

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,2-Dihydroxy-2-(3-methylbut-2-enyl)-3oxo-2,3-dihydro-1*H*-indene-1-carboxylic acid monohydrate

Acácio Ivo Franscisco,^a Gleiciani de Q. Silveira,^a Jackson A. L. C. Resende,^a Tatiane L. Balliano,^b Valéria R. S. Malta^b* and Antonio Ventura Pinto^c

^aInstituto de Química, Universidade Federal Fluminense, Centro, CEP 24020-150, Niterói, RJ, Brazil, ^bInstituto de Química e Biotecnologia, Universidade Federal de Alagoas, CEP 57072-970, Maceió, Al, Brazil, and ^cNúcleo de Pesquisas em Produtos Naturais, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CEP 21944-971, Rio de Janeiro, RJ, Brazil

Correspondence e-mail: vrsm@qui.ufal.br

Received 3 December 2009; accepted 5 January 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.037; wR factor = 0.093; data-to-parameter ratio = 9.4.

The title compound, $C_{15}H_{16}O_5 H_2O$, is an intermediate of the Hooker oxidation reaction, used for the synthesis of 2-hydroxy-3-(2-methylprop-1-enyl)naphthalene-1,4-dione (nor-lapachol). The packing in the crystal structure is arranged by an $O-H \cdots O$ hydrogen-bonded network along the [100] and [010] directions. Each organic molecule is linked to four other molecules *via* the hydroxy groups. The water solvent molecule is connected to carboxylic acid groups by three hydrogen bonds.

Related literature

For a related structure, see Cunningham *et al.* (1999). For information on the mechanism of the Hooker oxidation reaction, see: Hooker (1936); Hooker & Steyermark (1936); Fieser & Fieser, (1948); Fieser & Bader (1951); Fieser *et al.* (1936); Lee *et al.* (1995).

Experimental

a = 9.5514 (7) Å
b = 5.7762 (5) Å
c = 13.1324 (9) Å

 $\beta = 92.126 (12)^{\circ}$ $V = 724.03 (10) \text{ Å}^3$ Z = 2Mo $K\alpha$ radiation

Data collection

Enraf–Nonius FR590 diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.981, T_{\rm max} = 0.991$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.093$ S = 1.061827 reflections 195 parameters T = 298 K $0.21 \times 0.15 \times 0.09 \text{ mm}$

 $\mu = 0.11 \text{ mm}^{-1}$

18985 measured reflections 1827 independent reflections 1490 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.034$

 $\begin{array}{l} 1 \text{ restraint} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{\text{max}} = 0.15 \text{ e } \text{ Å}^{-3} \\ \Delta \rho_{\text{min}} = -0.17 \text{ e } \text{ Å}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1\cdots O2^i$	0.82	1.93	2.729 (2)	166
O2−H2···O1 ⁱⁱ	0.82	2.08	2.846 (2)	155
$O4-H4\cdots O1W^{ii}$	0.82	1.72	2.520 (3)	164
$O1W-H1B\cdots O5^{iii}$	0.84	1.96	2.785 (3)	167
$O1W-H1A\cdots O5$	0.84	2.05	2.884 (3)	173

Symmetry codes: (i) -x + 2, $y + \frac{1}{2}$, -z; (ii) x, y - 1, z; (iii) -x + 1, $y + \frac{1}{2}$, -z.

Data collection: *COLLECT* (Nonius, 2004); cell refinement: *DIRAX/LSQ* (Duisenberg, 1992); data reduction: *EVALCCD* (Duisenberg *et al.*, 2003); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: Mercury (Macrae, 2006) and *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Brazilian agencies FAPEAL, FAPERJ, CAPES and CNPq.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2966).

References

- Cunningham, I. D., Danks, T. N., O'Connell, K. T. A. & Scott, P. W. (1999). J. Org. Chem. 64, 7330-7337.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Fieser, L. F. & Bader, A. R. (1951). J. Am. Chem. Soc. 73, 681-684.
- Fieser, L. F. & Fieser, M. (1948). J. Am. Chem. Soc. 70, 3215-3222.
- Fieser, L. F., Hartwell, J. L. & Seligman, A. M. (1936). J. Am. Chem. Soc. 58, 1223–1228.
- Hooker, S. C. (1936). J. Am. Chem. Soc. 58, 1168-1173.
- Hooker, S. C. & Steyermark, A. (1936). J. Am. Chem. Soc. 58, 1179-1181.
- Lee, K., Turnbull, P. & Moore, H. W. (1995). J. Org. Chem. 60, 461-464.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2010). E66, o341 [https://doi.org/10.1107/S1600536810000516]

1,2-Dihydroxy-2-(3-methylbut-2-enyl)-3-oxo-2,3-dihydro-1*H*-indene-1-carboxy-lic acid monohydrate

Acácio Ivo Franscisco, Gleiciani de Q. Silveira, Jackson A. L. C. Resende, Tatiane L. Balliano, Valéria R. S. Malta and Antonio Ventura Pinto

S1. Comment

For many years investigations on the Hooker intermediate were object of preparation of nor-lapachol (Fieser *et al.*, 1936), principally due to the different oxidation mechanism (Lee *et al.*, 1995) in which the substrate 2-hydroxy-3-(3-methyl-but-2-enyl)naphthalene-1,4-dione) (lapachol) undergoes rearrangement into nor-lapachol (Fieser *et al.*, 1951). This Hooker oxidation reaction is applicable to a large number of hydroxynaphthoquinones with side chains in the quinone ring (Hooker, 1936; Hooker & Steyermark, 1936).

Although spectroscopic data (NMR and elemental analysis) has indicated (Fieser *et al.*, 1948) the likely structure of the intermediate, X-ray diffraction study has never been performed. We report herein the synthesis and the crystal structure of the title compound, (I). An ORTEP-3 (Farrugia, 1997) drawing of (I) is shown in Fig. 1, and selected geometric parameters are presented in Table 1. The five-membered ring adopts an envelope conformation [q2 = 0.260 (2) Å e φ 2 = -147.3 (5)°]. The ring is stretched and this is reflected in the larger bond length of C1—C2, like in the oxoindane ester methyl trans-2-(trans-4-tert-butylcyclohexyl)methyl-2,3-dihydroxy- 1-oxoindan-3-carboxylate (Cunningham *et al.*, 1999). The crystal packing is stabilized by five hydrogen bonds (Table 1) forming a hydrogen-bonded network along the [010] and [100] directions (Figure 2).

S2. Experimental

Lapachol (10.0 g, 41.3 mmol) in THF (70 ml) was added to a solution of Na_2CO_3 (4.8 g, 45.3 mmol) in water (100 ml). The mixture was refluxed under N_2 and when the temperature reached 316K , H_2O_2 (32 ml) was added. The reaction mixture remained under reflux for one hour and after this period it was cooled to 283K. Then conc. HCl was added until appearance of a white precipitate, which was filtered under vaccum [yield; 81%, 493-494K, lit. (Fieser *et al.*, 1951): 492-493K].

S3. Refinement

The hydrogen atoms of the water were placed at calculated positions and other H atoms C—H = 0.93–0.97 Å and O—H (hydroxyl group) = 0.82Å were placed into the calculated idealized positions. All H atoms were refined with fixed individual displacement parameters $[U_{iso}(H) = 1.2U_{eq} (Csp^2) \text{ or } 1.5U_{eq} (Csp^3) \text{ and } (O—H)]$ using a riding model. Due to the absence of anomalous dispersion the The Flack parameter was not refined.

Figure 1

The molecular structure of (I) with displacement ellipsoids are drawn at the 50% probability level. A hydrogen bond is shown as a dashed line.

Figure 2

A packing diagram of (I) (Macrae et al., 2006). Hydrogen bonds are shown as dotted lines.

1,2-Dihydroxy-2-(3-methylbut-2-enyl)-3-oxo-2,3-dihydro-1*H*-indene-1- carboxylic acid monohydrate

Crystal data C₁₅H₁₆O₅·H₂O $M_r = 294.29$ Monoclinic, P2₁ Hall symbol: P 2yb a = 9.5514 (7) Å b = 5.7762 (5) Å c = 13.1324 (9) Å $\beta = 92.126$ (12)° V = 724.03 (10) Å³ Z = 2

F(000) = 312 $D_x = 1.357 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 18985 reflections $\theta = 3.1-27.5^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 298 KPrism, colourless $0.21 \times 0.15 \times 0.09 \text{ mm}$ Data collection

Enraf-Nonius FR590 diffractometer Graphite monochromator CCD rotation images, thick slices scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.981, T_{max} = 0.991$ 18985 measured reflections <i>Refinement</i>	1827 independent reflections 1490 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -12 \rightarrow 12$ $k = -7 \rightarrow 7$ $l = -17 \rightarrow 17$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from
$wR(F^2) = 0.093$	neighbouring sites
S = 1.06	H-atom parameters constrained
1827 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0546P)^2]$
195 parameters	where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{max} = 0.029$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.15$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.17$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	y	Z	$U_{\rm iso}*/U_{\rm eq}$
O1W	0.5721 (2)	0.8481 (4)	0.0536 (2)	0.0823 (9)
H1A	0.6162	0.7243	0.0448	0.123*
H1B	0.4867	0.8512	0.0372	0.123*
01	0.90465 (17)	0.6665 (3)	0.10377 (11)	0.0322 (4)
H1	0.9157	0.6392	0.0433	0.048*
O2	1.01902 (18)	0.1204 (3)	0.09344 (12)	0.0334 (4)
H2	0.9917	-0.0037	0.1157	0.05*
03	1.03440 (19)	0.0001 (3)	0.30071 (13)	0.0403 (4)
O4	0.73158 (19)	0.1340 (3)	0.14502 (13)	0.0407 (4)
H4	0.6744	0.0621	0.1092	0.061*
05	0.7005 (2)	0.4019 (3)	0.02549 (15)	0.0484 (5)
C1	0.8810 (2)	0.4586 (4)	0.15549 (16)	0.0268 (5)
C2	1.0096 (2)	0.2926 (4)	0.16956 (16)	0.0281 (5)
C3	0.9894 (2)	0.1855 (4)	0.27440 (16)	0.0283 (5)
C4	0.9048 (2)	0.3500 (4)	0.33153 (16)	0.0288 (5)
C5	0.8816 (2)	0.3586 (5)	0.43499 (17)	0.0375 (6)
Н5	0.9206	0.2491	0.4795	0.045*

C6	0.7988 (3)	0.5348 (5)	0.46952 (18)	0.0411 (6)
H6	0.7827	0.5462	0.5387	0.049*
C7	0.7396 (3)	0.6945 (5)	0.40303 (18)	0.0411 (6)
H7	0.6842	0.8122	0.4282	0.049*
C8	0.7608 (2)	0.6834 (5)	0.29942 (17)	0.0349 (5)
H8	0.7197	0.7907	0.2548	0.042*
C9	0.8446 (2)	0.5086 (4)	0.26450 (16)	0.0270 (5)
C10	0.7606 (2)	0.3286 (4)	0.10134 (17)	0.0282 (5)
C11	1.1452 (2)	0.4353 (5)	0.1714 (2)	0.0373 (6)
H11A	1.1624	0.4881	0.1029	0.045*
H11B	1.1333	0.5709	0.2138	0.045*
C12	1.2692 (3)	0.3023 (5)	0.2109 (2)	0.0428 (6)
H12	1.2888	0.1649	0.1774	0.051*
C13	1.3534 (3)	0.3581 (5)	0.2876 (2)	0.0420 (6)
C14	1.4737 (3)	0.2069 (7)	0.3225 (3)	0.0626 (9)
H14A	1.4621	0.1623	0.3921	0.094*
H14B	1.5599	0.2908	0.3172	0.094*
H14C	1.476	0.0711	0.2805	0.094*
C15	1.3374 (4)	0.5712 (7)	0.3500 (3)	0.0759 (11)
H15A	1.3521	0.5339	0.4208	0.114*
H15B	1.2447	0.6326	0.3387	0.114*
H15C	1.405	0.6844	0.3307	0.114*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1W	0.0610 (13)	0.0400 (13)	0.142 (2)	0.0055 (11)	-0.0517 (14)	-0.0227 (15)
01	0.0497 (9)	0.0228 (9)	0.0242 (7)	-0.0045 (7)	0.0027 (7)	0.0025 (7)
O2	0.0465 (10)	0.0265 (9)	0.0274 (8)	-0.0033 (7)	0.0040 (7)	-0.0043 (7)
03	0.0463 (10)	0.0360 (10)	0.0382 (10)	0.0086 (8)	-0.0046 (8)	0.0069 (9)
O4	0.0463 (10)	0.0323 (10)	0.0424 (10)	-0.0122 (8)	-0.0154 (7)	0.0085 (9)
05	0.0588 (11)	0.0386 (11)	0.0458 (11)	-0.0091 (9)	-0.0246 (9)	0.0103 (8)
C1	0.0341 (12)	0.0224 (12)	0.0238 (11)	-0.0019 (9)	0.0006 (9)	0.0017 (9)
C2	0.0334 (11)	0.0246 (11)	0.0263 (11)	-0.0016 (9)	0.0003 (9)	-0.0041 (9)
C3	0.0289 (10)	0.0303 (13)	0.0252 (10)	-0.0023 (10)	-0.0065 (8)	0.0000 (10)
C4	0.0283 (11)	0.0315 (12)	0.0263 (11)	-0.0018 (10)	-0.0027 (9)	0.0004 (10)
C5	0.0386 (12)	0.0475 (16)	0.0259 (11)	0.0041 (12)	-0.0033 (10)	0.0052 (11)
C6	0.0414 (14)	0.0581 (18)	0.0241 (12)	-0.0001 (13)	0.0034 (11)	-0.0045 (12)
C7	0.0426 (13)	0.0433 (15)	0.0380 (13)	0.0036 (12)	0.0089 (11)	-0.0046 (13)
C8	0.0422 (12)	0.0297 (13)	0.0327 (12)	0.0013 (11)	0.0014 (10)	0.0017 (11)
C9	0.0307 (11)	0.0248 (11)	0.0256 (11)	-0.0052 (9)	0.0009 (9)	-0.0005 (9)
C10	0.0349 (11)	0.0226 (12)	0.0269 (11)	0.0015 (9)	-0.0010 (9)	0.0005 (9)
C11	0.0329 (12)	0.0359 (14)	0.0434 (14)	-0.0057 (10)	0.0037 (11)	-0.0034 (11)
C12	0.0330 (12)	0.0399 (15)	0.0558 (16)	-0.0009 (11)	0.0083 (12)	-0.0098 (13)
C13	0.0336 (12)	0.0421 (15)	0.0503 (15)	-0.0053 (12)	0.0028 (11)	0.0000 (13)
C14	0.0361 (14)	0.066 (2)	0.085 (2)	-0.0035 (15)	-0.0045 (14)	0.0077 (19)
C15	0.083 (3)	0.065 (3)	0.078 (3)	0.008 (2)	-0.024 (2)	-0.0182 (19)

Geometric parameters (Å, °)

O1W—H1A	0.840	С6—С7	1.378 (4)
O1W—H1B	0.840	С6—Н6	0.93
O1—C1	1.402 (3)	С7—С8	1.385 (3)
01—H1	0.82	С7—Н7	0.93
O2—C2	1.415 (3)	C8—C9	1.378 (3)
O2—H2	0.82	C8—H8	0.93
O3—C3	1.200 (3)	C11—C12	1.489 (4)
O4—C10	1.297 (3)	C11—H11A	0.97
O4—H4	0.82	C11—H11B	0.97
O5—C10	1.208 (3)	C12—C13	1.306 (4)
C1—C9	1.514 (3)	C12—H12	0.93
C1-C10	1.527 (3)	C13—C15	1.490 (5)
C1—C2	1.564 (3)	C13—C14	1.501 (4)
C2—C3	1.528 (3)	C14—H14A	0.96
C2-C11	1.534 (3)	C14—H14B	0.96
C3—C4	1.471 (3)	C14—H14C	0.96
C4—C9	1.381 (3)	C15—H15A	0.96
C4—C5	1.386 (3)	C15—H15B	0.96
C5—C6	1.376 (4)	C15—H15C	0.96
С5—Н5	0.93		
H1A—O1W—H1B	118	С9—С8—Н8	121
C1-01-H1	109.5	С7—С8—Н8	121
C2—O2—H2	109.5	C8—C9—C4	120.5 (2)
C10—O4—H4	109.5	C8—C9—C1	127.7 (2)
01—C1—C9	109.97 (18)	C4—C9—C1	111.8 (2)
O1-C1-C10	109.13 (17)	O5-C10-O4	124.5 (2)
C9-C1-C10	109.80 (18)	O5-C10-C1	122.6 (2)
O1—C1—C2	116.27 (18)	O4—C10—C1	112.94 (19)
C9—C1—C2	102.25 (17)	C12—C11—C2	112.8 (2)
C10-C1-C2	109.17 (18)	C12—C11—H11A	109
O2—C2—C3	111.45 (19)	C2C11H11A	109
O2—C2—C11	108.25 (18)	C12—C11—H11B	109
C3—C2—C11	109.75 (19)	C2—C11—H11B	109
O2—C2—C1	114.67 (18)	H11A—C11—H11B	107.8
C3—C2—C1	103.27 (18)	C13—C12—C11	126.9 (3)
C11—C2—C1	109.33 (18)	C13—C12—H12	116.5
O3—C3—C4	128.8 (2)	C11—C12—H12	116.5
O3—C3—C2	124.4 (2)	C12—C13—C15	123.7 (3)
C4—C3—C2	106.77 (19)	C12—C13—C14	122.3 (3)
C9—C4—C5	121.5 (2)	C15—C13—C14	113.9 (3)
C9—C4—C3	109.08 (19)	C13—C14—H14A	109.5
C5—C4—C3	129.4 (2)	C13—C14—H14B	109.5
C6—C5—C4	117.7 (2)	H14A—C14—H14B	109.5
С6—С5—Н5	121.2	C13—C14—H14C	109.5
C4—C5—H5	121.2	H14A—C14—H14C	109.5

C5—C6—C7	120.9 (2)	H14B—C14—H14C	109.5
С5—С6—Н6	119.5	C13—C15—H15A	109.5
С7—С6—Н6	119.5	C13—C15—H15B	109.5
C6—C7—C8	121.4 (3)	H15A—C15—H15B	109.5
С6—С7—Н7	119.3	С13—С15—Н15С	109.5
С8—С7—Н7	119.3	H15A—C15—H15C	109.5
C9—C8—C7	118.0 (2)	H15B—C15—H15C	109.5
O1—C1—C2—O2	-94.2 (2)	C7—C8—C9—C4	0.1 (3)
C9—C1—C2—O2	146.03 (19)	C7—C8—C9—C1	178.9 (2)
C10—C1—C2—O2	29.8 (2)	C5—C4—C9—C8	1.0 (3)
O1—C1—C2—C3	144.38 (19)	C3—C4—C9—C8	-179.4 (2)
C9—C1—C2—C3	24.6 (2)	C5-C4-C9-C1	-177.9 (2)
C10-C1-C2-C3	-91.7 (2)	C3—C4—C9—C1	1.7 (3)
O1—C1—C2—C11	27.6 (3)	O1—C1—C9—C8	40.0 (3)
C9—C1—C2—C11	-92.2 (2)	C10-C1-C9-C8	-80.0 (3)
C10-C1-C2-C11	151.53 (18)	C2-C1-C9-C8	164.2 (2)
O2—C2—C3—O3	30.5 (3)	O1—C1—C9—C4	-141.13 (19)
C11—C2—C3—O3	-89.4 (3)	C10-C1-C9-C4	98.8 (2)
C1—C2—C3—O3	154.2 (2)	C2-C1-C9-C4	-17.0 (2)
O2—C2—C3—C4	-148.40 (18)	O1—C1—C10—O5	0.7 (3)
C11—C2—C3—C4	91.7 (2)	C9—C1—C10—O5	121.3 (2)
C1—C2—C3—C4	-24.8 (2)	C2-C1-C10-O5	-127.3 (2)
O3—C3—C4—C9	-163.8 (2)	O1—C1—C10—O4	-179.68 (19)
C2—C3—C4—C9	15.1 (2)	C9—C1—C10—O4	-59.1 (3)
O3—C3—C4—C5	15.8 (4)	C2-C1-C10-O4	52.3 (2)
C2—C3—C4—C5	-165.4 (2)	O2—C2—C11—C12	-69.4 (3)
C9—C4—C5—C6	-1.6 (4)	C3—C2—C11—C12	52.5 (3)
C3—C4—C5—C6	179.0 (2)	C1—C2—C11—C12	165.1 (2)
C4—C5—C6—C7	1.0 (4)	C2-C11-C12-C13	-123.5 (3)
C5—C6—C7—C8	0.1 (4)	C11—C12—C13—C15	0.3 (5)
C6—C7—C8—C9	-0.7 (4)	C11—C12—C13—C14	178.4 (3)

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
0.82	1.93	2.729 (2)	166
0.82	2.08	2.846 (2)	155
0.82	1.72	2.520 (3)	164
0.84	1.96	2.785 (3)	167
0.84	2.05	2.884 (3)	173
	<i>D</i> —H 0.82 0.82 0.82 0.82 0.84 0.84	D—H H···A 0.82 1.93 0.82 2.08 0.82 1.72 0.84 1.96 0.84 2.05	D—HH…AD…A0.821.932.729 (2)0.822.082.846 (2)0.821.722.520 (3)0.841.962.785 (3)0.842.052.884 (3)

Symmetry codes: (i) -*x*+2, *y*+1/2, -*z*; (ii) *x*, *y*-1, *z*; (iii) -*x*+1, *y*+1/2, -*z*.