Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,2'-(4-Amino-4H-1,2,4-triazole-3,5-divl)diphenol

Sheng-Hui Chen, Gao-Yong Zhang and Jin-Feng Dong*

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China

Correspondence e-mail: whujfdong@yahoo.com.cn

Received 5 November 2009; accepted 28 December 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.041; wR factor = 0.112; data-to-parameter ratio = 6.6.

The structure of the title compound, C₁₄H₁₂N₄O₂, was determined as part of a project on the coordination chemistry of 1,2,4-triazole derivatives. In the crystal structure, one of the two benzene rings is almost coplanar with the five-membered triazole ring (mean deviation = 0.019 Å), whereas the second benzene ring is rotated by 51.973 (2)°. The two N-C-N-Ntorsion angles $[170.365(2) \text{ and } -170.942(3)^{\circ}]$ indicate that the amido group is slightly twisted away from the triazole plane. An intramolecular O-H···N hydrogen bond occurs. In the crystal structure, intermolecular N-H···O and O- $H \cdots N$ hydrogen bonding is found.

Related literature

For background information on the coordination chemistry of 1,2,4-triazole derivatives, see: Lavrenova et al. (1995).

Experimental

Crystal data

C14H12N4O2 V = 1234.2 (6) Å³ $M_r = 268.28$ Z = 4Orthorhombic, $P2_12_12_1$ Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$ a = 8.262 (2) Å T = 296 Kb = 9.384(3) Å c = 15.919 (4) Å $0.10 \times 0.10 \times 0.08 \; \mathrm{mm}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.980, T_{\max} = 0.992$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	H atoms treated by a mixture of
$wR(F^2) = 0.112$	independent and constrained
S = 1.10	refinement
1276 reflections	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
192 parameters	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

6343 measured reflections

 $R_{\rm int} = 0.043$

1276 independent reflections

1143 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} N4-H4A\cdots O1^{i}\\ O1-H1\cdots N1\\ O2-H2A\cdots N2^{ii} \end{array}$	0.95 (5)	2.39 (6)	3.153 (4)	136 (4)
	0.82	1.87	2.598 (3)	148
	0.82	1.91	2.705 (3)	162

Symmetry codes: (i) x + 1, y, z; (ii) $-x + 2, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the National Natural Science Foundation of China (grant No. 20573079) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2167).

References

Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Lavrenova, L. G., Yudina, N. G., Ikorskii, V. N., Varnek, V. A., Oglezneva, I. M. & Larionov, S. V. (1995). Polyhedron, 14, 1333-1337. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2010). E66, o330 [https://doi.org/10.1107/S1600536809055536]

2,2'-(4-Amino-4H-1,2,4-triazole-3,5-diyl)diphenol

Sheng-Hui Chen, Gao-Yong Zhang and Jin-Feng Dong

S1. Experimental

2-hydroxy-*N*-(2-hydroxybenzoyl)benzohydrazide and hydrazine monohydrate were purchased from Acros and used without further purification. 2-hydroxy-*N*-(2-hydroxybenzoyl)benzohydrazide (4.08 g, 0.15 mmol) and hydrazine monohydrate(7.27 ml, 0.15 mol) were transfered into a 50 ml round-bottom flask. The mixture was stirred and refluxed for 3 h. After cooling, the solution was poured into ice water and the resulting light pink precipitate was collected by filtration, and recrystallized from ethanol. colorless crystal, 1.812 g (46.6 %), ¹H NMR (DMSO, 400 MHz, p.p.m.): 11.27 (s, 2H), 8.0 (q, 2H), 7.4 (m, 2H), 7.0 (q, 4H), 6.14 (s, 2H). m.p = 532.3–533.2 K. Anal. Calcd for $C_{14}H_{12}O_2N_4$: C, 62.69; H, 4.48; N, 20.90%, Found: C, 62.58; H, 4.42; N, 20.83 %. GC—MS(m/z): 268 (*M*⁺), 249, 221, 207, 117, 91, 77, 51, 32.

S2. Refinement

All C-H H atoms were placed in geometrically idealized positions (methyl H atoms allowed to rotate but not to tip) and constrained to ride on their parent atoms with C—H distances in the range of 0.93–0.98 Å, and with $U_{iso}(H) = 1.2 \text{ U}_{eq}$ for aryl H atoms and 1.5 U_{eq} for the methyl H atoms. The O-H and N-H H atoms were located in difference map and were refined isotropic with varying coordinates. Because no strong anomalous scaterring atoms are present the absolute structure cannot be determined, Therefore, Friedel-opposites were merged in the refinement and the absolute structure was selected arbitrarily.

Figure 1

Crystal structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

2,2'-(4-Amino-4H-1,2,4-triazole-3,5-diyl)diphenol

Crystal data

C₁₄H₁₂N₄O₂ $M_r = 268.28$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 8.262 (2) Å b = 9.384 (3) Å c = 15.919 (4) Å V = 1234.2 (6) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.980, T_{\max} = 0.992$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H atoms treated by a mixture of independent
$wR(F^2) = 0.112$	and constrained refinement
S = 1.10	$w = 1/[\sigma^2(F_o^2) + (0.0693P)^2 + 0.078P]$
1276 reflections	where $P = (F_o^2 + 2F_c^2)/3$
192 parameters	$(\Delta/\sigma)_{\rm max} = 0.005$
0 restraints	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	$\Delta ho_{ m min} = -0.17 \ m e \ m \AA^{-3}$
direct methods	Extinction correction: SHELXL97 (Sheldrick,
Secondary atom site location: difference Fourier	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
map	Extinction coefficient: 0.011 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 560

 $\theta = 2.4 - 24.6^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$

Block, colorless

 $0.10 \times 0.10 \times 0.08$ mm

6343 measured reflections

 $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$

1276 independent reflections 1143 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.043$

 $h = -9 \longrightarrow 9$ $k = -9 \longrightarrow 11$

 $l = -18 \rightarrow 16$

 $D_{\rm x} = 1.444 {\rm Mg m^{-3}}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 2036 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.5404 (4)	0.5286 (4)	0.49447 (17)	0.0385 (7)
C2	0.4539 (4)	0.4330 (4)	0.54359 (19)	0.0449 (8)
H2	0.3416	0.4386	0.5450	0.054*

C3	0.5310 (4)	0.3309 (4)	0.5899 (2)	0.0457 (8)
H3	0.4711	0.2671	0.6220	0.055*
C4	0.6981 (4)	0.3225 (4)	0.5890 (2)	0.0479 (8)
H4	0.7509	0.2536	0.6208	0.057*
C5	0.7861 (4)	0.4166 (3)	0.5408 (2)	0.0442 (8)
Н5	0.8985	0.4103	0.5406	0.053*
C6	0.7108 (4)	0.5211 (3)	0.49212 (17)	0.0339 (7)
C7	0.7987 (4)	0.6149 (3)	0.43411 (18)	0.0339 (7)
C8	0.9790 (3)	0.7037 (3)	0.34798 (17)	0.0333 (7)
C9	1.1311 (3)	0.7234 (3)	0.30083 (17)	0.0345 (7)
C10	1.1826 (4)	0.8612 (3)	0.2823 (2)	0.0422 (8)
H10	1.1286	0.9388	0.3055	0.051*
C11	1.3126 (4)	0.8838 (4)	0.2298 (2)	0.0521 (9)
H11	1.3482	0.9759	0.2186	0.062*
C12	1.3895 (4)	0.7686 (4)	0.1941 (2)	0.0586 (10)
H12	1.4744	0.7837	0.1568	0.070*
C13	1.3427 (4)	0.6316 (4)	0.2127 (2)	0.0482 (9)
H13	1.3981	0.5550	0.1894	0.058*
C14	1.2130 (4)	0.6075 (3)	0.26611 (18)	0.0371 (7)
N1	0.7263 (3)	0.7099 (3)	0.38646 (15)	0.0388 (6)
N2	0.8404 (3)	0.7657 (3)	0.33109 (15)	0.0395 (6)
N3	0.9594 (3)	0.6108 (3)	0.41328 (15)	0.0335 (6)
N4	1.0844 (3)	0.5384 (4)	0.45696 (19)	0.0427 (7)
01	0.4530 (3)	0.6247 (3)	0.44960 (15)	0.0554 (7)
H1	0.5143	0.6734	0.4210	0.083*
O2	1.1615 (3)	0.4745 (2)	0.28606 (13)	0.0458 (6)
H2A	1.1785	0.4206	0.2465	0.069*
H4A	1.167 (7)	0.605 (5)	0.471 (3)	0.097 (16)*
H4B	1.131 (5)	0.486 (4)	0.419 (2)	0.059 (12)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0354 (17)	0.0409 (17)	0.0393 (15)	0.0028 (14)	-0.0007 (13)	-0.0023 (14)
C2	0.0329 (17)	0.052 (2)	0.0500 (17)	-0.0040 (15)	0.0028 (15)	0.0022 (16)
C3	0.0440 (19)	0.0430 (19)	0.0500 (18)	-0.0045 (16)	0.0092 (16)	0.0025 (15)
C4	0.0438 (18)	0.047 (2)	0.0531 (18)	0.0030 (16)	0.0074 (15)	0.0123 (16)
C5	0.0367 (17)	0.0430 (19)	0.0529 (18)	0.0052 (15)	0.0008 (14)	0.0087 (16)
C6	0.0321 (16)	0.0312 (16)	0.0385 (15)	-0.0029 (13)	0.0013 (12)	-0.0051 (13)
C7	0.0317 (15)	0.0291 (16)	0.0408 (15)	0.0000 (14)	0.0011 (12)	-0.0003 (13)
C8	0.0326 (15)	0.0280 (15)	0.0391 (14)	-0.0011 (13)	-0.0007 (12)	-0.0023 (13)
C9	0.0310 (15)	0.0344 (17)	0.0382 (15)	-0.0025 (13)	-0.0014 (12)	-0.0009 (13)
C10	0.0392 (17)	0.0343 (17)	0.0530 (18)	-0.0042 (14)	-0.0030 (15)	0.0003 (15)
C11	0.0391 (17)	0.046 (2)	0.071 (2)	-0.0101 (18)	-0.0009 (17)	0.0159 (18)
C12	0.0346 (18)	0.074 (3)	0.067 (2)	-0.0013 (19)	0.0118 (16)	0.013 (2)
C13	0.0326 (16)	0.057 (2)	0.0552 (19)	0.0087 (16)	0.0062 (15)	-0.0016 (18)
C14	0.0336 (15)	0.0377 (17)	0.0400 (15)	0.0003 (14)	-0.0047 (13)	0.0016 (14)
N1	0.0342 (13)	0.0348 (15)	0.0474 (13)	0.0007 (12)	0.0030 (11)	0.0056 (12)

N2	0.0368 (14)	0.0341 (14)	0.0477 (14)	0.0021 (11)	0.0044 (11)	0.0045 (12)
N3	0.0263 (12)	0.0335 (13)	0.0409 (12)	0.0003 (11)	0.0003 (10)	0.0009 (11)
N4	0.0313 (15)	0.0460 (17)	0.0507 (17)	0.0061 (13)	-0.0032 (12)	0.0065 (15)
01	0.0302 (12)	0.0693 (18)	0.0666 (15)	0.0058 (12)	0.0032 (11)	0.0211 (14)
O2	0.0577 (15)	0.0305 (12)	0.0493 (12)	-0.0016 (11)	0.0076 (11)	-0.0071 (10)

Geometric parameters (Å, °)

C1-01	1.358 (4)	C9—C10	1.393 (4)	
C1—C2	1.388 (4)	C9—C14	1.395 (4)	
C1—C6	1.410 (5)	C10—C11	1.377 (5)	
C2—C3	1.366 (5)	C10—H10	0.9300	
С2—Н2	0.9300	C11—C12	1.376 (5)	
C3—C4	1.383 (5)	C11—H11	0.9300	
С3—Н3	0.9300	C12—C13	1.375 (5)	
C4—C5	1.377 (5)	C12—H12	0.9300	
C4—H4	0.9300	C13—C14	1.386 (4)	
C5—C6	1.396 (4)	C13—H13	0.9300	
С5—Н5	0.9300	C14—O2	1.356 (4)	
С6—С7	1.468 (4)	N1—N2	1.393 (3)	
C7—N1	1.314 (4)	N3—N4	1.419 (3)	
C7—N3	1.368 (4)	N4—H4A	0.95 (5)	
C8—N2	1.312 (4)	N4—H4B	0.87 (4)	
C8—N3	1.366 (4)	O1—H1	0.8200	
С8—С9	1.475 (4)	O2—H2A	0.8200	
O1—C1—C2	116.8 (3)	C14—C9—C8	121.2 (3)	
01—C1—C6	123.4 (3)	C11—C10—C9	120.6 (3)	
C2—C1—C6	119.8 (3)	C11—C10—H10	119.7	
C3—C2—C1	121.1 (3)	C9—C10—H10	119.7	
С3—С2—Н2	119.4	C12—C11—C10	119.3 (3)	
С1—С2—Н2	119.4	C12—C11—H11	120.3	
C2—C3—C4	120.0 (3)	C10-C11-H11	120.3	
С2—С3—Н3	120.0	C13—C12—C11	121.0 (3)	
С4—С3—Н3	120.0	C13—C12—H12	119.5	
C5—C4—C3	119.8 (3)	C11—C12—H12	119.5	
С5—С4—Н4	120.1	C12—C13—C14	120.1 (3)	
C3—C4—H4	120.1	C12—C13—H13	119.9	
C4—C5—C6	121.6 (3)	C14—C13—H13	119.9	
C4—C5—H5	119.2	O2—C14—C13	122.4 (3)	
С6—С5—Н5	119.2	O2—C14—C9	118.2 (3)	
C5—C6—C1	117.7 (3)	C13—C14—C9	119.4 (3)	
C5—C6—C7	123.3 (3)	C7—N1—N2	108.2 (2)	
C1—C6—C7	118.7 (3)	C8—N2—N1	107.1 (2)	
N1—C7—N3	108.7 (2)	C8—N3—C7	106.4 (2)	
N1—C7—C6	123.0 (3)	C8—N3—N4	126.3 (2)	
N3—C7—C6	128.0 (3)	C7—N3—N4	126.9 (2)	
N2-C8-N3	109.6 (3)	N3—N4—H4A	109 (3)	

N2—C8—C9	125.7 (3)	N3—N4—H4B	105 (3)
N3—C8—C9	124.6 (3)	H4A—N4—H4B	103 (4)
C10—C9—C14	119.4 (3)	C1	109.5
С10—С9—С8	119.0 (3)	C14—O2—H2A	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N4—H4A····O1 ⁱ	0.95 (5)	2.39 (6)	3.153 (4)	136 (4)
O1—H1…N1	0.82	1.87	2.598 (3)	148
O2—H2A····N2 ⁱⁱ	0.82	1.91	2.705 (3)	162

Symmetry codes: (i) x+1, y, z; (ii) -x+2, y-1/2, -z+1/2.