

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

cis-N-(2-Hydroxycyclohexyl)-p-toluenesulfonamide

Mohamed I. Fadlalla, Holger B. Friedrich, Glenn E. M. Maguire and Muhammad D. Bala*

School of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa Correspondence e-mail: bala@ukzn.ac.za

Received 26 November 2009; accepted 18 January 2010

Key indicators: single-crystal X-ray study: T = 173 K: mean σ (C–C) = 0.002 Å: R factor = 0.036; wR factor = 0.111; data-to-parameter ratio = 18.7.

There are two symmetry-independent molecules in the asymmetric unit of the title compound, C₁₃H₁₉NO₃S. The cyclohexane rings in the two molecules adopt chair configurations. The hydroxy and amino groups on the cyclohexane ring assume axial and equatorial orientations, respectively, with respect to the plane of the ring. The crystal structure is stabilized by two intermolecular $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds from the two symmetry-independent molecules.

Related literature

For related structures of β -amino alcohols, see: Bergmeier (2000); Krzemiński & Wojtczak (2005). For related structures of tosylamino compounds, see: Coote et al. (2008); Liu et al. (2005); Chinnakali et al. (2007); Nan & Xing (2006). For the synthesis of the title compound, see: Naiker et al. (2008).

Experimental

Crystal data C13H19NO3S

 $M_r = 269.35$

•	
organic	compounds
organic	compoands

Triclinic, $P\overline{1}$	V = 1327.75 (4) Å ³
a = 6.3031 (1) Å	Z = 4
b = 12.8355 (2) Å	Mo $K\alpha$ radiation
c = 17.5367 (3) Å	$\mu = 0.24 \text{ mm}^{-1}$
$\alpha = 106.645 \ (1)^{\circ}$	T = 173 K
$\beta = 93.971 (1)^{\circ}$	$0.51 \times 0.31 \times 0.25 \text{ mm}$
$\gamma = 100.047 \ (1)^{\circ}$	
Data collection	
Bruker APEXII CCD	6423 independent reflections
diffractometer	4837 reflections with $I > 2\sigma(I)$
18458 measured reflections	$R_{\rm int} = 0.033$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	H atoms treated by a mixture of
$wR(F^2) = 0.111$	independent and constrained
S = 1.07	refinement
6423 reflections	$\Delta \rho_{\rm max} = 0.40 \text{ e } \text{\AA}^{-3}$
343 parameters	$\Delta \rho_{\rm min} = -0.41 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1N\cdots O6^{i}$	0.83 (2)	2.00 (2)	2.8255 (17)	175.0 (18)
$N2-H2N\cdots O3^{ii}$	0.82(2)	2.00(2)	2.8155 (18)	173.1 (19)
O3−H3O···O5 ⁱⁱⁱ	0.83(2)	1.93 (2)	2.7489 (15)	171 (2)
$O6-H6O\cdots O2^{iv}$	0.83 (2)	1.98 (2)	2.8001 (15)	169 (2)

Symmetry codes: (i) x - 1, y - 1, z; (ii) x + 1, y + 1, z; (iii) x, y - 1, z; (iv) x, y + 1, z.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

We wish to thank Dr Manuel Fernandes (University of the Witwatersrand) for the data collection, and the NRF, THRIP and the University of KwaZulu-Natal for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2131).

References

Bergmeier, S. (2000). Tetrahedron, 56, 2561-2576.

Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chinnakali, K., Poornachandran, M., Raghunathan, R. & Fun, H.-K. (2007). Acta Cryst. E63, o1030-o1031.

Coote, S. C., O'Brien, P. & Whitwood, A. C. (2008). Org. Biomol. Chem. 6, 4299-4314.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Krzemiński, M. P. & Wojtczak, A. (2005). Tetrahedron Lett. 46, 8299-8302.

Liu, Z., Fan, Y., Li, R., Zhou, B. & Wu, L. (2005). Tetrahedron Lett. 46, 1023-1025.

Naiker, T., Datye, A. & Friedrich, H. B. (2008). Appl. Catal. A, 350, 96-102. Nan, Z.-H. & Xing, J.-D. (2006). Acta Cryst. E62, o1978-o1979.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2010). E66, o463 [https://doi.org/10.1107/S1600536810002151] *cis-N-(2-Hydroxycyclohexyl)-p-toluenesulfonamide*

Mohamed I. Fadlalla, Holger B. Friedrich, Glenn E. M. Maguire and Muhammad D. Bala

S1. Comment

Molecules containing a β -amino alcohol system have been used as precursors for the synthesis of chiral ligands, aziridine and biologically active compounds (Bergmeier, 2000; Krzemiński & Wojtczak, 2005). As a part of study on this family of compounds, we report the crystal structure of the title compound (l) (Fig. 1).

The geometry of the benzenesulfonamide unit in (I) agrees with that for related structures (Chinnakali *et al.* 2007; Nan & Xing, 2006). The cyclohexane rings in the two molecules adopt the chair configuration. The hydroxy and amino groups on the cyclohexane ring respectively assume axial and equatorial orientations with respect to the plane of the ring. The crystal packing (Fig. 2) is stabilized by intermolecular N—H…O and O—H…O hydrogen bonds from the two neighbouring symmetry-independent molecules (Table 1).

S2. Experimental

The synthesis of the title compound was carried out using a modified literature method (Naiker *et al.* 2008) using a catalytic process. To a nitrogen saturated Schlenk tube, toluene (6 ml), water (172 μ l) chloroamine-T (0.21 g, 0.956 mmol), cyclohexene (0.478 mmol) and catalyst (0.03 g) were added in that order. After the complete conversion of the starting material the catalyst was gravity filtered. The reaction mixture was washed with 15 ml of sodium sulfite (1 g in 15 ml of de-ionized water), followed by 15 ml of ethyl acetate. Then the aqueous layer was separated from the organic layer and washed further with 3 × 15 ml of ethyl acetate. The solvent was removed *in vacuo*, and the crude product was purified using preparative high pressure liquid chromatography to yield the title compound as a white solid. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in aceto-nitrile/water (1:1 v/v) at room temperature. (mp; 414–416 K) Spectroscopic analysis: ¹³C NMR (400 MHz, CDCl₃, δ , p.p.m): = 19.76 (s, 1 C), 21.54 (s, 2 C), 27.98 (s, 1 C), 31.46(s, 1 C), 55.10 (s, 1 C), 68.76 (s, 1 C), 126.97 (s, 2 C), 129.74 (s, 2 C), 137.98(s, 1 C), 143.39 (s, 143.39).. MS m/z –[fragment]–(%): 291.8 (*M* + Na⁺) calculated = 291.8 for C₁₃H₁₉NO₃SNa⁺.

FT–IR (cm⁻¹): = 3414(*m*), (OH), 3137(*m*), (NH), 2938(w), 2849(w), 1598(*m*), (ar), 1059(*m*), (S=O).

S3. Refinement

All H-atoms were refined using a riding model, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic, C—H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for CH₂, C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃, N—H = 0.86 Å and $U_{iso}(H) = 1.2U_{eq}(N)$ for NH, and O—H = 0.82 Å and $U_{iso}(H) = 1.5U_{eq}(O)$ for OH.

Figure 1

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50 % probability level. H atoms are presented as a small spheres of arbitrary radius.

Figure 2

N—H···O and O—H···O hydrogen bonding interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) x - 1, y - 1, z; (ii) x + 1, y + 1, z; (iii) x, y - 1, z; (iv) x, y + 1, z; (v) x + 1, y + 1, z; (vi) x - 1, y - 1, z; (vii) x, y + 1, z; (viii) x, y - 1, z.]

cis-N-(2-Hydroxycyclohexyl)-p-toluenesulfonamide cis-2-Tosylaminocyclohexanol

Crystal data

Z = 4
F(000) = 576
$D_{\rm x} = 1.347 {\rm ~Mg} {\rm ~m}^{-3}$
Melting point = $414-416$ K
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 6946 reflections
$\theta = 2.4 - 28.3^{\circ}$
$\mu = 0.24 \text{ mm}^{-1}$
T = 173 K
Block, colourless
$0.51 \times 0.31 \times 0.25 \text{ mm}$

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans 18458 measured reflections 6423 independent reflections	4837 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 28.0^{\circ}, \ \theta_{min} = 1.2^{\circ}$ $h = -8 \rightarrow 8$ $k = -16 \rightarrow 16$ $l = -23 \rightarrow 23$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.111$ S = 1.07 6423 reflections 343 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0582P)^2 + 0.0739P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.40$ e Å ⁻³ $\Delta\rho_{min} = -0.41$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.3149 (2)	0.39725 (12)	0.35318 (8)	0.0230 (3)	
H1	0.4155	0.4675	0.3860	0.028*	
C2	0.4327 (2)	0.30139 (12)	0.34741 (9)	0.0227 (3)	
H2	0.5706	0.3156	0.3236	0.027*	
C3	0.4842 (3)	0.28788 (14)	0.42986 (9)	0.0303 (4)	
H3A	0.5896	0.3543	0.4639	0.036*	
H3B	0.5522	0.2225	0.4240	0.036*	
C4	0.2795 (3)	0.27272 (15)	0.47095 (10)	0.0344 (4)	
H4A	0.1800	0.2022	0.4399	0.041*	
H4B	0.3195	0.2684	0.5254	0.041*	
C5	0.1644 (3)	0.36911 (14)	0.47692 (9)	0.0337 (4)	
H5A	0.2583	0.4384	0.5127	0.040*	
H5B	0.0285	0.3557	0.5009	0.040*	
C6	0.1107 (3)	0.38351 (13)	0.39456 (9)	0.0266 (3)	
H6A	0.0034	0.3178	0.3607	0.032*	
H6B	0.0449	0.4497	0.4010	0.032*	
C7	0.3445 (2)	0.63056 (12)	0.29981 (8)	0.0212 (3)	

C8	0.5061 (2)	0.72537 (12)	0.31511 (9)	0.0238 (3)
H8	0.6421	0.7204	0.2956	0.029*
C9	0.4672 (3)	0.82718 (12)	0.35906 (9)	0.0282 (3)
Н9	0.5775	0.8920	0.3693	0.034*
C10	0.2692 (3)	0.83612 (13)	0.38840 (9)	0.0290 (4)
C11	0.1103 (3)	0.74045 (14)	0.37164 (10)	0.0310 (4)
H11	-0.0257	0.7454	0.3911	0.037*
C12	0.1439(3)	0.63787 (13)	0.32735 (9)	0.0284(3)
H12	0.0320	0.5735	0.3159	0.034*
C13	0.2270(4)	0.94682 (16)	0.43611(11)	0.0459(5)
H13A	0.0900	0.9582	0.4130	0.069*
H13R	0.3460	1.0061	0.4345	0.069*
H13C	0.2173	0.9480	0.4919	0.069*
N1	0.2175 0.2596 (2)	0.9400	0.77298 (8)	0.009
01	0.2390(2)	0.40722(10) 0.48034(0)	0.15070 (6)	0.0243(3)
01	0.50004(19) 0.62170(17)	0.48034(9) 0.50634(0)	0.13979(0) 0.26023(7)	0.0319(3)
02	0.021/9(17) 0.20042(18)	0.30034(9)	0.20023(7)	0.0322(3)
03	0.29042 (18)	0.20373(9)	0.29312(0)	0.0202(2)
SI	0.39239 (6)	0.50145(3)	0.24179(2)	0.02302 (10)
HIN	0.134 (3)	0.3817(15)	0.2496 (11)	0.039 (5)*
H3O	0.364 (3)	0.1556 (18)	0.2813 (12)	0.050 (6)*
C14	0.7984 (3)	1.13220 (12)	0.14293 (9)	0.0260 (3)
H14	0.6960	1.0621	0.1109	0.031*
C15	0.6821 (2)	1.22875 (12)	0.14932 (8)	0.0221 (3)
H15	0.5435	1.2142	0.1726	0.026*
C16	0.6321 (3)	1.24306 (13)	0.06696 (9)	0.0275 (3)
H16A	0.5649	1.3087	0.0729	0.033*
H16B	0.5267	1.1769	0.0325	0.033*
C17	0.8384 (3)	1.25814 (14)	0.02681 (9)	0.0311 (4)
H17A	0.8013	1.2657	-0.0269	0.037*
H17B	0.9405	1.3268	0.0594	0.037*
C18	0.9460 (3)	1.15881 (15)	0.01851 (10)	0.0382 (4)
H18A	1.0803	1.1699	-0.0068	0.046*
H18B	0.8468	1.0909	-0.0167	0.046*
C19	1.0017 (3)	1.14389 (14)	0.10043 (10)	0.0322 (4)
H19A	1.1115	1.2088	0.1339	0.039*
H19B	1.0647	1.0768	0.0934	0.039*
C20	0.7614 (2)	0.89890 (11)	0.20252 (8)	0.0214 (3)
C21	0.5911 (3)	0.82342 (12)	0.15054 (9)	0.0253 (3)
H21	0.4570	0.8445	0.1409	0.030*
C22	0.6186 (3)	0.71642 (13)	0.11252 (9)	0.0290(3)
H22	0 5021	0.6643	0.0769	0.035*
C23	0.8145(3)	0.68457(12)	0.12593 (9)	0.0276(3)
C24	0.9834(3)	0.76236(13)	0.12751(9)	0.0276(3)
H24	1 1182	0.7418	0.1867	0.033*
C25	0.9594(3)	0.86956 (13)	0 21587 (9)	0.0260 (3)
H25	1 0767	0.9221	0.2508	0.0200 (3)
C26	0.8384(3)	0.5221 0.56743 (14)	0.08535 (11)	0.031 0.0414 (4)
U20 H26A	0.0304 (3)	0.5151	0.00333 (11)	0.0414 (7)
11201	0.7230	0.0101	0.0270	0.002

H26B	0.9802	0.5569	0.1048	0.062*	
H26C	0.8275	0.5541	0.0272	0.062*	
N2	0.8567 (2)	1.12308 (11)	0.22299 (8)	0.0285 (3)	
O4	0.81390 (19)	1.05591 (9)	0.33850 (6)	0.0326 (3)	
05	0.49416 (18)	1.02921 (9)	0.23866 (7)	0.0345 (3)	
O6	0.82296 (18)	1.32622 (9)	0.20231 (6)	0.0246 (2)	
S2	0.72262 (6)	1.03181 (3)	0.25663 (2)	0.02444 (11)	
H2N	0.981 (3)	1.1520 (16)	0.2453 (11)	0.040 (6)*	
H6O	0.751 (4)	1.3754 (19)	0.2141 (13)	0.061 (7)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	<i>U</i> ²³
C1	0.0245 (8)	0.0189 (7)	0.0237 (7)	0.0036 (6)	-0.0012 (6)	0.0050 (6)
C2	0.0177 (7)	0.0233 (7)	0.0270 (8)	0.0037 (6)	0.0014 (6)	0.0080 (6)
C3	0.0286 (9)	0.0345 (9)	0.0307 (8)	0.0111 (7)	-0.0005 (7)	0.0128 (7)
C4	0.0389 (10)	0.0442 (10)	0.0277 (8)	0.0158 (8)	0.0068 (7)	0.0177 (7)
C5	0.0375 (10)	0.0382 (9)	0.0257 (8)	0.0127 (8)	0.0057 (7)	0.0068 (7)
C6	0.0293 (9)	0.0256 (8)	0.0260 (8)	0.0117 (7)	0.0049 (6)	0.0054 (6)
C7	0.0221 (8)	0.0212 (7)	0.0237 (7)	0.0071 (6)	0.0046 (6)	0.0099 (6)
C8	0.0237 (8)	0.0256 (8)	0.0240 (7)	0.0051 (6)	0.0049 (6)	0.0099 (6)
C9	0.0337 (9)	0.0227 (8)	0.0275 (8)	0.0039 (7)	0.0026 (7)	0.0080 (6)
C10	0.0394 (10)	0.0282 (8)	0.0226 (8)	0.0152 (7)	0.0027 (7)	0.0080 (6)
C11	0.0286 (9)	0.0383 (9)	0.0344 (9)	0.0170 (7)	0.0114 (7)	0.0164 (7)
C12	0.0235 (8)	0.0280 (8)	0.0382 (9)	0.0074 (6)	0.0069 (7)	0.0153 (7)
C13	0.0564 (13)	0.0389 (10)	0.0413 (11)	0.0240 (9)	0.0051 (9)	0.0021 (8)
N1	0.0210 (7)	0.0224 (6)	0.0285 (7)	-0.0005 (5)	-0.0031 (5)	0.0106 (5)
01	0.0401 (7)	0.0300 (6)	0.0254 (6)	0.0060 (5)	0.0061 (5)	0.0087 (5)
O2	0.0210 (6)	0.0244 (6)	0.0502 (7)	0.0075 (5)	0.0079 (5)	0.0073 (5)
O3	0.0234 (6)	0.0204 (5)	0.0322 (6)	0.0070 (5)	0.0023 (5)	0.0026 (4)
S 1	0.0216 (2)	0.01999 (19)	0.0284 (2)	0.00532 (14)	0.00508 (15)	0.00776 (15)
C14	0.0291 (8)	0.0184 (7)	0.0274 (8)	0.0021 (6)	-0.0020 (6)	0.0051 (6)
C15	0.0173 (7)	0.0232 (7)	0.0245 (7)	0.0023 (6)	0.0009 (6)	0.0069 (6)
C16	0.0258 (8)	0.0306 (8)	0.0256 (8)	0.0063 (7)	-0.0013 (6)	0.0084 (6)
C17	0.0329 (9)	0.0383 (9)	0.0236 (8)	0.0084 (7)	0.0055 (6)	0.0106 (7)
C18	0.0422 (11)	0.0415 (10)	0.0282 (9)	0.0140 (8)	0.0095 (8)	0.0022 (7)
C19	0.0356 (10)	0.0278 (8)	0.0343 (9)	0.0167 (7)	0.0075 (7)	0.0045 (7)
C20	0.0232 (8)	0.0187 (7)	0.0243 (7)	0.0055 (6)	0.0056 (6)	0.0085 (6)
C21	0.0230 (8)	0.0252 (8)	0.0289 (8)	0.0071 (6)	0.0026 (6)	0.0090 (6)
C22	0.0328 (9)	0.0240 (8)	0.0274 (8)	0.0046 (7)	0.0011 (7)	0.0048 (6)
C23	0.0380 (9)	0.0250 (8)	0.0261 (8)	0.0130 (7)	0.0150 (7)	0.0112 (6)
C24	0.0256 (8)	0.0324 (8)	0.0333 (8)	0.0140 (7)	0.0107 (6)	0.0167 (7)
C25	0.0219 (8)	0.0279 (8)	0.0302 (8)	0.0050 (6)	0.0033 (6)	0.0119 (6)
C26	0.0559 (13)	0.0276 (9)	0.0450 (11)	0.0177 (8)	0.0194 (9)	0.0092 (8)
N2	0.0258 (8)	0.0223 (7)	0.0366 (8)	-0.0015 (6)	-0.0052 (6)	0.0133 (6)
O4	0.0412 (7)	0.0254 (6)	0.0288 (6)	0.0038 (5)	0.0057 (5)	0.0059 (5)
O5	0.0235 (6)	0.0230 (6)	0.0539 (8)	0.0081 (5)	0.0060 (5)	0.0047 (5)
06	0.0234 (6)	0.0209 (5)	0.0268 (6)	0.0066 (5)	0.0010 (4)	0.0023 (4)

<u>S2</u>	0.0242 (2)	0.01775 (18)	0.0308 (2)	0.00465 (15)	0.00403 (15)	0.00618 (15)		
Geom	Geometric parameters (Å, °)							
	N1	1.472 (2	2)	C14—N2	1.	4690 (19)		
C1—0	22	1.528 (2	2)	C14—C15	1.	528 (2)		
C1—0	C6	1.529 (2	2)	C14—C19	1.	532 (2)		
C1—I	H1	1.0000	,	C14—H14	1.	0000		
C2—(03	1.4325	(17)	C15—O6	1.	4316 (17)		
C2—0	23	1.525 (2	2)	C15—C16	1.	526 (2)		
C2—H	12	1.0000	,	С15—Н15	1.	0000		
С3—С	24	1.531 (2	2)	C16—C17	1.	530 (2)		
С3—Н	-I3A	0.9900	,	C16—H16A	0.	9900		
С3—Н	-13B	0.9900		C16—H16B	0.	9900		
C4—0	C5	1.522 (2	2)	C17—C18	1.	522 (2)		
C4—H	I4A	0.9900	·	C17—H17A	0.	9900		
C4—H	H4B	0.9900		C17—H17B	0.	9900		
С5—С	C6	1.530 (2	2)	C18—C19	1.	528 (2)		
С5—Н	45A	0.9900	·	C18—H18A	0.	9900		
С5—Н	45B	0.9900		C18—H18B	0.	9900		
C6—I	H6A	0.9900		C19—H19A	0.	9900		
C6—I	46B	0.9900		C19—H19B	0.	9900		
С7—С	C8	1.390 (2	2)	C20—C21	1.	385 (2)		
С7—С	C12	1.393 (2	2)	C20—C25	1.	389 (2)		
C7—5	51	1.7674	(14)	C20—S2	1.	7665 (14)		
C8—C	C9	1.387 (2	2)	C21—C22	1.	391 (2)		
C8—H	48	0.9500		C21—H21	0.	9500		
С9—С	C10	1.393 (2	2)	C22—C23	1.	392 (2)		
С9—Н	19	0.9500		С22—Н22	0.	9500		
C10-	-C11	1.386 (2	2)	C23—C24	1.	388 (2)		
C10-	-C13	1.507 (2	2)	C23—C26	1.	507 (2)		
C11-	-C12	1.384 (2	2)	C24—C25	1.	387 (2)		
C11-	-H11	0.9500		C24—H24	0.	9500		
C12—	-H12	0.9500		С25—Н25	0.	9500		
C13—	-H13A	0.9800		C26—H26A	0.	9800		
C13—	-H13B	0.9800		C26—H26B	0.	9800		
C13—	-H13C	0.9800		C26—H26C	0.	9800		
N1-5	51	1.5975	(13)	N2—S2	1.	5982 (13)		
N1—I	HIN	0.83 (2))	N2—H2N	0.	82 (2)		
01-5	51	1.4322	(11)	O4—S2	1.	4343 (12)		
02—5	51	1.4461	(11)	O5—S2	1.	4452 (12)		
O3—I	H3O	0.83 (2))	O6—H6O	0.	83 (2)		
N1—0	C1—C2	110.49	(11)	N2—C14—C15	11	10.28 (12)		
N1—0	C1—C6	110.35	(12)	N2-C14-C19	10	09.93 (13)		
C2—C	C1—C6	111.65	(12)	C15—C14—C19	1	12.15 (12)		
N10	С1—Н1	108.1		N2-C14-H14	10	08.1		
C2—C	С1—Н1	108.1		C15—C14—H14	10	08.1		

С6—С1—Н1	108.1	C19—C14—H14	108.1
O3—C2—C3	110.68 (12)	O6—C15—C16	110.75 (12)
O3—C2—C1	106.45 (11)	O6-C15-C14	107.06 (11)
C3—C2—C1	110.94 (12)	C16—C15—C14	110.71 (12)
O3—C2—H2	109.6	O6—C15—H15	109.4
С3—С2—Н2	109.6	C16—C15—H15	109.4
C1—C2—H2	109.6	C14—C15—H15	109.4
C2—C3—C4	111.59 (13)	C15—C16—C17	111.19 (13)
С2—С3—НЗА	109.3	C15—C16—H16A	109.4
C4—C3—H3A	109.3	C17—C16—H16A	109.4
C^2 — C^3 — H^3B	109.3	C15—C16—H16B	109.4
C4-C3-H3B	109.3	C17 - C16 - H16B	109.1
$H_{3}A = C_{3} = H_{3}B$	109.5	H_{16A} C_{16} H_{16B}	109.4
$C_5 C_4 C_3$	110.62(14)	C18 C17 C16	100.0
$C_{5} = C_{4} = C_{5}$	100.5	$C_{18} = C_{17} = C_{10}$	100.6
$C_3 = C_4 = H_4 \Lambda$	109.5	$C_{10} - C_{17} - H_{17A}$	109.0
$C_5 = C_4 = \Pi_4 \Lambda$	109.5	C_{10} C_{17} H_{17} H_{17}	109.0
C_{3} C_{4} H_{4} H_{4	109.5	C16—C17—H17B	109.6
$C_3 - C_4 - H_4 B$	109.5	C10-C17-H17B	109.6
H4A—C4—H4B	108.1	HI/A - CI/-HI/B	108.2
C4—C5—C6	111.54 (13)	C17 - C18 - C19	110.83 (13)
C4—C5—H5A	109.3	С17—С18—Н18А	109.5
C6—C5—H5A	109.3	C19—C18—H18A	109.5
C4—C5—H5B	109.3	C17—C18—H18B	109.5
С6—С5—Н5В	109.3	C19—C18—H18B	109.5
H5A—C5—H5B	108.0	H18A—C18—H18B	108.1
C1—C6—C5	110.98 (13)	C18—C19—C14	110.71 (14)
С1—С6—Н6А	109.4	C18—C19—H19A	109.5
С5—С6—Н6А	109.4	C14—C19—H19A	109.5
С1—С6—Н6В	109.4	C18—C19—H19B	109.5
С5—С6—Н6В	109.4	C14—C19—H19B	109.5
H6A—C6—H6B	108.0	H19A—C19—H19B	108.1
C8—C7—C12	120.34 (14)	C21—C20—C25	120.81 (14)
C8—C7—S1	119.33 (11)	C21—C20—S2	119.75 (11)
C12—C7—S1	120.29 (11)	C25—C20—S2	119.36 (11)
C9—C8—C7	119.46 (14)	C20—C21—C22	119.29 (14)
C9—C8—H8	120.3	C20—C21—H21	120.4
C7—C8—H8	120.3	$C_{22} = C_{21} = H_{21}$	120.4
C_{8} C_{9} C_{10}	121.16(15)	C_{21} C_{22} C_{23} C_{23}	120.1 120.93(15)
	119.4	$C_{21} = C_{22} = C_{23}$	110.5
C_{10} C_{9} H_{9}	110 /	C_{23} C_{22} H_{22}	119.5
$C_{10} = C_{9} = 119$	119.4	$C_{23} = C_{22} = C_{23} = C_{23}$	119.5 118 55 (14)
$C_{11} = C_{10} = C_{7}$	110.17(14) 120.60(16)	$C_{24} = C_{23} = C_{22}$	118.55(14)
$C_{11} = C_{10} = C_{13}$	120.09(10) 121.12(16)	$C_{24} = C_{23} = C_{20}$	121.00(13)
$C_{2} = C_{10} = C_{13}$	121.13(10) 121.02(15)	$C_{22} = C_{23} = C_{20}$	117.04 (10)
$C_{12} = C_{11} = U_{11}$	121.95 (15)	$C_{23} = C_{24} = C_{23}$	121.41 (14)
$C_{12} = C_{11} = H_{11}$	119.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119.5
	119.0	$C_{23} - C_{24} - H_{24}$	119.5
CII - CI2 - C/	118.92 (15)	C24—C25—C20	119.00 (14)
CII—CI2—HI2	120.5	C24—C25—H25	120.5

C7—C12—H12	120.5	C20—C25—H25	120.5
C10—C13—H13A	109.5	С23—С26—Н26А	109.5
C10—C13—H13B	109.5	C23—C26—H26B	109.5
H13A—C13—H13B	109.5	H26A—C26—H26B	109.5
C10—C13—H13C	109.5	С23—С26—Н26С	109.5
H13A—C13—H13C	109.5	H26A—C26—H26C	109.5
H13B—C13—H13C	109.5	H26B—C26—H26C	109.5
C1—N1—S1	122.50 (10)	C14—N2—S2	122.76 (11)
C1—N1—H1N	119.7 (13)	C14— $N2$ — $H2N$	117.8 (13)
S1—N1—H1N	113.8 (13)	S2—N2—H2N	116.7 (13)
C2-O3-H3O	107.3 (15)	C15—O6—H6O	107.3 (16)
01-\$1-02	118.31 (7)	04—\$2—05	119.25 (7)
01—S1—N1	107.26 (7)	04— <u>S2</u> —N2	106.51 (7)
02-81-N1	108.38 (7)	05—82—N2	107.95 (7)
$01 - 10^{-10}$	109.32(7)	04 - 82 - C20	108.22 (7)
02-81-C7	105.55(7)	05-82-C20	105.34(7)
N1 - S1 - C7	107.60(7)	$N_{2} = S_{2} = C_{2}0$	109.34(7)
	107.00 (7)		109.51 (7)
N1—C1—C2—O3	-57.65 (14)	N2-C14-C15-O6	56.00 (15)
C6—C1—C2—O3	65.57 (15)	C19—C14—C15—O6	-66.87 (15)
N1—C1—C2—C3	-178.14 (12)	N2-C14-C15-C16	176.81 (12)
C6—C1—C2—C3	-54.92 (16)	C19—C14—C15—C16	53.94 (16)
O3—C2—C3—C4	-62.41 (17)	O6—C15—C16—C17	62.91 (16)
C1—C2—C3—C4	55.53 (17)	C14—C15—C16—C17	-55.68 (16)
C2—C3—C4—C5	-56.05 (19)	C15—C16—C17—C18	58.13 (18)
C3—C4—C5—C6	55.88 (19)	C16—C17—C18—C19	-58.33 (19)
N1—C1—C6—C5	178.09 (12)	C17—C18—C19—C14	56.40 (19)
C2—C1—C6—C5	54.80 (16)	N2-C14-C19-C18	-177.42(13)
C4—C5—C6—C1	-55.44 (18)	C15—C14—C19—C18	-54.35 (17)
C12—C7—C8—C9	0.9 (2)	C25—C20—C21—C22	1.2 (2)
S1—C7—C8—C9	178.53 (11)	S2—C20—C21—C22	-175.50 (11)
C7—C8—C9—C10	0.2 (2)	C20—C21—C22—C23	-0.1 (2)
C8—C9—C10—C11	-0.8(2)	C21—C22—C23—C24	-0.7(2)
C8—C9—C10—C13	-179.95 (15)	C21—C22—C23—C26	178.69 (14)
C9—C10—C11—C12	0.2 (2)	C22—C23—C24—C25	0.6 (2)
C13—C10—C11—C12	179.39 (15)	C26—C23—C24—C25	-178.82 (14)
C10—C11—C12—C7	0.9 (2)	C23—C24—C25—C20	0.4 (2)
C8—C7—C12—C11	-1.5 (2)	C21—C20—C25—C24	-1.3 (2)
S1—C7—C12—C11	-179.05 (12)	S2-C20-C25-C24	175.38 (11)
C2-C1-N1-S1	-103.58 (13)	C15—C14—N2—S2	102.29 (14)
C6-C1-N1-S1	132.45 (12)	C19—C14—N2—S2	-133.55 (12)
C1—N1—S1—O1	175.08 (11)	C14—N2—S2—O4	-174.30(12)
C1—N1—S1—O2	46.28 (13)	C14—N2—S2—O5	-45.13 (14)
C1—N1—S1—C7	-67.40(13)	C14—N2—S2—C20	68.98 (14)
C8—C7—S1—O1	-95.15 (13)	C21—C20—S2—O4	134.13 (12)
C12—C7—S1—O1	82.45 (13)	C25—C20—S2—O4	-42.57(13)
C8—C7—S1—O2	33.11 (14)	C21—C20—S2—O5	5.55 (14)
C12—C7—S1—O2	-149.29 (12)	C25—C20—S2—O5	-171.15 (11)
	()		

C8—C7—S1—N1	148.68 (12)	C21—C20—S2—N2	-110.23 (12)
C12—C7—S1—N1	-33.72 (14)	C25—C20—S2—N2	73.07 (13)

Hydrogen-bond geometry (Å, °)

D—H	H···A	D··· A	D—H···A
0.83 (2)	2.00 (2)	2.8255 (17)	175.0 (18)
0.82 (2)	2.00 (2)	2.8155 (18)	173.1 (19)
0.83 (2)	1.93 (2)	2.7489 (15)	171 (2)
0.83 (2)	1.98 (2)	2.8001 (15)	169 (2)
	<i>D</i> —H 0.83 (2) 0.82 (2) 0.83 (2) 0.83 (2)	D—H H···A 0.83 (2) 2.00 (2) 0.82 (2) 2.00 (2) 0.83 (2) 1.93 (2) 0.83 (2) 1.98 (2)	D—H H···A D···A 0.83 (2) 2.00 (2) 2.8255 (17) 0.82 (2) 2.00 (2) 2.8155 (18) 0.83 (2) 1.93 (2) 2.7489 (15) 0.83 (2) 1.98 (2) 2.8001 (15)

Symmetry codes: (i) *x*-1, *y*-1, *z*; (ii) *x*+1, *y*+1, *z*; (iii) *x*, *y*-1, *z*; (iv) *x*, *y*+1, *z*.