metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis{2-hydroxyimino-N'-[1-(2-pyridyl)ethylidene]propanohydrazidato}zinc(II) dihydrate

Yurii S. Moroz,^a* Kateryna O Znovjyak,^a Iryna O. Golenya,^a Svetlana V. Pavlova^a and Matti Haukka^b

^aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska Str. 64, 01601 Kyiv, Ukraine, and ^bDepartment of Chemistry, University of Joensuu, PO Box 111, 80101 Joensuu, Finland Correspondence e-mail: ysmoroz@yahoo.com

Received 26 January 2010; accepted 27 January 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.036; wR factor = 0.092; data-to-parameter ratio = 16.2.

The title compound, $[Zn(C_{10}H_{11}N_4O_2)_2]\cdot 2H_2O$, was prepared by the reaction between $Zn(CH_3COO)_2\cdot 2H_2O$ and 2-hydroxyimino-N'-[1-(2-pyridyl)ethylidene]propanohydrazide (Hpop). The central Zn^{II} atom has a distorted tetragonal-bipyramidal coordination geometry formed by two amide O atoms and four N atoms of two azomethine and two pyridine groups. In the crystal, complex molecules form layers parallel to the crystallographic *b* direction. The layers are connected by O- $H \cdots N$ and $O-H \cdots O$ hydrogen bonds involving the solvent water molecules.

Related literature

For zinc(II)-containing complexes with similiar ligands, see: Petrusenko *et al.* (1997); Comba *et al.* (2002); Kasuga *et al.* (2003). For the structural parameters of amide derivatives of 2-hydroxyiminopropanoic acid, see: Onindo *et al.* (1995); Sliva *et al.* (1997*a,b*); Mokhir *et al.* (2002); Moroz *et al.* (2009*a,b*). For the preparation and characterization of 3*d*-metal complexes with 2-hydroxyimino-N'-[1-(2-pyridyl)ethylidene]-propanohydrazone, see: Moroz *et al.* (2008*a,b*).

Experimental

Crystal data

 $\begin{bmatrix} \text{Zn}(\text{C}_{10}\text{H}_{11}\text{N}_{4}\text{O}_{2})_{2} \end{bmatrix} \cdot 2\text{H}_{2}\text{O} & \gamma = 108.052 \ (2)^{\circ} \\ M_{r} = 539.86 & V = 1134.48 \ (7) \ \text{Å}^{3} \\ \text{Triclinic, } P\overline{1} & Z = 2 \\ a = 8.3241 \ (3) \ \text{\AA} & \text{Mo } K\alpha \text{ radiation} \\ b = 10.6299 \ (4) \ \text{\AA} & \mu = 1.14 \text{ mm}^{-1} \\ c = 13.9006 \ (5) \ \text{\AA} & T = 100 \text{ K} \\ \alpha = 94.184 \ (2)^{\circ} & 0.28 \times 0.07 \times 0.02 \text{ mm} \\ \beta = 101.389 \ (2)^{\circ} \\ \end{bmatrix}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2008) $T_{\rm min} = 0.743, T_{\rm max} = 0.977$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	320 parameters
$vR(F^2) = 0.092$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.95 \ {\rm e} \ {\rm \AA}^{-3}$
5171 reflections	$\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$

21551 measured reflections

 $R_{\rm int} = 0.048$

5171 independent reflections

4253 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

Zn1-N2	2.061 (2)	Zn1-O3	2.1470 (15)
Zn1-N6	2.085 (2)	Zn1-N5	2.1955 (19)
Zn1-O1	2.0880 (15)	Zn1-N1	2.2877 (19)
N2-Zn1-O1	76.10 (7)	N6-Zn1-N5	75.07 (7)
N6-Zn1-O3	74.17 (6)	N2-Zn1-N1	73.97 (7)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2O\cdots N7^{i}$	0.92	1.89	2.801 (3)	170
O4−H4O···O5 ⁱⁱ	0.93	1.77	2.675 (3)	164
O5−H5 <i>P</i> ···O3	0.91	1.93	2.811 (3)	161
O5−H5O···O6	0.86	2.08	2.889 (3)	157
O6−H6O···N4 ⁱⁱⁱ	0.92	2.12	2.934 (3)	148
$O6-H6P\cdots N8^{ii}$	0.93	2.10	2.971 (3)	154
$O6-H6P\cdots N8^{ii}$	0.93	2.10	2.971 (3)	154

Symmetry codes: (i) x - 1, y - 1, z; (ii) -x + 1, -y + 1, -z; (iii) -x, -y, -z.

Data collection: *COLLECT* (Bruker, 2004); cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. F28/241–2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2129).

References

- Bruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Comba, P., Kerscher, M., Merz, M., Muller, V., Pritzkow, H., Remenyi, R., Schiek, W. & Xiong, Y. (2002). *Chem. Eur. J.* 8, 5750–5760.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Kasuga, N. C., Sekino, K., Ishikawa, M., Honda, A., Yokoyama, M., Nakano, S., Shimada, N., Koumo, S. & Nomiya, K. (2003). *J. Inorg. Biochem.* 96, 298– 310.
- Mokhir, A. A., Gumienna-Kontecka, E. S., Wiatek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). *Inorg. Chim. Acta*, **329**, 113–121.
- Moroz, Yu. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2008a). Inorg. Chem. 47, 5656–5665.
- Moroz, Y. S., Sliva, T. Yu., Kulon, K., Kozłowski, H. & Fritsky, I. O. (2008b). Acta Cryst. E64, m353–m354.
- Moroz, Y. S., Kalibabchuk, V. A., Gumienna-Kontecka, E., Skopenko, V. V. & Pavlova, S. V. (2009*a*). Acta Cryst. E65, o2413.

- Moroz, Y. S., Konovalova, I. S., Iskenderov, T. S., Pavlova, S. V. & Shishkin, O. V. (2009b). Acta Cryst. E65, 02242.
- Onindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911–3915.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Petrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267–274.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997a). J. Chem. Soc. Dalton Trans. pp. 273–276.
- Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997b). J. Inorg. Biochem. 65, 287–294.

supporting information

Acta Cryst. (2010). E66, m242–m243 [https://doi.org/10.1107/S1600536810003351]

Bis{2-hydroxyimino-N'-[1-(2-pyridyl)ethylidene]propanohydrazidato}zinc(II) dihydrate

Yurii S. Moroz, Kateryna O Znovjyak, Iryna O. Golenya, Svetlana V. Pavlova and Matti Haukka

S1. Comment

As a part of our study of coordination compounds based on oxime-containing Schiff bases we would like to present the structure of the title compound 1, Fig. 1, which is based on polynucleative strand-type ligand 2-hydroxyimino-N'-[1-(2-pyridyl)ethylidene]propanohydrazone (Hpop) (Fig. 1). It has been shown previously that Hpop is able to form mono- and tetranuclear [2 x 2] grid-like assemblies with 3d-metal ions (Moroz et al., 2008a,b).

The title compound consists of neutral complex molecules and solvating water molecules. Zinc ion has a distorted tetragonal bipyramidal geometry. The coordination polyhedron is formed by two oxygen atoms from the amide groups and four nitrogen atoms belonging to two azomethine and two pyridine groups. The Zn—N and Zn—O bond lengths are comparable to previously reported zinc complexes with thiosemicarbasone and semicarbasone derivatives (Kasuga et al., (2003)), ligands with pyridine groups complexed to the metal ion (Petrusenko et al. (1997), Comba et al., (2002)) and the zinc-containing complex based on Hpop (Moroz et al., 2008b) (Table 1). The bite angles around the central atom deviate from an ideal square-planar configuration, that is a consequence of the formation of four almost flat five-membered chelate rings (Table 1). The ligands exist in complex molecule in singly charged form due to deprotonation of the amide group, C–N, C–O and N–N' bond distances are typical for deprotonated functions. In Hpop the oxime group is situated in anti- position to the amide group which was early shown in the structures of the free ligand and similiar compounds - amide derivatives of 2-hydroxyiminopropanoic acid (Onindo et al. (1995); Sliva et al. (1997a,b); Mokhir et al. (2002); Moroz et al., 2009a,b).

In the crystal packing the molecules of 1 form columns along a crystallographic direction due to hydrogen bonds and π -stacking interaction (Fig. 2). The columns are connected in 3D structure by a variety of hydrogen bonds where solvated water molecules act as donors and O and N atoms of the oxime group and O atom of the amide group of the ligand act as acceptors (Table 2).

S2. Experimental

Zinc(II) acetate (0.011 g, 0.05 mmol) in 5 ml H_2O was added to 10 ml of hot methanol solution of H**pop** (0.022 g, 0.1 mmol) and followed by 1 ml of alkali solution (0.1 M KOH). The mixture was left for slow evaporation at room temperature. After 5 days cubic yellowish crystals of 1 suitable for X-ray analysis were obtained.

S3. Refinement

The H₂O hydrogen atoms were located from the difference Fourier map but constrained to ride on their parent atom, with $U_{iso} = 1.5 U_{eq}$ (parent atom). Other hydrogen atoms were positioned geometrically and were also constrained to ride on their parent atoms, with C—H = 0.95-0.98 Å, and $U_{iso} = 1.2$ -1.5 U_{eq} (parent atom). The highest peak is located 1.15 Å from atom H5O and the deepest hole is located 0.82 Å from atom Zn1.

Figure 1

1 A view of compound 1, with displacement ellipsoids shown at the 40% probability level.

Figure 2

A packing diagram for 1 viewed in projection down the *a* axis. Hydrogen bonds are indicated by dashed lines; H atoms are omitted for clarity.

Bis{2-hydroxyimino-N'-[1-(2- pyridyl)ethylidene]propanohydrazidato}zinc(II) dihydrate

Z = 2

F(000) = 560 $D_x = 1.580 \text{ Mg m}^{-3}$

 $\theta = 1.0-27.5^{\circ}$

 $\mu = 1.14 \text{ mm}^{-1}$

Needle, yellow

 $0.28 \times 0.07 \times 0.02 \text{ mm}$

 $T_{\min} = 0.743, T_{\max} = 0.977$ 21551 measured reflections 5171 independent reflections 4253 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$

T = 100 K

 $R_{\rm int} = 0.048$

 $h = -10 \rightarrow 10$ $k = -13 \rightarrow 13$ $l = -18 \rightarrow 18$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4952 reflections

Crystal data

$$\begin{split} & [Zn(C_{10}H_{11}N_4O_2)_2] \cdot 2H_2O \\ & M_r = 539.86 \\ & \text{Triclinic, } P\overline{1} \\ & \text{Hall symbol: -P 1} \\ & a = 8.3241 \ (3) \text{ Å} \\ & b = 10.6299 \ (4) \text{ Å} \\ & c = 13.9006 \ (5) \text{ Å} \\ & \alpha = 94.184 \ (2)^{\circ} \\ & \beta = 101.389 \ (2)^{\circ} \\ & \gamma = 108.052 \ (2)^{\circ} \\ & V = 1134.48 \ (7) \text{ Å}^3 \end{split}$$

Data collection

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from
$wR(F^2) = 0.092$	neighbouring sites
S = 1.05	H-atom parameters constrained
5171 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0417P)^2 + 0.8841P]$
320 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.95 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displaced	nent parameters (Ų)
---	---------------------

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1	0.39746 (3)	0.27581 (3)	0.304853 (19)	0.01820 (9)	
01	0.16169 (19)	0.20226 (15)	0.34643 (12)	0.0202 (3)	
O2	-0.32670 (19)	-0.16202 (17)	0.32111 (13)	0.0239 (4)	

H2O	-0.3576	-0.2526	0.3012	0.036*
03	0.30726 (19)	0.37780 (16)	0.18911 (12)	0.0204 (3)
04	0.4981 (2)	0.70910 (18)	0.00903 (13)	0.0290 (4)
H4O	0.6065	0.7601	0.0013	0.044*
05	0.1803 (2)	0.1858 (2)	0.01793 (14)	0.0367 (4)
H5P	0.2119	0.2596	0.0646	0.055*
H5O	0.1264	0.1984	-0.0383	0.055*
06	0.0879 (2)	0.29498 (19)	-0.16109 (14)	0.0351 (4)
H6O	0.0697	0.2177	-0.2017	0.053*
H6P	0.2077	0.3384	-0.1471	0.053*
N1	0.5988 (2)	0.2424 (2)	0.22445 (14)	0.0207 (4)
N2	0.3039 (2)	0.07661 (19)	0.24489 (14)	0.0175 (4)
N3	0.1450 (2)	0.00054 (19)	0.25994 (14)	0.0181 (4)
N4	-0.1642 (2)	-0.11100 (19)	0.29900 (15)	0.0205 (4)
N5	0.5549 (2)	0.2876 (2)	0.45404 (14)	0.0212 (4)
N6	0.5524 (2)	0.4762 (2)	0.34417 (14)	0.0190 (4)
N7	0.5460 (2)	0.55914 (19)	0.27198 (14)	0.0188 (4)
N8	0.5314 (3)	0.6441 (2)	0.09127 (15)	0.0230 (4)
C1	0.7541 (3)	0.3275 (3)	0.22043 (18)	0.0258 (5)
H1	0.7857	0.4185	0.2482	0.031*
C2	0.8707 (3)	0.2868 (3)	0.17679 (19)	0.0306 (6)
H2	0.9811	0.3486	0.1767	0.037*
C3	0.8235 (3)	0.1560 (3)	0.13393 (18)	0.0288 (6)
H3	0.9005	0.1263	0.1035	0.035*
C4	0.6620 (3)	0.0680 (3)	0.13569 (18)	0.0255 (5)
H4	0.6257	-0.0224	0.1055	0.031*
C5	0.5538 (3)	0.1148 (2)	0.18269 (16)	0.0203 (5)
C6	0.3825 (3)	0.0232 (2)	0.19170 (16)	0.0190 (5)
C7	0.3161 (3)	-0.1184 (3)	0.14258 (19)	0.0264 (5)
H7A	0.3898	-0.1670	0.1744	0.040*
H7B	0.3181	-0.1209	0.0722	0.040*
H7C	0.1966	-0.1606	0.1488	0.040*
C8	0.0873 (3)	0.0788 (2)	0.31405 (16)	0.0165 (4)
C9	-0.0868 (3)	0.0123 (2)	0.33642 (16)	0.0174 (4)
C10	-0.1580 (3)	0.0927 (2)	0.39855 (18)	0.0223 (5)
H10A	-0.2852	0.0583	0.3795	0.034*
H10B	-0.1168	0.1865	0.3883	0.034*
H10C	-0.1187	0.0860	0.4686	0.034*
C11	0.5453 (3)	0.1915 (3)	0.51063 (18)	0.0249(5)
H11	0.4600	0.1061	0.4865	0.030*
C12	0.6559 (3)	0.2109 (3)	0.60431 (19)	0.0302 (6)
H12	0.6500	0.1389	0.6417	0.036*
C13	0.7726 (3)	0.3356 (3)	0.64108 (19)	0.0305 (6)
H13	0.8473	0.3514	0.7051	0.037*
C14	0.7817 (3)	0.4389 (3)	0.58458 (18)	0.0270 (5)
H14	0.8602	0.5265	0.6099	0.032*
C15	0.6724 (3)	0.4112 (2)	0.48927 (17)	0.0212 (5)
C16	0.6797 (3)	0.5119 (2)	0.42118 (16)	0.0194 (5)

supporting information

C17	0.8289 (3)	0.6397 (2)	0.44150 (18)	0.0255 (5)	
H17A	0.8476	0.6708	0.3786	0.038*	
H17B	0.9338	0.6250	0.4774	0.038*	
H17C	0.8032	0.7074	0.4818	0.038*	
C18	0.4150 (3)	0.4947 (2)	0.19584 (17)	0.0183 (4)	
C19	0.3910 (3)	0.5686 (2)	0.10840 (17)	0.0199 (5)	
C20	0.2114 (3)	0.5440 (3)	0.04913 (19)	0.0290 (6)	
H20A	0.2124	0.6132	0.0061	0.043*	
H20B	0.1349	0.5468	0.0940	0.043*	
H20C	0.1688	0.4560	0.0083	0.043*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.01308 (13)	0.01868 (15)	0.01989 (15)	0.00111 (10)	0.00272 (10)	0.00585 (10)
01	0.0168 (8)	0.0165 (8)	0.0252 (9)	0.0013 (6)	0.0066 (6)	0.0030 (7)
O2	0.0147 (8)	0.0208 (9)	0.0335 (10)	-0.0003 (7)	0.0097 (7)	0.0043 (7)
O3	0.0172 (8)	0.0173 (8)	0.0217 (8)	0.0009 (6)	0.0003 (6)	0.0054 (7)
O4	0.0324 (9)	0.0346 (10)	0.0252 (9)	0.0134 (8)	0.0100 (7)	0.0171 (8)
O5	0.0357 (10)	0.0396 (12)	0.0305 (10)	0.0057 (9)	0.0089 (8)	0.0057 (9)
O6	0.0248 (9)	0.0351 (11)	0.0401 (11)	0.0065 (8)	0.0062 (8)	-0.0079 (9)
N1	0.0138 (9)	0.0276 (11)	0.0197 (10)	0.0043 (8)	0.0034 (7)	0.0100 (8)
N2	0.0132 (8)	0.0207 (10)	0.0195 (10)	0.0047 (7)	0.0051 (7)	0.0083 (8)
N3	0.0134 (9)	0.0175 (10)	0.0224 (10)	0.0016 (7)	0.0067 (7)	0.0050 (8)
N4	0.0154 (9)	0.0199 (10)	0.0255 (10)	0.0022 (8)	0.0084 (8)	0.0050 (8)
N5	0.0182 (9)	0.0266 (11)	0.0214 (10)	0.0080 (8)	0.0076 (8)	0.0088 (8)
N6	0.0158 (9)	0.0230 (10)	0.0161 (9)	0.0039 (8)	0.0025 (7)	0.0038 (8)
N7	0.0169 (9)	0.0198 (10)	0.0183 (9)	0.0038 (8)	0.0035 (7)	0.0065 (8)
N8	0.0282 (11)	0.0239 (11)	0.0213 (10)	0.0116 (9)	0.0080 (8)	0.0113 (8)
C1	0.0178 (11)	0.0333 (14)	0.0240 (12)	0.0037 (10)	0.0042 (9)	0.0119 (11)
C2	0.0159 (11)	0.0499 (18)	0.0265 (13)	0.0069 (11)	0.0083 (10)	0.0175 (12)
C3	0.0204 (12)	0.0486 (17)	0.0238 (13)	0.0153 (12)	0.0098 (10)	0.0134 (12)
C4	0.0224 (12)	0.0377 (15)	0.0207 (12)	0.0136 (11)	0.0072 (10)	0.0092 (11)
C5	0.0171 (11)	0.0318 (14)	0.0146 (11)	0.0095 (10)	0.0044 (9)	0.0112 (10)
C6	0.0156 (10)	0.0267 (13)	0.0153 (11)	0.0068 (9)	0.0037 (8)	0.0071 (9)
C7	0.0252 (12)	0.0289 (14)	0.0269 (13)	0.0087 (10)	0.0110 (10)	0.0032 (11)
C8	0.0141 (10)	0.0185 (11)	0.0163 (11)	0.0044 (9)	0.0023 (8)	0.0070 (9)
C9	0.0132 (10)	0.0196 (12)	0.0189 (11)	0.0039 (9)	0.0040 (8)	0.0060 (9)
C10	0.0161 (11)	0.0220 (12)	0.0270 (12)	0.0026 (9)	0.0072 (9)	0.0019 (10)
C11	0.0239 (12)	0.0290 (14)	0.0259 (13)	0.0099 (10)	0.0104 (10)	0.0115 (10)
C12	0.0324 (14)	0.0428 (16)	0.0264 (13)	0.0204 (12)	0.0137 (11)	0.0198 (12)
C13	0.0254 (13)	0.0471 (17)	0.0229 (13)	0.0151 (12)	0.0068 (10)	0.0128 (12)
C14	0.0197 (11)	0.0385 (15)	0.0204 (12)	0.0073 (10)	0.0022 (9)	0.0057 (11)
C15	0.0149 (10)	0.0300 (13)	0.0189 (11)	0.0074 (9)	0.0052 (9)	0.0035 (10)
C16	0.0154 (10)	0.0240 (12)	0.0164 (11)	0.0041 (9)	0.0028 (8)	0.0015 (9)
C17	0.0200 (11)	0.0252 (13)	0.0238 (12)	0.0005 (10)	-0.0001 (9)	0.0016 (10)
C18	0.0136 (10)	0.0202 (12)	0.0218 (11)	0.0053 (9)	0.0054 (9)	0.0054 (9)
C19	0.0207 (11)	0.0176 (11)	0.0205 (11)	0.0058 (9)	0.0034 (9)	0.0029 (9)

supporting information

C20	0.0241 (12)	0.0321 (15)	0.0277 (13)	0.0083 (11)	-0.0011 (10)	0.0096 (11)
Geome	etric parameters (A	Å, °)				
Zn1—	N2	2.061 (2) (С3—С4	1.3	385 (3)
Zn1—	N6	2.085 (2) (С3—Н3	0.9	9500
Zn1—	01	2.0880	(15) 0	C4—C5	1.3	396 (3)
Zn1—	03	2.1470	(15) 0	С4—Н4	0.9	9500
Zn1—	N5	2.1955	(19) 0	С5—С6	1.4	492 (3)
Zn1—	N1	2.2877	(19) 0	С6—С7	1.4	491 (3)
01-0	28	1.268 (3) (С7—Н7А	0.9	9800
02—N	14	1.397 (2) (С7—Н7В	0.9	9800
02—H	120	0.9213	(С7—Н7С	0.9	9800
03—0	C18	1.272 (3) (С8—С9	1.5	508 (3)
04—N	18	1.404 (2) (C9—C10	1.4	495 (3)
04—H	I4O	0.9287	(C10—H10A	0.9	9800
05—H	I5P	0.9140	(С10—Н10В	0.9	9800
О5—Н	150	0.8626	(C10—H10C	0.9	9800
06—H	16O	0.9154	(C11—C12	1.3	398 (4)
06—H	I6P	0.9335	(С11—Н11	0.9	9500
N1-C	25	1.342 (3) (C12—C13	1.3	367 (4)
N1—C	21	1.343 (3) (С12—Н12	0.9	9500
N2—C	26	1.287 (3) (C13—C14	1.3	388 (4)
N2—N	13	1.385 (2) (С13—Н13	0.9	9500
N3—C	28	1.337 (3) (C14—C15	1.4	404 (3)
N4—C	C9	1.284 (3) (С14—Н14	0.9	9500
N5—C	211	1.327 (3) (C15—C16	1.4	475 (3)
N5—C	C15	1.357 (3) (C16—C17	1.4	192 (3)
N6C	216	1.287 (3) (C17—H17A	0.9	9800
N6—N	17	1.387 (3) (C17—H17B	0.9	9800
N7—C	218	1.325 (3) (С17—Н17С	0.9	9800
N8C	C19	1.274 (3) (C18—C19	1.5	508 (3)
C1—C	22	1.398 (4) (C19—C20	1.4	491 (3)
С1—Н	[1	0.9500	(C20—H20A	0.9	9800
С2—С	23	1.375 (4) (C20—H20B	0.9	9800
С2—Н	12	0.9500	(С20—Н20С	0.9	9800
N2—Z	Zn1—N6	162.52	(7)	С6—С7—Н7А	10	9.5
N2—Z	Zn1—O1	76.10 (7) (С6—С7—Н7В	10	9.5
N6—Z	Zn1—O1	121.37	(7) H	H7A—C7—H7B	10	9.5
N2—Z	Zn1—O3	105.12	(7) (7)	С6—С7—Н7С	10	9.5
N6—Z	Zn1—O3	74.17 (6) H	Н7А—С7—Н7С	10	9.5
01—Z	Zn1—O3	96.43 (6) H	H7B—C7—H7C	10	9.5
N2—Z	Zn1—N5	106.20	(7) (7)	D1—C8—N3	12	7.01 (19)
N6—Z	Zn1—N5	75.07 (7) (D1—C8—C9	11	7.25 (19)
01—Z	Zn1—N5	93.88 (7) N	N3—C8—C9	11	5.72 (19)
03—Z	Zn1—N5	148.54	(7) N	V4—C9—C10	12	4.75 (19)
N2—Z	Zn1—N1	73.97 (7) N	V4—C9—C8	11	6.43 (19)

N6—Zn1—N1	88.55 (7)	C10—C9—C8	118.82 (19)
O1—Zn1—N1	150.07 (7)	C9—C10—H10A	109.5
O3—Zn1—N1	90.90 (6)	C9—C10—H10B	109.5
N5—Zn1—N1	94.81 (7)	H10A—C10—H10B	109.5
C8—O1—Zn1	111.22 (13)	C9—C10—H10C	109.5
N4—O2—H2O	103.0	H10A-C10-H10C	109.5
C18—O3—Zn1	110.35 (13)	H10B-C10-H10C	109.5
N8—O4—H4O	105.6	N5-C11-C12	122.6 (2)
H5P—O5—H5O	111.3	N5—C11—H11	118.7
H6O—O6—H6P	104.7	C12—C11—H11	118.7
C5—N1—C1	118.2 (2)	C13—C12—C11	118.7 (2)
C5—N1—Zn1	112.02 (14)	C13—C12—H12	120.7
C1—N1—Zn1	129.54 (18)	C11—C12—H12	120.7
C6—N2—N3	119.76 (19)	C12—C13—C14	119.8 (2)
C6—N2—Zn1	123.02 (15)	C12—C13—H13	120.1
N3—N2—Zn1	117.15 (14)	C14—C13—H13	120.1
C8—N3—N2	108.51 (18)	C13—C14—C15	118.6 (2)
C9—N4—O2	112.04 (18)	C13—C14—H14	120.7
C11—N5—C15	119.1 (2)	C15—C14—H14	120.7
C11—N5—Zn1	127.97 (17)	N5—C15—C14	121.1 (2)
C15—N5—Zn1	112.92 (14)	N5—C15—C16	116.1 (2)
C16—N6—N7	120.20 (19)	C14—C15—C16	122.7 (2)
C16—N6—Zn1	119.99 (16)	N6—C16—C15	114.0 (2)
N7—N6—Zn1	117.29 (14)	N6—C16—C17	125.2 (2)
C18—N7—N6	108.84 (18)	C15—C16—C17	120.8 (2)
C19—N8—O4	111.39 (19)	C16—C17—H17A	109.5
N1—C1—C2	122.3 (3)	C16—C17—H17B	109.5
N1—C1—H1	118.9	H17A—C17—H17B	109.5
C2—C1—H1	118.9	C16—C17—H17C	109.5
C3—C2—C1	119.1 (2)	H17A—C17—H17C	109.5
С3—С2—Н2	120.5	H17B—C17—H17C	109.5
C1—C2—H2	120.5	O3—C18—N7	126.8 (2)
C2—C3—C4	119.1 (2)	O3—C18—C19	116.84 (19)
С2—С3—Н3	120.4	N7—C18—C19	116.34 (19)
С4—С3—Н3	120.4	N8—C19—C20	126.5 (2)
C3—C4—C5	118.7 (3)	N8—C19—C18	114.9 (2)
C3—C4—H4	120.6	C20-C19-C18	118.58 (19)
C5—C4—H4	120.6	C19—C20—H20A	109.5
N1-C5-C4	122.5 (2)	C19—C20—H20B	109.5
N1—C5—C6	116.25 (19)	H20A—C20—H20B	109.5
C4—C5—C6	121.2 (2)	C19—C20—H20C	109.5
N2—C6—C7	125.1 (2)	H20A—C20—H20C	109.5
N2—C6—C5	114.6 (2)	H20B—C20—H20C	109.5
C7—C6—C5	120.3 (2)		

<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
0.92	1.89	2.801 (3)	170
0.93	1.77	2.675 (3)	164
0.91	1.93	2.811 (3)	161
0.86	2.08	2.889 (3)	157
0.92	2.12	2.934 (3)	148
0.93	2.10	2.971 (3)	154
	<i>D</i> —H 0.92 0.93 0.91 0.86 0.92 0.93	D—H H···A 0.92 1.89 0.93 1.77 0.91 1.93 0.86 2.08 0.92 2.12 0.93 2.10	DHH···AD···A0.921.892.801 (3)0.931.772.675 (3)0.911.932.811 (3)0.862.082.889 (3)0.922.122.934 (3)0.932.102.971 (3)

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) *x*-1, *y*-1, *z*; (ii) -*x*+1, -*y*+1, -*z*; (iii) -*x*, -*y*, -*z*.