.2058 (2)	0.18502 (14)	0.0164 (5)	
H3	0.0386	0.1553	0.2289	0.020*	
C4	0.0647 (2)	0.3523 (2)	0.19196 (14)	0.0179 (5)	
H4A	0.0896	0.3818	0.2544	0.021*	
H4B	-0.0427	0.3681	0.1792	0.021*	
C5	0.1586 (2)	0.4297 (2)	0.12291 (14)	0.0157 (5)	
H5	0.1397	0.5231	0.1271	0.019*	
C6	0.3291 (2)	0.39729 (18)	0.13632 (15)	0.0154 (5)	
H6A	0.3908	0.4462	0.0944	0.018*	
H6B	0.3657	0.4116	0.1996	0.018*	
C7	0.3234 (2)	0.25284 (19)	0.11167 (14)	0.0122 (4)	

C8	0.2677 (2)	0.17855 (19)	0.19476 (14)	0.0150 (4)
H8A	0.3113	0.2123	0.2524	0.018*
H8B	0.2896	0.0866	0.1904	0.018*
C9	0.1300 (2)	0.37854 (18)	0.02389 (14)	0.0144 (4)
H9A	0.0231	0.3814	0.0053	0.017*
H9B	0.1886	0.4258	-0.0206	0.017*
C10	0.2097 (2)	0.3026 (2)	-0.20119 (15)	0.0201 (5)
H10A	0.1715	0.3795	-0.1728	0.030*
H10B	0.1711	0.2975	-0.2640	0.030*
H10C	0.3188	0.3057	-0.2003	0.030*
C11	0.6535 (2)	0.1234 (2)	-0.03142 (15)	0.0215 (5)
H11A	0.7066	0.0734	0.0155	0.032*
H11B	0.7223	0.1469	-0.0786	0.032*
H11C	0.5716	0.0728	-0.0583	0.032*

Atomic displacement parameters (A^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0177 (3)	0.0144 (3)	0.0126 (3)	-0.0015 (2)	0.0004 (2)	-0.0005 (2)
S2	0.0119 (2)	0.0140 (3)	0.0175 (3)	-0.0014 (2)	0.0012 (2)	0.0022 (2)
O1	0.0132 (7)	0.0129 (7)	0.0119 (7)	0.0017 (6)	0.0005 (6)	-0.0006 (6)
O2	0.0142 (7)	0.0285 (9)	0.0179 (8)	-0.0048 (6)	-0.0022 (6)	0.0026 (7)
O3	0.0400 (9)	0.0201 (9)	0.0186 (9)	0.0031 (7)	0.0002 (7)	-0.0068 (7)
O4	0.0105 (7)	0.0148 (8)	0.0189 (8)	0.0027 (5)	0.0025 (6)	0.0048 (6)
O5	0.0169 (7)	0.0199 (8)	0.0242 (8)	-0.0022 (6)	-0.0016 (6)	0.0095 (7)
O6	0.0167 (7)	0.0224 (8)	0.0247 (9)	-0.0059 (6)	-0.0014 (6)	-0.0005 (7)
C1	0.0141 (9)	0.0114 (10)	0.0098 (10)	0.0018 (8)	-0.0004 (8)	-0.0024 (8)
C2	0.0112 (10)	0.0135 (11)	0.0177 (11)	-0.0001 (8)	0.0015 (8)	-0.0008 (9)
C3	0.0149 (10)	0.0177 (11)	0.0167 (11)	-0.0009 (9)	0.0035 (9)	0.0029 (9)
C4	0.0187 (10)	0.0205 (12)	0.0144 (11)	0.0037 (9)	0.0013 (9)	-0.0051 (9)
C5	0.0182 (10)	0.0114 (11)	0.0173 (11)	0.0027 (9)	-0.0025 (9)	-0.0015 (9)
C6	0.0174 (10)	0.0136 (11)	0.0151 (11)	-0.0028 (8)	-0.0019 (8)	-0.0010 (9)
C7	0.0086 (9)	0.0127 (11)	0.0154 (11)	0.0027 (8)	0.0006 (8)	0.0000 (8)
C8	0.0182 (10)	0.0144 (11)	0.0125 (11)	-0.0003 (9)	0.0004 (8)	0.0016 (9)
C9	0.0157 (10)	0.0107 (10)	0.0165 (11)	0.0028 (8)	-0.0022 (8)	0.0010 (9)
C10	0.0234 (11)	0.0223 (12)	0.0146 (11)	-0.0026 (9)	0.0015 (9)	0.0054 (9)
C11	0.0222 (11)	0.0187 (11)	0.0242 (12)	-0.0004 (9)	0.0068 (10)	0.0008 (10)

Geometric parameters (Å, °)

<u>S1—O3</u>	1.4219 (15)	C4—H4A	0.9700	
S1—O2	1.4307 (14)	C4—H4B	0.9700	
S101	1.5742 (14)	С5—С9	1.538 (3)	
S1-C10	1.751 (2)	C5—C6	1.542 (3)	
S2—O5	1.4251 (15)	С5—Н5	0.9800	
S2—O6	1.4264 (14)	C6—C7	1.532 (3)	
S2—O4	1.5878 (13)	C6—H6A	0.9700	
S2—C11	1.744 (2)	C6—H6B	0.9700	

01—C1	1.460 (2)	C7—C8	1.521 (3)
O4—C7	1.456 (2)	C8—H8A	0.9700
C1—C2	1.520 (3)	C8—H8B	0.9700
C1—C9	1.525 (3)	С9—Н9А	0.9700
C1—C7	1.597 (3)	С9—Н9В	0.9700
C2—C3	1.526 (3)	C10—H10A	0.9600
C2—H2A	0.9700	C10—H10B	0.9600
C2—H2B	0 9700	C10—H10C	0.9600
$C_3 - C_8$	1 532 (3)	C11—H11A	0.9600
$C_3 - C_4$	1 541 (3)	C11—H11B	0.9600
C3H3	0.9800		0.9600
C4—C5	1 542 (3)		0.9000
64-63	1.342 (3)		
O3—S1—O2	119.13 (9)	C4—C5—C6	110.43 (16)
O3—S1—O1	103.95 (8)	С9—С5—Н5	111.8
O2—S1—O1	109.80 (8)	С4—С5—Н5	111.8
O3—S1—C10	109.27 (10)	С6—С5—Н5	111.8
02 - 10	109 20 (9)	C7-C6-C5	99.07 (14)
01 - 10	109.20(9) 104.44(9)	C7—C6—H6A	112.0
05-52-06	117 89 (9)	C5-C6-H6A	112.0
05 - 52 - 04	110.96 (8)	C7—C6—H6B	112.0
06-52-04	108 40 (8)	C5-C6-H6B	112.0
05-52-011	110.46(10)	H_{6A} C_{6} H_{6B}	109.6
05 - 52 - 011	100.76(10)	04 $C7$ $C8$	109.0 108.17(15)
$04 \ S2 \ C11$	109.70(10) 07.43(0)	04 - C7 - C6	106.17(15)
04-32-011	97.43(9) 122.27(11)	04-07-00	110.30(13) 108.33(16)
$C_1 = 0_1 = 3_1$	123.37(11) 122.55(12)	$C_{0} = C_{1} = C_{0}$	108.33(10)
C_{-04-52}	123.33(12) 112.91(15)	C^{2}	114.40(13) 102.70(14)
01 - C1 - C2	112.81 (13)		103.79 (14)
01 - 01 - 09	117.32 (16)	C_{0}	104.95 (15)
$C_2 - C_1 - C_9$	108.87 (15)	C/-C8-C3	100.29 (15)
01-01-07	108.56 (14)	C/-C8-H8A	111.7
C2-C1-C7	104.36 (15)	C3—C8—H8A	111.7
C9—C1—C7	103.75 (15)	C7—C8—H8B	111.7
C1—C2—C3	100.43 (15)	C3—C8—H8B	111.7
C1—C2—H2A	111.7	H8A—C8—H8B	109.5
C3—C2—H2A	111.7	C1—C9—C5	99.66 (15)
C1—C2—H2B	111.7	С1—С9—Н9А	111.8
C3—C2—H2B	111.7	С5—С9—Н9А	111.8
H2A—C2—H2B	109.5	С1—С9—Н9В	111.8
C2—C3—C8	99.61 (15)	С5—С9—Н9В	111.8
C2—C3—C4	109.18 (17)	H9A—C9—H9B	109.6
C8—C3—C4	110.84 (16)	S1—C10—H10A	109.5
С2—С3—Н3	112.2	S1—C10—H10B	109.5
С8—С3—Н3	112.2	H10A—C10—H10B	109.5
С4—С3—Н3	112.2	S1—C10—H10C	109.5
C3—C4—C5	111.15 (16)	H10A—C10—H10C	109.5
C3—C4—H4A	109.4	H10B—C10—H10C	109.5
C5—C4—H4A	109.4	S2—C11—H11A	109.5

C3—C4—H4B	109.4	S2—C11—H11B	109.5
C5—C4—H4B	109.4	H11A—C11—H11B	109.5
H4A—C4—H4B	108.0	S2—C11—H11C	109.5
C9—C5—C4	110.63 (16)	H11A—C11—H11C	109.5
C9—C5—C6	99.70 (16)	H11B—C11—H11C	109.5