

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Lithium samarium polyphosphate, LiSm(PO₃)₄

Dan Zhao,^a* Feifei Li,^a Wendan Cheng^b and Hao Zhang^b

^aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China, and ^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China Correspondence e-mail: iamzd@hpu.edu.cn

Received 19 October 2009; accepted 30 December 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (Sm–O) = 0.003 Å; R factor = 0.019; wR factor = 0.048; data-to-parameter ratio = 10.2.

The mixed-metal rare-earth polyphosphate $\text{LiSm}(\text{PO}_3)_4$ consists of a three-dimensional framework in which zigzag $[(\text{PO}_3)_n]^{n-}$ chains with a periodicity of four PO₄ tetrahedra are connected through Li⁺ and Sm³⁺ ions (both with 2. symmetry).

Related literature

For the structures, properties and applications of condensed alkaline metal–rare earth polyphosphates with the general formula $MLn(PO_3)_4$ (M = alkali metal, Ln = rare earth metal), see: Ferid *et al.* (1984); Ettis *et al.* (2003); Parreu *et al.* (2007); Zhu *et al.* (2007); Ben Zarkouna *et al.* (2007).

Experimental

Crystal data

$LiSm(PO_3)_4$	a = 16.379(2) A
$M_r = 473.17$	b = 7.0499 (9) Å
Monoclinic, C2/c	c = 9.6936 (12) Å

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 1997) $T_{\rm min} = 0.439, T_{\rm max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.019$ $wR(F^2) = 0.048$ S = 1.09854 reflections $\mu = 7.27 \text{ mm}^{-1}$ T = 298 K $0.20 \times 0.15 \times 0.05 \text{ mm}$

2405 measured reflections 854 independent reflections 843 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.023$

84 parameters $\Delta \rho_{\text{max}} = 1.02 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.71 \text{ e } \text{ Å}^{-3}$

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MG2086).

References

- Ben Zarkouna, E., Horchani-Naifer, K., Férid, M. & Driss, A. (2007). Acta Cryst. E63, i1-i2.
- Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ettis, H., Naïli, H. & Mhiri, T. (2003). Cryst. Growth Des. 3, 599-602.
- Ferid, M., Dogguy, M., Kbir-Ariguib, N. & Trabelsi, M. (1984). J. Solid State Chem. 53, 149–154.
 Parreu, I., Solé, R., Massons, J., Díaz, F. & Aguiló, M. (2007). Cryst. Growth
- Parreu, I., Sole, R., Massons, J., Diaz, F. & Aguilo, M. (2007). Crys. Des. 7, 557–563.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155.
- Zhu, J., Cheng, W.-D., Wu, D.-S., Zhang, H., Gong, Y.-J., Tong, H.-N. & Zhao, D. (2007). Eur. J. Inorg. Chem. pp. 285–290.

supporting information

Acta Cryst. (2010). E66, i3 [https://doi.org/10.1107/S1600536809055822]

Lithium samarium polyphosphate, LiSm(PO₃)₄

Dan Zhao, Feifei Li, Wendan Cheng and Hao Zhang

S1. Comment

Interest in alkali-metal rare-earth polyphosphates stems from their physical properties, such as high luminescence efficiency (Ettis *et al.*, 2003; Parreu *et al.*, 2007; Zhu *et al.*, 2007). The compound LiSm(PO₃)₄ has been reported but only unit cell parameters have been refined from powder X-ray diffraction data (Ferid *et al.*, 1984). The single-crystal structure determination performed here confirms that it is isotypic with LiLn(PO₃)₄ (Ln = Y, La, Nd, Eu, Gd, Tb, Dy, Er, Yb) (Ben Zarkouna *et al.*, 2007). The structure features two P sites (Fig. 1) centred within PO₄ tetrahedra, which share common corners (O2 or O6) to form infinite zigzag chains (PO₃)_nⁿ that are aligned parallel to the *b*-direction and are linked together by four-coordinate Li⁺ and eight-coordinate Sm³⁺ ions (Fig. 2).

S2. Experimental

Finely ground reagents Li_2CO_3 , Sm_2O_3 , and $NH_4H_2PO_4$ were mixed in a molar ratio of Li:Sm:P = 7:1:10, placed in a Pt crucible, and heated at 673 K for 4 h. The mixture was reground and heated at 1073 K for 20 h, cooled to 873 K at a rate of 4 K h⁻¹, and then quenched to room temperature. A few yellow prism-shaped crystals of the title compound were obtained.

S3. Refinement

The highest peak and the deepest hole in the difference electron density map are located 0.92 Å and 1.11 Å, respectively, from Sm1.

Figure 1

Part of the structure of $LiSm(PO_3)_4$ showing the labelling of all atoms. Displacement ellipsoids are drawn at the 50% probability level.

Projection of the structure of $LiSm(PO_3)_4$ down the *b* axis.

lithium samarium polyphosphate

Crystal data

LiSm(PO₃)₄ $M_r = 473.17$ Monoclinic, C2/c Hall symbol: -C 2yc a = 16.379 (2) Å b = 7.0499 (9) Å c = 9.6936 (12) Å $\beta = 126.138$ (2)° V = 903.96 (19) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 1997) $T_{\min} = 0.439, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.019$ $wR(F^2) = 0.048$ S = 1.09854 reflections F(000) = 884 $D_x = 3.477 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 487 reflections $\theta = 2.1-23.0^{\circ}$ $\mu = 7.27 \text{ mm}^{-1}$ T = 298 KPrism, yellow $0.20 \times 0.15 \times 0.05 \text{ mm}$

2405 measured reflections 854 independent reflections 843 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$ $\theta_{max} = 25.7^{\circ}, \ \theta_{min} = 3.1^{\circ}$ $h = -20 \rightarrow 19$ $k = -8 \rightarrow 8$ $l = -10 \rightarrow 11$

84 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0274P)^{2} + 6.0112P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.02 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\min} = -0.71 \text{ e } \text{\AA}^{-3}$ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/\sin(2\theta)]^{-1/4} Extinction coefficient: 0.0069 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Lil	0.5000	0.2975 (12)	0.7500	0.014 (2)	
Sm1	0.5000	0.20102 (3)	0.2500	0.00541 (15)	
P1	0.36163 (7)	0.55515 (13)	0.33744 (11)	0.0057 (2)	
P2	0.35188 (7)	0.15529 (14)	0.40335 (12)	0.0056 (2)	
01	0.3857 (2)	0.7182 (4)	0.4524 (4)	0.0117 (6)	
O2	0.3410 (2)	0.3787 (4)	0.4149 (3)	0.0094 (5)	
03	0.4267 (2)	0.0930 (4)	0.5830 (3)	0.0104 (5)	
O4	0.3705 (2)	0.1147 (4)	0.2737 (3)	0.0104 (5)	
05	0.43430 (19)	0.5038 (4)	0.2978 (3)	0.0094 (5)	
O6	0.25564 (19)	0.5836 (4)	0.1557 (3)	0.0091 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Li1	0.018 (5)	0.011 (5)	0.016 (5)	0.000	0.011 (5)	0.000
Sm1	0.00650 (19)	0.00499 (19)	0.00591 (19)	0.000	0.00431 (14)	0.000
P1	0.0060 (4)	0.0046 (4)	0.0068 (5)	0.0004 (3)	0.0040 (4)	0.0004 (3)
P2	0.0059 (4)	0.0053 (4)	0.0062 (5)	-0.0005 (3)	0.0040 (4)	0.0004 (4)
01	0.0130 (14)	0.0093 (14)	0.0112 (15)	-0.0007 (10)	0.0063 (13)	-0.0026 (10)
O2	0.0167 (13)	0.0052 (13)	0.0133 (13)	0.0000 (10)	0.0126 (12)	0.0009 (10)
O3	0.0108 (13)	0.0076 (12)	0.0094 (13)	0.0003 (10)	0.0041 (11)	0.0016 (10)
O4	0.0127 (13)	0.0110 (13)	0.0126 (13)	-0.0019 (11)	0.0102 (11)	-0.0026 (11)
05	0.0076 (12)	0.0107 (13)	0.0111 (13)	0.0012 (10)	0.0061 (11)	0.0021 (10)
06	0.0083 (12)	0.0125 (13)	0.0073 (12)	0.0027 (10)	0.0049 (11)	0.0012 (10)

Geometric parameters (Å, °)

Li1—O3	1.962 (7)	Sm1—O5 ^{iv}	2.553 (3)	
Li1—O3 ⁱ	1.962 (7)	P1—O1	1.483 (3)	
Li1—O5 ⁱⁱ	1.980 (7)	P1—O5	1.495 (3)	
Li1—O5 ⁱⁱⁱ	1.980 (7)	P1—O2	1.590 (3)	
Li1—P2	2.927 (3)	P1—O6	1.597 (3)	

supporting information

Li1—P2 ⁱ	2.927 (3)	P1—Li1 ⁱⁱⁱ	3.033 (3)
Li1—P1 ⁱⁱ	3.033 (3)	P2—O4	1.485 (3)
Li1—P1 ⁱⁱⁱ	3.033 (3)	P2—O3	1.487 (3)
Sm1—O4	2.345 (3)	P2—O6 ^{viii}	1.580 (3)
Sm1—O4 ^{iv}	2.345 (3)	P2—O2	1.596 (3)
Sm1—O1 ⁱⁱⁱ	2.405 (3)	O1—Sm1 ⁱⁱⁱ	2.405 (3)
$Sm1-O1^{v}$	2.405 (3)	O3—Sm1 ^{vii}	2.463 (3)
Sm1—O3 ^{vi}	2,463 (3)	05-Li1 ⁱⁱⁱ	1,980(7)
Sm1—O3 ^{vii}	2.463 (3)	$O6-P2^{ix}$	1.580(3)
Sm1-05	2,553 (3)	00 12	1.200 (2)
Shiri OS	2.555 (5)		
O3—Li1—O3 ⁱ	85.4 (4)	O3 ^{vi} —Sm1—O3 ^{vii}	65.38 (12)
Q3—Li1—Q5 ⁱⁱ	124.08 (11)	O4—Sm1—O5	72.34 (9)
O3 ⁱ —Li1—O5 ⁱⁱ	118.63 (11)	O4 ^{iv} —Sm1—O5	137.49 (9)
Q3—Li1—Q5 ⁱⁱⁱ	118.63 (11)	$O1^{iii}$ —Sm1—O5	72.38 (9)
$O3^{i}$ —Li1—O5 ⁱⁱⁱ	124.08 (11)	$O1^{v}$ —Sm1—O5	84.63 (9)
05^{ii} —Li1— 05^{iii}	90.0 (4)	$O3^{vi}$ Sm1 $O5$	136 79 (8)
$O_3 - I_1 - P_2$	27 29 (8)	$O3^{\text{vii}}$ Sm1-O5	132 74 (9)
$O3^{i}$ _I i1_P2	1127(3)	04 —Sm1— 05^{iv}	132.71(9) 137.49(9)
$O5^{ii}$ _Li1_P2	112.7(5) 108 29 (11)	Ω_{4}^{iv} Sm1 Ω_{5}^{iv}	72 34 (9)
O_{5}^{iii} I i1P2	99.83 (10)	0^{1ii} Sm1-05	84 63 (9)
$O_3 I_1 P_2^i$	112.7(3)	$O1^{v}$ Sm1 $O5^{iv}$	72.38(0)
O_3^i Li1 P2 ⁱ	112.7(3) 27.29(8)	O_{3}^{vi} Sm1 O_{5}^{iv}	72.38(9) 132 74 (9)
O_{5i} I_{i1} P_{2i}	27.29(0)	$O3^{vii}$ Sm1 $O5^{iv}$	132.74(9) 136.70(8)
$O_{5} = L_{11} = L_{2}$	108 20 (11)	05 - 5m1 - 05	130.79(8)
$D_2 = L_1 = D_2^i$	100.29(11) 120.0(2)	04 Sm1 L 1^{11}	74.07(12)
12 11 12 12 11 11	139.9(3) 106.74(11)	O4— $Simi$ — Lii	74.97(7)
O_{2i} I_{i1} P_{1i}	100.74(11) 102.42(10)	O4 = Sint = Lit	74.97(7)
$O_5 = L_1 = F_1$	102.43(10)	O1 - Sin1 - L11	103.71(0) 102.71(6)
O_{3} L_{11} P_{1}	23.02(8)	$O1^{-}$ Sin1 $-$ Li1 ^{vii}	105.71(0)
$D_2 = L_1 = P_1^{"}$	114.9(5)	O_{2} m S_{m-1} L_{11} m	32.09 (0) 32 (0 (()
P2—L11—P1"	100.84(3)	$O_5 = Sm1 = L11^{11}$	32.09 (0) 14(74 (()
$P2 - L11 - P1^{22}$	92.07 (5)	O_{3} SIII — LII ¹	140.74(0)
O_{2i} L_{1i} P_{1ii}	102.43(10)	$O_{3} = S_{1} = L_{1} = L_{1}$	140.74 (0)
$O_3 - L_1 - P_1 $	106.74 (11)	O4—Sm1—L11 ^{III}	105.03 (7)
05"—L11—P1"	114.9 (3)	$O4^{"}$ —Sm1—L11 ^{""}	105.03 (7)
$O5^{m}$ —L11—P1 ^m	25.02 (8)	$OI_{m} = SmI = LII_{m}$	76.29 (6)
P2—L11—P1 ^m	92.67 (3)	OI^{\vee} SmI — LiI ^{III}	/6.29 (6)
$P2^{-}-L1I-PI^{-}$	100.84 (3)	03^{m} Sm1—L11 ^m	147.31 (6)
	139.9 (3)	03^{vm} Sm1—L11 ^m	14/.31 (6)
O_3 —L11—Sm1 ^{vii}	42.70 (19)	O5—Sm1—L11 ^m	33.26 (6)
O_3^{I} L11 Sm1 V_1	42.70 (19)	$O5^{W}$ Sm1—L11 ^M	33.26 (6)
$U5^{\mu}$ —L11—Sml ^{vn}	135.01 (19)	L_{11}^{vn} Sm1— L_{11}^{vn}	180.000 (1)
$U5^{m}$ —L1l—Sml ^{vn}	135.01 (19)	01—P1—05	118.76 (17)
$P2-L1I-Sml^{vn}$	69.97 (16)	01—P1—02	106.74 (15)
$P2^4$ —L11—Sm1 ^{vn}	69.97 (16)	O5—P1—O2	110.85 (15)
$P1^n$ —L11—Sm1 ^{vn}	110.03 (16)	01—P1—06	111.48 (16)
$P1^{m}$ —Li1—Sm1 ^{vn}	110.03 (16)	O5—P1—O6	105.01 (14)
O3—Li1—Sm1 ⁱⁱⁱ	137.30 (19)	O2—P1—O6	102.92 (15)

O3 ⁱ —Li1—Sm1 ⁱⁱⁱ	137.30 (19)	O1—P1—Li1 ⁱⁱⁱ	91.88 (18)
O5 ⁱⁱ —Li1—Sm1 ⁱⁱⁱ	44.99 (19)	O2—P1—Li1 ⁱⁱⁱ	143.38 (18)
O5 ⁱⁱⁱ —Li1—Sm1 ⁱⁱⁱ	44.99 (19)	O6—P1—Li1 ⁱⁱⁱ	98.86 (11)
P2—Li1—Sm1 ⁱⁱⁱ	110.03 (16)	O4—P2—O3	119.71 (16)
P2 ⁱ —Li1—Sm1 ⁱⁱⁱ	110.03 (16)	O4—P2—O6 ^{viii}	111.89 (15)
P1 ⁱⁱ —Li1—Sm1 ⁱⁱⁱ	69.97 (16)	O3—P2—O6 ^{viii}	107.63 (15)
P1 ⁱⁱⁱ —Li1—Sm1 ⁱⁱⁱ	69.97 (16)	O4—P2—O2	109.68 (15)
Sm1 ^{vii} —Li1—Sm1 ⁱⁱⁱ	180.0	O3—P2—O2	104.96 (15)
$O4$ — $Sm1$ — $O4^{iv}$	149.93 (13)	O6 ^{viii} —P2—O2	101.19 (15)
O4—Sm1—O1 ⁱⁱⁱ	93.04 (10)	O4—P2—Li1	126.36 (11)
O4 ^{iv} —Sm1—O1 ⁱⁱⁱ	94.01 (10)	O6 ^{viii} —P2—Li1	121.18 (11)
$O4$ — $Sm1$ — $O1^{v}$	94.01 (10)	O2—P2—Li1	68.45 (19)
$O4^{iv}$ —Sm1—O1 ^v	93.04 (10)	P1—O1—Sm1 ⁱⁱⁱ	139.38 (17)
$O1^{iii}$ — $Sm1$ — $O1^{v}$	152.59 (13)	P1—O2—P2	132.45 (17)
O4—Sm1—O3 ^{vi}	74.20 (9)	P2—O3—Li1	115.5 (2)
$O4^{iv}$ — $Sm1$ — $O3^{vi}$	80.54 (9)	P2—O3—Sm1 ^{vii}	139.82 (16)
$O1^{iii}$ — $Sm1$ — $O3^{vi}$	136.12 (9)	Li1—O3—Sm1 ^{vii}	104.6 (2)
O1 ^v —Sm1—O3 ^{vi}	71.22 (9)	P2—O4—Sm1	132.98 (16)
O4—Sm1—O3 ^{vii}	80.54 (9)	P1—O5—Li1 ⁱⁱⁱ	120.9 (2)
O4 ^{iv} —Sm1—O3 ^{vii}	74.20 (9)	P1	137.19 (16)
O1 ⁱⁱⁱ —Sm1—O3 ^{vii}	71.22 (9)	Li1 ⁱⁱⁱ —O5—Sm1	101.8 (2)
O1 ^v —Sm1—O3 ^{vii}	136.12 (9)	P2 ^{ix} —O6—P1	133.96 (18)

Symmetry codes: (i) -*x*+1, *y*, -*z*+3/2; (ii) *x*, -*y*+1, *z*+1/2; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) -*x*+1, *y*, -*z*+1/2; (v) *x*, -*y*+1, *z*-1/2; (vi) *x*, -*y*, *z*-1/2; (vii) -*x*+1, -*y*, -*z*+1; (viii) -*x*+1/2, *y*-1/2, -*z*+1/2; (ix) -*x*+1/2, *y*+1/2, -*z*+1/2.