organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(1-Carboxymethyl-1,4-anhydro-2,3-Oisopropylidene-*a*-D-erythrofuranosyl)thymine

G. M. J. Lenagh-Snow,^a S. F. Jenkinson,^a* A. J. Stewart,^b G. W. J. Fleet^a and D. J. Watkin^c

^aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, ^bIdenix Pharmaceuticals, Inc., 60 Hampshire Street, Cambridge, MA 02139, USA, and ^cDepartment of Chemical Crystallography, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England

Correspondence e-mail: sarah.jenkinson@chem.ox.ac.uk

Received 11 January 2010; accepted 13 January 2010

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.006 Å; R factor = 0.047; wR factor = 0.114; data-to-parameter ratio = 7.4.

X-Ray crystallography unequivocally determined the stereochemistry of the thymine base in the title compound, C14H18N2O7. The absolute stereochemistry was determined from the use of D-ribose as the starting material. There are two independent molecules in the asymmetric unit (Z' = 2) which exist as N-H···O hydrogen-bonded pairs in the crystal structure.

Related literature

The title compound was obtained during studies on the synthesis of the 5-carbon analogue of psicofuranine, a naturally occurring nucleoside. For related literature on psicofuranine, see: Schroeder & Hoeksema (1959); Smith et al. (1973); Garrett (1960). For anomeric bromination see: Probert et al. (2005); Smith et al. (1999). For the extiction correction, see: Larson (1970).

Experimental

Crystal data $C_{14}H_{18}N_2O_7$

 $M_r = 326.31$

Monoclinic, $P2_1$	
a = 7.8937 (5) Å	
b = 13.3471 (10) Å	
c = 14.9208 (10) Å	
$\beta = 103.565 \ (4)^{\circ}$	
V = 1528.17 (18) Å ³	

Data collection

Nonius KappaCCD diffractometer	9120 measured reflections
Absorption correction: multi-scan	3090 independent reflections
(DENZO/SCALEPACK;	2453 reflections with $I > 2\sigma(I)$
Otwinowski & Minor, 1997)	$R_{\rm int} = 0.065$
$T_{\min} = 0.83, T_{\max} = 1.00$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	1 restraint
$wR(F^2) = 0.114$	H-atom parameters constrained
S = 0.95	$\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$
3090 reflections	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$
416 parameters	

Z = 4

Mo $K\alpha$ radiation

 $0.40 \times 0.20 \times 0.03 \text{ mm}$

 $\mu = 0.12 \text{ mm}^{-1}$

T = 150 K

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N26—H261…O1	0.88	1.93	2.791 (6)	164
N3—H31…O24	0.88	2.01	2.863 (6)	165

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

We would like to thank the Chemical Crystallography department and ALT at Oxford University for use of the diffractometers.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2979).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Garrett, E. R. (1960). J. Am. Chem. Soc. 82, 827-832.
- Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Probert, M. R., Watkin, D. J., Stewart, A. J., Storer, R. & Fleet, G. W. J. (2005). Acta Cryst. E61, 01718-01720.
- Schroeder, W. & Hoeksema, H. (1959). J. Am. Chem. Soc. 81, 1767-1768.
- Smith, M. D., Long, D. D., Martín, A., Campbell, N., Blériot, Y. & Fleet, G. W. J. (1999). Synlett, 7, 1151-1154.
- Smith, C. G., Poutsiaka, J. W. & Schreiber, E. C. (1973). J. Int. Med. Res. 1, 489-503.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

Acta Cryst. (2010). E66, o404 [https://doi.org/10.1107/S1600536810001704]

1-(1-Carboxymethyl-1,4-anhydro-2,3-O-isopropylidene-α-D-erythrofuranosyl)thymine

G. M. J. Lenagh-Snow, S. F. Jenkinson, A. J. Stewart, G. W. J. Fleet and D. J. Watkin

S1. Comment

Nucleosides are a powerful class of anti-viral and anti-bacterial agents. Psicofuranine 1 (Fig. 1) is a naturally occurring nucleoside with a branch at the anomeric position of the sugar (Schroeder & Hoeksema, 1959). It has potent anti-bacterial and anti-tumour activity but is cardiotoxic in man (Smith *et al.*, 1973). Psicofuranine is also unstable in acidic and basic conditions with the *N*-glycosidic bond readily undergoing hydrolytic cleavage (Garrett, 1960). During studies on the synthesis of the 5-carbon analogue of psicofuranine 2 the ester 4 was synthesized. Anomeric radical bromination (Smith *et al.*, 1999) gave rise to a single isolable bromide 5 (Probert *et al.*, 2005) which on displacement with silylated thymine gave a single nucleoside product. The stereochemistry at the anomeric position of the sugar was firmly established by X-ray crystallography and the structure was confirmed as 6 in which the thymine is in the α rather than the desired β position.

There are two crystallographically distinct molecules in the asymmetric unit which are related by a pseudo 2-fold rotation axis (Fig 2). When the two molecules are mapped they show good overlap (Fig. 3) with RMS deviations of 0.1055 on the positions, 0.082 for the bonds and 3.8892 for the torsion angles. These two molecules form hydrogen bonded pairs in the crystal structure (Fig. 4, Fig. 5). In both cases the central nitrogen (N3, N26) between the two carbonyls of the thymine acts as the donor but hydrogen bonds are formed to different carbonyls of the two thymine rings. The absolute stereochemistry was determined from the use of D-ribose as the starting material. Only classical hydrogen bonding was considered.

S2. Experimental

The title compound was recrystallized by diffusion from a mixture of methanol and acetone: m.p. 457–458 K; $[a]_D^{25}$ -235.2 (*c*, 0.84 in CHCl₃).

S3. Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the use of D-ribose as the starting material.

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and U_{iso} (H) (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints.

Figure 2

The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Figure 3 Overlay of the two molecules in the asymmetric unit.

Figure 4

Hydrogen bonded dimer repeating unit. Hydrogen bonds are shown by dotted lines.

Figure 5

Packing diagram projected along the *a*-axis. Hydrogen bonds are shown by dotted lines.

1-(1-Carboxymethyl-1,4-anhydro-2,3-O-isopropylidene-α-D- erythrofuranosyl)thymine

Crystal data

 $C_{14}H_{18}N_2O_7$ F(000) = 688 $M_r = 326.31$ $D_{\rm x} = 1.418 \text{ Mg m}^{-3}$ Monoclinic, $P2_1$ Mo *K* α radiation, $\lambda = 0.71073$ Å Hall symbol: P 2yb Cell parameters from 2763 reflections $\theta = 5-26^{\circ}$ a = 7.8937 (5) Å $\mu = 0.12 \text{ mm}^{-1}$ *b* = 13.3471 (10) Å *c* = 14.9208 (10) Å T = 150 KPlate, colourless $\beta = 103.565 \ (4)^{\circ}$ V = 1528.17 (18) Å³ $0.40 \times 0.20 \times 0.03 \text{ mm}$ Z = 4Data collection Nonius KappaCCD 9120 measured reflections diffractometer 3090 independent reflections Graphite monochromator 2453 reflections with $I > 2\sigma(I)$ ω scans $R_{\rm int} = 0.065$ $\theta_{\text{max}} = 26.1^{\circ}, \ \theta_{\text{min}} = 5.2^{\circ}$ $h = -9 \rightarrow 9$ Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, $k = -14 \rightarrow 16$ 1997) $l = -18 \rightarrow 18$ $T_{\rm min} = 0.83, T_{\rm max} = 1.00$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	H-atom parameters constrained
$wR(F^2) = 0.114$	Method = Modified Sheldrick $w = 1/[\sigma^2(F^2) +$
S = 0.95	$(0.04P)^2 + 0.5P$],
3090 reflections	where $P = (\max(F_o^2, 0) + 2F_c^2)/3$
416 parameters	$(\Delta/\sigma)_{\rm max} = 0.000161$
1 restraint	$\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$
direct methods	Extinction correction: Larson (1970), Equation
	22
	Extinction coefficient: 590 (70)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.2931 (4)	0.3816 (2)	0.81712 (19)	0.0363	
C2	0.3274 (5)	0.3347 (3)	0.8903 (3)	0.0308	
N3	0.3044 (5)	0.3728 (3)	0.9715 (2)	0.0346	
C4	0.3343 (6)	0.3220 (3)	1.0559 (3)	0.0348	
05	0.3097 (4)	0.3655 (2)	1.1245 (2)	0.0414	
C6	0.3964 (5)	0.2203 (3)	1.0536 (3)	0.0336	
C7	0.4220 (5)	0.1836 (3)	0.9739 (3)	0.0321	
N8	0.3912 (4)	0.2388 (2)	0.8940 (2)	0.0290	
C9	0.4110 (5)	0.1982 (3)	0.8058 (3)	0.0292	
O10	0.5057 (4)	0.10739 (19)	0.82495 (18)	0.0320	
C11	0.4357 (5)	0.0365 (3)	0.7525 (3)	0.0348	
C12	0.2451 (5)	0.0597 (3)	0.7235 (3)	0.0343	
C13	0.2338 (5)	0.1728 (3)	0.7383 (3)	0.0320	
O14	0.0903 (4)	0.1860 (2)	0.7798 (2)	0.0374	
C15	0.0163 (5)	0.0881 (3)	0.7891 (3)	0.0356	
O16	0.1544 (4)	0.0203 (2)	0.7876 (2)	0.0362	
C17	-0.1363 (6)	0.0703 (3)	0.7081 (3)	0.0455	
C18	-0.0325 (6)	0.0826 (4)	0.8799 (3)	0.0469	
C19	0.5238 (5)	0.2679 (3)	0.7618 (3)	0.0324	
O20	0.5064 (4)	0.2774 (2)	0.6798 (2)	0.0417	
O21	0.6543 (4)	0.3076 (2)	0.8269 (2)	0.0380	
C22	0.7785 (6)	0.3686 (4)	0.7933 (3)	0.0443	
C23	0.4312 (7)	0.1600 (4)	1.1418 (3)	0.0465	
O24	0.2166 (4)	0.5799 (2)	0.93916 (19)	0.0374	
C25	0.1273 (5)	0.6136 (3)	0.8657 (3)	0.0313	
N26	0.0825 (5)	0.5521 (2)	0.7891 (2)	0.0323	
C27	-0.0261 (5)	0.5758 (3)	0.7053 (3)	0.0310	
O28	-0.0626 (4)	0.5168 (2)	0.64081 (19)	0.0375	
N29	-0.0943 (5)	0.6715 (2)	0.6997 (2)	0.0306	
C30	-0.0454 (5)	0.7396 (3)	0.7711 (3)	0.0326	
C31	0.0618 (5)	0.7156 (3)	0.8524 (3)	0.0305	
C32	0.1154 (7)	0.7889 (3)	0.9308 (3)	0.0461	
C33	-0.2093(5)	0.6978 (3)	0.6101 (3)	0.0305	

O34	-0.2864 (4)	0.7906 (2)	0.62183 (18)	0.0339
C35	-0.3007 (6)	0.8493 (3)	0.5385 (3)	0.0351
C36	-0.1471 (5)	0.8204 (3)	0.5013 (3)	0.0333
C37	-0.1111 (5)	0.7103 (3)	0.5318 (3)	0.0339
O38	0.0732 (4)	0.7037 (2)	0.5655 (2)	0.0364
C39	0.1460 (6)	0.7998 (3)	0.5517 (3)	0.0354
O40	0.0075 (4)	0.8694 (2)	0.5505 (2)	0.0368
C41	0.2020 (6)	0.8002 (4)	0.4618 (3)	0.0415
C42	0.2914 (6)	0.8224 (4)	0.6342 (3)	0.0473
C43	-0.3599(6)	0.6221 (3)	0.5830 (3)	0.0347
044	-0.4208(4)	0.5954(2)	0.65563(19)	0.0351
C45	-0.5767(6)	0.5327(3)	0.6364(3)	0.0430
046	-0.4246(4)	0.5927(3) 0.5982(2)	0.0901(3) 0.5041(2)	0.0448
H71	0.4624	0.1181	0.9722	0.0371*
H111	0.4513	-0.0316	0.7764	0.0371
H112	0.4950	0.0448	0.7026	0.0412*
H121	0.1912	0.0372	0.6595	0.0412*
П121 Ц121	0.1912	0.0372	0.6801	0.0412
П131 Ц172	-0.1003	0.2111	0.0801	0.0580
П172 Ц172	-0.0063	0.0000	0.6514	0.0043
П175 Ц171	-0.2222	0.0702	0.0014	0.0042
ПП/1 Ц191	-0.0780	0.1255	0.8871	0.0039
П101 Ц192	-0.0780	0.0101	0.0071	0.0752*
П105 Ц192	-0.1212	0.0931	0.9291	0.0750*
П102	-0.1213	0.1339	0.0009	0.0702*
П222	0.8309	0.3999	0.8433	0.0705*
П221	0.0444	0.3287	0.7528	0.0703*
П223	0./185	0.4210	0.7328	0.0099
П232	0.4044	0.0921	1.1292	0.0081
H233	0.5270	0.1585	1.10/2	0.0083*
П231	0.3292	0.1900	1.1805	0.0085
H301	-0.0922	0.8051	0.7627	0.0350*
H323	0.0689	0.8550	0.9114	0.0654*
H322	0.2425	0.7918	0.9490	0.0654*
H321	0.0697	0.7671	0.9830	0.0652*
H351	-0.4091	0.8324	0.4936	0.0382*
H352	-0.2992	0.9212	0.5538	0.0381*
H301	-0.16/4	0.8283	0.4335	0.0381*
H3/I	-0.1535	0.6632	0.4807	0.0422*
H412	0.2448	0.8668	0.4522	0.0641*
H411	0.2934	0.7499	0.4646	0.0643*
H413	0.1026	0.7836	0.4127	0.0639*
H421	0.3481	0.8846	0.6256	0.0668*
H422	0.3738	0.7673	0.6428	0.06/0*
H423	0.2421	0.8276	0.6879	0.0672*
H453	-0.61/6	0.5238	0.6929	0.0613*
H452	-0.5496	0.4674	0.6141	0.0609*
H451	-0.6673	0.5654	0.5897	0.0615*
H261	0.1302	0.4919	0.7947	0.0383*

H31	0.2694	0.4	353	0.9707	0.0413*		
Atomic d	Atomic displacement parameters (\hat{A}^2)						
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
01	0.0473 (17)	0.0277 (14)	0.0351 (16)	0.0081 (13)	0.0120 (14)	0.0074 (13)	
C2	0.034 (2)	0.0255 (19)	0.033 (2)	0.0003 (17)	0.0092 (18)	0.0010 (18)	
N3	0.0444 (19)	0.0259 (15)	0.0338 (19)	0.0032 (16)	0.0095 (16)	-0.0002 (15)	
C4	0.034 (2)	0.036 (2)	0.035 (2)	-0.0036 (19)	0.0083 (19)	-0.0014 (19)	
05	0.0476 (18)	0.0436 (17)	0.0347 (16)	-0.0022 (16)	0.0128 (14)	-0.0064 (15)	
C6	0.036 (2)	0.035 (2)	0.030 (2)	-0.0005 (19)	0.0074 (18)	0.0005 (18)	
C7	0.031 (2)	0.032 (2)	0.032 (2)	0.0015 (17)	0.0062 (18)	0.0057 (17)	
N8	0.0345 (17)	0.0266 (16)	0.0267 (17)	0.0057 (14)	0.0090 (14)	0.0010 (13)	
C9	0.034 (2)	0.0221 (18)	0.031 (2)	0.0012 (17)	0.0079 (18)	0.0014 (16)	
O10	0.0344 (14)	0.0229 (13)	0.0370 (15)	0.0019 (12)	0.0052 (12)	-0.0029 (12)	
C11	0.036 (2)	0.029 (2)	0.040 (2)	-0.0002 (19)	0.0102 (19)	-0.0074 (19)	
C12	0.035 (2)	0.031 (2)	0.037 (2)	0.0000 (18)	0.0094 (19)	-0.0027 (18)	
C13	0.037 (2)	0.028 (2)	0.031 (2)	0.0029 (18)	0.0078 (18)	0.0004 (17)	
O14	0.0329 (16)	0.0322 (15)	0.0482 (18)	0.0012 (13)	0.0122 (14)	-0.0035 (13)	
C15	0.032 (2)	0.0252 (19)	0.048 (3)	-0.0016 (18)	0.0082 (19)	-0.0045 (19)	
016	0.0344 (16)	0.0272 (14)	0.0482 (18)	0.0020 (13)	0.0122 (14)	0.0032 (13)	
C17	0.033 (2)	0.043 (3)	0.059 (3)	-0.002(2)	0.008 (2)	-0.007(2)	
C18	0.044 (3)	0.043 (2)	0.057 (3)	0.001 (2)	0.018 (2)	0.001 (2)	
C19	0.032 (2)	0.0254 (19)	0.041 (2)	0.0035 (18)	0.010 (2)	0.0018 (18)	
O20	0.0489 (19)	0.0462 (18)	0.0318 (16)	-0.0022 (15)	0.0131 (15)	0.0039 (14)	
O21	0.0370 (16)	0.0353 (15)	0.0405 (16)	-0.0056 (14)	0.0070 (14)	0.0041 (13)	
C22	0.034 (2)	0.041 (2)	0.059 (3)	-0.009 (2)	0.013 (2)	0.010 (2)	
C23	0.055 (3)	0.049 (3)	0.036 (2)	0.009 (2)	0.011 (2)	0.008 (2)	
O24	0.0423 (17)	0.0327 (15)	0.0333 (15)	0.0038 (14)	0.0012 (14)	0.0006 (13)	
C25	0.029 (2)	0.031 (2)	0.033 (2)	-0.0001 (18)	0.0057 (18)	0.0009 (18)	
N26	0.0386 (19)	0.0253 (16)	0.0315 (19)	0.0029 (15)	0.0055 (16)	-0.0003 (14)	
C27	0.036 (2)	0.0234 (18)	0.034 (2)	-0.0007 (17)	0.0077 (18)	-0.0008 (17)	
O28	0.0499 (18)	0.0265 (14)	0.0350 (16)	0.0015 (14)	0.0078 (14)	-0.0022 (13)	
N29	0.0365 (19)	0.0266 (16)	0.0277 (17)	0.0020 (15)	0.0054 (15)	-0.0005 (14)	
C30	0.037 (2)	0.0256 (19)	0.034 (2)	0.0014 (17)	0.0056 (19)	-0.0034 (17)	
C31	0.035 (2)	0.0270 (19)	0.029 (2)	0.0006 (18)	0.0081 (18)	-0.0037 (17)	
C32	0.056 (3)	0.033 (2)	0.043 (3)	0.004 (2)	-0.002(2)	-0.007 (2)	
C33	0.038 (2)	0.0236 (18)	0.030 (2)	0.0053 (17)	0.0075 (18)	0.0003 (16)	
O34	0.0431 (17)	0.0279 (14)	0.0313 (14)	0.0063 (13)	0.0101 (14)	0.0035 (12)	
C35	0.041 (2)	0.029 (2)	0.033 (2)	0.0036 (19)	0.0027 (19)	0.0061 (17)	
C36	0.035 (2)	0.030(2)	0.031 (2)	0.0022 (18)	0.0020 (18)	0.0027 (17)	
C37	0.040 (2)	0.0294 (19)	0.032 (2)	-0.0002 (19)	0.0082 (19)	-0.0040 (18)	
O38	0.0371 (16)	0.0274 (14)	0.0451 (17)	0.0044 (13)	0.0107 (14)	0.0032 (13)	
C39	0.043 (3)	0.0258 (19)	0.039 (2)	0.0027 (19)	0.013 (2)	0.0005 (18)	
O40	0.0356 (15)	0.0291 (13)	0.0456 (17)	0.0016 (13)	0.0092 (14)	-0.0033 (13)	
C41	0.041 (3)	0.046 (2)	0.040 (2)	-0.002 (2)	0.016 (2)	0.002 (2)	
C42	0.041 (3)	0.050 (3)	0.048 (3)	0.004 (2)	0.007 (2)	-0.009 (2)	
C43	0.038 (2)	0.030 (2)	0.036 (2)	0.0048 (19)	0.008 (2)	-0.0004 (18)	

O44	0.0372 (16)	0.0325 (15)	0.0353 (15)	-0.0068 (13)	0.0081 (13)	-0.0031 (13)
C45	0.045 (3)	0.033 (2)	0.051 (3)	-0.011 (2)	0.012 (2)	-0.001 (2)
O46	0.0479 (18)	0.0505 (18)	0.0323 (15)	-0.0102 (16)	0.0022 (14)	-0.0051 (16)

Geometric parameters (Å, °)

01—C2	1.233 (5)	O24—C25	1.240 (5)
C2—N3	1.365 (5)	C25—N26	1.384 (5)
C2—N8	1.371 (5)	C25—C31	1.453 (5)
N3—C4	1.401 (5)	N26—C27	1.377 (5)
N3—H31	0.877	N26—H261	0.882
C4—O5	1.230 (5)	C27—O28	1.224 (5)
C4—C6	1.448 (6)	C27—N29	1.380 (5)
С6—С7	1.345 (6)	N29—C30	1.385 (5)
C6—C23	1.512 (6)	N29—C33	1.471 (5)
C7—N8	1.374 (5)	C30—C31	1.346 (5)
С7—Н71	0.933	C30—H301	0.946
N8—C9	1.464 (5)	C31—C32	1.507 (6)
С9—О10	1.418 (5)	C32—H323	0.973
C9—C13	1.557 (6)	C32—H322	0.977
C9—C19	1.537 (5)	C32—H321	0.977
O10-C11	1.445 (5)	C33—O34	1.408 (5)
C11—C12	1.497 (6)	C33—C37	1.555 (5)
C11—H111	0.974	C33—C43	1.541 (6)
C11—H112	0.974	O34—C35	1.452 (5)
C12—C13	1.532 (5)	C35—C36	1.497 (6)
C12—O16	1.423 (5)	C35—H351	0.981
C12—H121	0.996	C35—H352	0.986
C13—O14	1.424 (5)	C36—C37	1.544 (6)
C13—H131	0.988	C36—O40	1.427 (5)
O14—C15	1.452 (5)	C36—H361	0.992
C15—O16	1.420 (5)	C37—O38	1.426 (5)
C15—C17	1.512 (6)	C37—H371	0.985
C15—C18	1.496 (6)	O38—C39	1.440 (5)
С17—Н172	0.981	C39—O40	1.431 (5)
С17—Н173	0.969	C39—C41	1.507 (6)
C17—H171	0.984	C39—C42	1.504 (6)
C18—H181	0.974	C41—H412	0.974
C18—H183	0.973	C41—H411	0.979
C18—H182	0.982	C41—H413	0.965
C19—O20	1.205 (5)	C42—H421	0.966
C19—O21	1.348 (5)	C42—H422	0.971
O21—C22	1.451 (5)	C42—H423	0.972
С22—Н222	0.969	C43—O44	1.333 (5)
C22—H221	0.962	C43—O46	1.210 (5)
C22—H223	0.972	O44—C45	1.460 (5)
С23—Н232	0.974	C45—H453	0.979
С23—Н233	0.979	С45—Н452	0.975

C23—H231	0.979	C45—H451	0.977
O1—C2—N3	123.3 (4)	O24—C25—N26	119.7 (4)
O1—C2—N8	120.7 (3)	O24—C25—C31	124.8 (4)
N3—C2—N8	115.9 (3)	N26—C25—C31	115.5 (3)
C2—N3—C4	126.0 (3)	C25—N26—C27	126.7 (3)
C2—N3—H31	116.7	C25—N26—H261	116.2
C4—N3—H31	117.3	C27—N26—H261	117.2
N3—C4—O5	119.6 (4)	N26—C27—O28	123.2 (3)
N3—C4—C6	114.8 (4)	N26—C27—N29	114.8 (3)
O5—C4—C6	125.6 (4)	O28—C27—N29	122.0 (4)
C4—C6—C7	119.0 (4)	C27—N29—C30	121.7 (3)
C4—C6—C23	118.2 (4)	C27—N29—C33	115.2 (3)
C7—C6—C23	122.8 (4)	C30—N29—C33	122.9 (3)
C6—C7—N8	122.6 (4)	N29—C30—C31	122.7 (4)
С6—С7—Н71	119.2	N29—C30—H301	118.4
N8—C7—H71	118.2	C31—C30—H301	118.9
C7-N8-C2	121.6 (3)	C_{25} C_{31} C_{30}	118 3 (4)
C7 - N8 - C9	1231(3)	$C_{25} = C_{31} = C_{32}$	118.5(4)
$C_2 = N_8 = C_9$	1152(3)	C_{30} C_{31} C_{32}	123.2(4)
N8-C9-010	107.4(3)	C_{31} C_{32} H_{323}	110.0
N8 - C9 - C13	107.4(3) 113 1 (3)	$C_{31} = C_{32} = H_{323}$	108.0
010-09-013	107.2(3)	H323_C32_H322	100.9
N8 C9 C19	107.2(3) 110.8(3)	C_{31} C_{32} H_{321}	109.6
010 C9 C19	10.8(3)	$H_{223} = C_{22} = H_{221}$	109.0
$C_{12} = C_{12} = C_{13}$	103.8(3) 112.2(2)	$H_{222} = C_{22} = H_{221}$	100.0
C_{13} C_{9} C_{14} C_{14}	112.2(3)	H322-C32-H321	109.7
	108.5(3)	N29-C33-C34	100.9(3)
010-011-012	105.3 (3)	$N_{29} = C_{33} = C_{37}$	113.4 (3)
Olo—Cli—Hill	110.1	034-033-037	107.8 (3)
	109.3	N29—C33—C43	110.8 (3)
010—C11—H112	109.2	034—C33—C43	106.3 (3)
С12—С11—Н112	112.7	C37—C33—C43	111.2 (3)
H111—C11—H112	110.1	C33—O34—C35	108.5 (3)
C11—C12—C13	104.5 (3)	O34—C35—C36	105.7 (3)
C11—C12—O16	111.1 (3)	O34—C35—H351	109.9
C13—C12—O16	102.2 (3)	С36—С35—Н351	109.9
C11—C12—H121	112.9	O34—C35—H352	109.4
C13—C12—H121	114.1	С36—С35—Н352	111.7
O16—C12—H121	111.4	H351—C35—H352	110.1
C12—C13—C9	103.5 (3)	C35—C36—C37	104.2 (3)
C12—C13—O14	105.3 (3)	C35—C36—O40	111.1 (3)
C9—C13—O14	112.2 (3)	C37—C36—O40	102.1 (3)
C12—C13—H131	112.6	С35—С36—Н361	113.5
С9—С13—Н131	112.0	С37—С36—Н361	112.1
O14—C13—H131	110.9	O40—C36—H361	112.9
C13—O14—C15	108.0 (3)	C36—C37—C33	103.5 (3)
O14—C15—O16	104.2 (3)	C36—C37—O38	105.3 (3)
O14—C15—C17	109.1 (3)	C33—C37—O38	112.1 (3)

O16—C15—C17	111.0 (3)	С36—С37—Н371	111.9
O14—C15—C18	109.0 (3)	С33—С37—Н371	112.0
O16—C15—C18	110.2 (4)	O38—C37—H371	111.5
C17—C15—C18	113.0 (4)	C37—O38—C39	107.7 (3)
C12—O16—C15	106.6 (3)	O38—C39—O40	104.5 (3)
С15—С17—Н172	108.7	O38—C39—C41	109.9 (3)
С15—С17—Н173	109.6	O40—C39—C41	111.7 (3)
H172—C17—H173	110.8	O38—C39—C42	108.4 (4)
C15—C17—H171	109.0	O40—C39—C42	108.3 (3)
H172—C17—H171	108.2	C41—C39—C42	113.7 (4)
H173—C17—H171	110.5	C39—O40—C36	105.5 (3)
C15—C18—H181	108.9	C39—C41—H412	108.6
C15—C18—H183	109.1	C39—C41—H411	109.1
H181—C18—H183	109.7	H412—C41—H411	110.7
C15—C18—H182	108.4	C39—C41—H413	108.6
H181—C18—H182	110.6	H412—C41—H413	110.2
H183—C18—H182	110.0	H411—C41—H413	109.6
C9—C19—O20	123.9 (4)	C39—C42—H421	110.6
C9—C19—O21	110.5 (3)	C39—C42—H422	108.4
O20—C19—O21	125.2 (4)	H421—C42—H422	110.6
C19—O21—C22	115.8 (3)	C39—C42—H423	108.2
O21—C22—H222	108.7	H421—C42—H423	109.6
O21—C22—H221	111.1	H422—C42—H423	109.4
H222—C22—H221	109.6	C33—C43—O44	111.4 (3)
O21—C22—H223	110.3	C33—C43—O46	123.5 (4)
H222—C22—H223	108.4	O44—C43—O46	124.8 (4)
H221—C22—H223	108.7	C43—O44—C45	116.2 (3)
С6—С23—Н232	109.2	O44—C45—H453	109.5
С6—С23—Н233	110.6	O44—C45—H452	109.7
H232—C23—H233	109.9	H453—C45—H452	109.2
С6—С23—Н231	109.0	O44—C45—H451	109.1
H232—C23—H231	107.9	H453—C45—H451	109.6
H233—C23—H231	110.3	H452—C45—H451	109.8

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
C11—H111····O5 ⁱ	0.97	2.52	3.301 (6)	138
N26—H261…O1	0.88	1.93	2.791 (6)	164
N3—H31…O24	0.88	2.01	2.863 (6)	165

Symmetry code: (i) -*x*+1, *y*-1/2, -*z*+2.