

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(5-Amino-2-methylphenyl)-4-(3-pyridyl)pyrimidin-2-amine

Jerry P. Jasinski,^a* Ray J. Butcher,^b Q. N. M. Hakim Al-Arique,^c H. S. Yathirajan^c and B. Narayana^d

^aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ^bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, ^cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India Correspondence e-mail: jjasinski@keene.edu

Received 30 December 2009; accepted 7 January 2010

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.003 Å; *R* factor = 0.066; *wR* factor = 0.198; data-to-parameter ratio = 14.0.

The title compound, $C_{16}H_{15}N_5$, crystallizes with two independent molecules (*A* and *B*) in the asymmetric unit. The dihedral angles of the pyrimidine ring with the benzene and pyridyl rings are 22.3 (1) and 53.2 (9)°, respectively, in molecule *A*, and 6.8 (1) and 11.6 (9)° in molecule *B*. The crystal packing is influenced by the collective action of weak intermolecular $N-H\cdots N$ hydrogen bonds, a $\pi-\pi$ stacking interaction between neighbouring pyridyl rings of molecule *A* [centroid–centroid distance = 3.8395 (10) Å] and $C-H\cdots \pi$ interactions.

Related literature

For imatinib mesylate, see: Druker *et al.* (1996, 2001); Kalaycio (2004); Peggs & Mackinnon (2003). For related structures, see: Hu *et al.* (2006); Lynch & McClenaghan (2001); Santoni *et al.* (2008); Wolska *et al.* (2003). For bond-length data, see: Allen *et al.* (1987). For MOPAC Parameterized Model 3 calculation, see: Schmidt & Polik (2007).

c = 12.8594 (4) Å

 $\alpha = 72.719 \ (3)^{\circ}$

 $\beta = 89.724 (3)^{\circ}$

 $\gamma = 77.712 \ (3)^{\circ}$

V = 1385.05 (8) Å³

Experimental

Crystal data

 $C_{16}H_{15}N_5$ $M_r = 277.33$ Triclinic, *P*1 a = 9.2242 (3) Å b = 12.5399 (4) Å Z = 4Cu K α radiation $\mu = 0.67 \text{ mm}^{-1}$

Data collection

Oxford Diffraction Gemini R diffractometer 11476 measured reflections

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.066 & 381 \text{ parameters} \\ wR(F^2) &= 0.198 & H\text{-atom parameters constrained} \\ S &= 1.08 & \Delta\rho_{\text{max}} = 0.32 \text{ e} \text{ Å}^{-3} \\ 5337 \text{ reflections} & \Delta\rho_{\text{min}} = -0.36 \text{ e} \text{ Å}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1A - H1AA \cdots N5B^{i}$	0.88	2.36	3.154 (2)	151
$N2A - H2AB \cdots N3A^{ii}$	0.88	2.11	2.9815 (17)	170
$N1B - H1BA \cdots N5A^{i}$	0.88	2.31	3.130 (2)	155
$C2A - H2AA \cdots Cg3$	0.95	2.87	3.7834 (19)	162
$C14A - H14A \cdots Cg2^{iii}$	0.95	2.64	3.4709 (18)	146

Symmetry codes: (i) -x + 1, -y + 2, -z + 2; (ii) -x, -y + 2, -z + 1; (iii) -x, -y + 2, -z + 1; Ciii) -x, -y + 2, -z + 2. Cg2 and Cg3 are centroids of the C1A-C6A and C1B-C6B rings, respectively.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2007); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

QNMHA thanks the University of Mysore for the use of their research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2512).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Druker, B. J., Sawyers, C. L., Kantarjian, H., Resta, D. J., Reese, S. F., Ford, J. M., Capdeville, R. & Talpaz, M. (2001). N. Engl. J. Med. 344, 1038–1042.
- Druker, B. J., Tamura, S., Buchdunger, E., Ohno, S., Segal, G. M., Fanning, S., Zimmermann, J. & Lydon, N. B. (1996). Nat. Med. 2, 561–566.

Hu, Y.-G., Zheng, A.-H. & Li, G.-H. (2006). Acta Cryst. E62, 01457–01459.

- Kalaycio, M. (2004). Curr. Hematol. Rep. **3**, 37–38.
- Lynch, D. E. & McClenaghan, I. (2001). Acta Cryst. C57, 830–832.
- Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Peggs, K. & Mackinnon, S. (2003). N. Engl. J. Med. 348, 1048-1050.
- Santoni, M.-P. C., Yu, S. H., Hanan, G. S., Proust, A. & Hasenknopf, B. (2008). Acta Cryst. E64, 0584.
- Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO LLC, Holland, MI, USA, available from http://www.webmo.net.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wolska, I., Herold, F. & Maj, M. (2003). Acta Cryst. E59, 0511-0513.

5337 independent reflections

4629 reflections with $I > 2\sigma(I)$

 $0.55 \times 0.48 \times 0.37 \text{ mm}$

T = 200 K

 $R_{\rm int} = 0.041$

supporting information

Acta Cryst. (2010). E66, o349 [https://doi.org/10.1107/S1600536810000899] N-(5-Amino-2-methylphenyl)-4-(3-pyridyl)pyrimidin-2-amine Jerry P. Jasinski, Ray J. Butcher, Q. N. M. Hakim Al-Arigue, H. S. Yathirajan and B. Narayana

S1. Comment

The title compound, (I), C₁₆H₁₅N₅, is an intermediate in the synthesis of imatinib mesylate, a specific inhibitor of Bcr-Abl kinase, produces clinical remission in CML patients with minimal toxicity (Druker *et al.*, 1996, 2001). This selective inhibition of Bcr-Abl kinase by STI-571 has been a successful therapeutic strategy for CML because of the high efficacy and mild side effects of this compound (Peggs & Mackinnon, 2003; Kalaycio, 2004). Imatinib, a 2-phenylamino-pyrimidine derivative that functions as a specific inhibitor of a number of tyrosine kinase enzymes, is a drug used to treat certain types of cancer and is used in treating chronic myelogenous leukemia (CML), gastrointestinal stromal tumors (GISTs) and a number of other malignancies. It is the first member of a new class of agents that act by inhibiting particular tyrosine kinase enzymes, instead of non-specifically inhibiting rapidly dividing cells. The crystal structures of related compounds, *viz*, 2-amino-4-(4-pyridyl)pyrimidine and the 1:1 adduct with 4-aminobenzoic acid (Lynch & McClenaghan, 2001), 4-(2-pyridyl)-1H,2H-pyrido[1,2-c]pyrimidine-1,3-dione (Wolska *et al.*, 2003), 3-(4-methyl-phenyl)-2-(1-pyridyl)-3H-benzo[4,5]furo[3,2-*d*]pyrimidin-4-one (Hu *et al.*, 2006), and 5-phenyl-2-(4-pyridyl)pyrimidine (Santoni *et al.*, 2008) have been reported. In view of the importance of the title compound, its crystal structure is reported.

The title compound crystallizes with two molecules (A & B) in the asymmetric unit (Fig. 1 & 2). The molecular structure consists of an amine nitrogen atom bonded to 5-amino-2-methylphenyl and 3-pyridyl-2-pyrimidine groups, respectively. Bond lengths and bond angles are all within expected ranges (Allen *et al.*, 1987). The dihedral angles between the mean planes of the 2-pyrimidine ring and the phenyl and pyridyl rings are 22.3 (1) and 53.2 (9)° in A, and 6.8 (1) and 11.6 (9)° in B, respectively, presenting a much different structural arrangement in each of these molecules. Crystal packing is influenced by the collective action of weak intermolecular N—H…N hydrogen bond interactions (Table 1 and Fig. 3), π - π stacking interactions between nearby pyridyl A rings, [Cg1... $Cg1^{iv} = 3.8395$ Å; slippage = 1.520 Å; Cg1 is the centroid of C12A–C15A/N5A/C16A ring; symmetry code: (iv) -*x*, -*y*, 2 - *z*] and C—H… π interactions between the phenyl A and B rings (Table 1).

A geometry optimized MOPAC PM3 (Parameterized Model 3) computational calculation (Schmidt & Polik, 2007), *in vacuo*, on each molecule separately supports these observations. The dihedral angle between the mean planes of the 2-pyrimidine ring and the phenyl and pyridyl rings change to 36.86, 40.06° in A and 0.00, 9.95° in B, respectively, providing support to these effects and contribute to the packing of these molecules into chains propagating along the [011].

S2. Experimental

The title compound was obtained as a gift sample from INTERMED LABS PRIVATE LTD., Bangalore, India. X-ray quality crystals were grown from methanol: ethyl acetate (9:1) by slow evaporation of solvent mixture. The melting range was found to be 398–401 K.

S3. Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model, with C—N = 0.88 Å and C—H = 0.95–0.98 Å, and with $U_{iso}(H) = 1.19-1.50U_{eq}(C, N)$.

Figure 1

Molecular structure of (I), $C_{16}H_{15}N_5$, molecule A, showing the atom labeling scheme and 50% probability displacement ellipsoids.

Molecular structure of (I), $C_{16}H_{15}N_5$, molecule B, showing the atom labeling scheme and 50% probability displacement ellipsoids.

Figure 3

The molecular packing for (I) viewed down the *a* axis. Dashed lines indicate weak N—H…N intermolecular hydrogen bond interactions which link the molecule into chains propagating along the [011].

N-(5-Amino-2-methylphenyl)-4-(3-pyridyl)pyrimidin-2-amine

Crystal data

C₁₆H₁₅N₅ $M_r = 277.33$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 9.2242 (3) Å b = 12.5399 (4) Å c = 12.8594 (4) Å a = 72.719 (3)° $\beta = 89.724$ (3)° $\gamma = 77.712$ (3)° V = 1385.05 (8) Å³

Data collection

Oxford Diffraction Gemini R	5337 independent reflections
diffractometer	4629 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.041$
Graphite monochromator	$\theta_{\text{max}} = 73.7^{\circ}, \ \theta_{\text{min}} = 4.4^{\circ}$
Detector resolution: 10.5081 pixels mm ⁻¹	$h = -11 \rightarrow 10$
φ and ω scans	$k = -15 \rightarrow 15$
11476 measured reflections	$l = -15 \rightarrow 15$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.066$	Hydrogen site location: inferred from
$wR(F^2) = 0.198$	neighbouring sites
<i>S</i> = 1.08	H-atom parameters constrained
5337 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1456P)^2 + 0.1456P]$
381 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.008$

Z = 4

F(000) = 584

 $\theta = 4.4 - 73.5^{\circ}$

 $\mu = 0.67 \text{ mm}^{-1}$

T = 200 K

 $D_{\rm x} = 1.330 {\rm ~Mg} {\rm ~m}^{-3}$

Prism, yellow-orange

 $0.55 \times 0.48 \times 0.37$ mm

Cu Ka radiation, $\lambda = 1.54184$ Å

Cell parameters from 8631 reflections

Special details

direct methods

Primary atom site location: structure-invariant

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2

 $\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.36 \ {\rm e} \ {\rm \AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1A	0.45135 (18)	1.19152 (15)	0.78047 (14)	0.0532 (4)
H1AA	0.4813	1.2472	0.7965	0.064*
H1AB	0.4989	1.1200	0.8104	0.064*
N2A	0.09164 (16)	1.06549 (11)	0.59640 (10)	0.0367 (3)
H2AB	0.0731	1.0718	0.5275	0.044*

N3A	0.00963 (15)	0.89841 (12)	0.63377 (10)	0.0351 (3)
N4A	0.09680 (14)	0.95804 (11)	0.77803 (10)	0.0315 (3)
N5A	0.22563 (16)	0.91112 (13)	1.09733 (11)	0.0402 (3)
C1A	0.14467 (17)	1.15507 (13)	0.61884 (11)	0.0325 (3)
C2A	0.27421 (17)	1.12989 (14)	0.68428 (12)	0.0354(3)
H2AA	0.3267	1.0525	0.7136	0.043*
C3A	0.32847(18)	1 21663 (15)	0.70762(13)	0.0384(4)
C4A	0.2529(2)	1 33008 (14)	0.66004(13)	0.0402(4)
Н4АА	0.2900	1 3908	0.6720	0.048*
C5A	0.1243(2)	1 35351 (14)	0.59555(13)	0.0405(4)
Н5АА	0.0740	1.33331 (11)	0.5644	0.049*
C6A	0.0740 0.06427(18)	1.4512	0.5044 0 57380 (11)	0.049
C7A	-0.0847(2)	1 20035 (14)	0.57300(11) 0.51227(14)	0.0349(3)
	-0.1031	1.2322	0.4949	0.0449(4)
	-0.0852	1.2522	0.4445	0.067*
	-0.1627	1.3014	0.4443	0.067*
H/AC	-0.1027	1.3243	0.3373	0.007°
COA	0.00709(10)	0.97037(13)	0.07282(11)	0.0307(3)
C9A	-0.02004 (18)	0.80801 (14)	0.70933 (13)	0.0364 (4)
HYAA	-0.0606	0.7550	0.6856	0.044*
CIOA	0.00484 (18)	0.78733 (14)	0.81973 (12)	0.0352 (3)
HIOA	-0.0175	0.7222	0.8717	0.042*
CIIA	0.06433 (15)	0.86674 (13)	0.85112 (12)	0.0305 (3)
C12A	0.09418 (16)	0.85691 (13)	0.96677 (11)	0.0309 (3)
C13A	0.02152 (18)	0.79443 (15)	1.05046 (13)	0.0379 (4)
H13A	-0.0485	0.7548	1.0347	0.045*
C14A	0.05232 (19)	0.79062 (15)	1.15671 (13)	0.0410 (4)
H14A	0.0043	0.7484	1.2152	0.049*
C15A	0.15462 (19)	0.84969 (15)	1.17594 (13)	0.0396 (4)
H15A	0.1758	0.8465	1.2492	0.048*
C16A	0.19464 (18)	0.91374 (14)	0.99509 (12)	0.0352 (3)
H16A	0.2441	0.9570	0.9383	0.042*
N1B	0.6390 (2)	0.87330 (16)	0.93581 (14)	0.0577 (5)
H1BA	0.7029	0.9169	0.9334	0.069*
H1BB	0.6078	0.8380	0.9988	0.069*
N2B	0.35671 (16)	0.69036 (13)	0.74824 (11)	0.0410 (3)
H2BB	0.3241	0.6949	0.6825	0.049*
N3B	0.23997 (18)	0.54289 (14)	0.79199 (12)	0.0442 (4)
N4B	0.33110 (14)	0.60433 (12)	0.93401 (11)	0.0351 (3)
N5B	0.40511 (18)	0.59479 (14)	1.25219 (12)	0.0479 (4)
C1B	0.44747 (17)	0.76724 (14)	0.74862 (13)	0.0365 (4)
C2B	0.49205 (18)	0.78610 (14)	0.84372 (13)	0.0386 (4)
H2BA	0.4574	0.7484	0.9115	0.046*
C3B	0.58759 (18)	0.86016 (15)	0.84028 (15)	0.0409 (4)
C4B	0.63588 (18)	0.91542 (15)	0.73977 (15)	0.0436 (4)
H4BA	0.7005	0.9661	0.7357	0.052*
C5B	0.58953 (19)	0.89634 (15)	0.64595 (15)	0.0439 (4)
H5BA	0.6238	0.9347	0.5783	0.053*
C6B	0.49516 (18)	0.82354 (15)	0.64661 (13)	0.0402 (4)
		··· · · · · · · · · · · · · · · · · ·	······································	······································

C7B	0.4463 (2)	0.80618 (19)	0.54245 (15)	0.0525 (5)
H7BA	0.5010	0.8444	0.4824	0.079*
H7BB	0.3395	0.8388	0.5266	0.079*
H7BC	0.4665	0.7241	0.5506	0.079*
C8B	0.30922 (17)	0.61004 (14)	0.82990 (13)	0.0351 (3)
C9B	0.1970 (3)	0.46071 (19)	0.86902 (16)	0.0539 (5)
H9BA	0.1491	0.4103	0.8469	0.065*
C10B	0.2180 (3)	0.44439 (18)	0.97932 (16)	0.0528 (5)
H10B	0.1892	0.3829	1.0323	0.063*
C11B	0.28304 (18)	0.52179 (14)	1.00929 (14)	0.0373 (4)
C12B	0.30358 (18)	0.51873 (14)	1.12446 (13)	0.0374 (4)
C13B	0.2455 (2)	0.44605 (18)	1.20945 (15)	0.0509 (5)
H13B	0.1905	0.3952	1.1954	0.061*
C14B	0.2686 (3)	0.44835 (19)	1.31517 (16)	0.0563 (5)
H14B	0.2303	0.3990	1.3747	0.068*
C15B	0.3480 (2)	0.52349 (18)	1.33216 (15)	0.0494 (4)
H15B	0.3631	0.5248	1.4048	0.059*
C16B	0.3822 (2)	0.59124 (16)	1.15134 (14)	0.0420 (4)
H16B	0.4222	0.6416	1.0937	0.050*

Atomic displacement parameters $(Å^2)$

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
N1A $0.0455 (8)$ $0.0539 (9)$ $0.0633 (10)$ $-0.0141 (7)$ $-0.0140 (7)$ $-0.0198 (8)$ N2A $0.0504 (8)$ $0.0383 (7)$ $0.0242 (6)$ $-0.0166 (6)$ $-0.0026 (5)$ $-0.0088 (5)$ N3A $0.0419 (7)$ $0.0404 (7)$ $0.0270 (6)$ $-0.0152 (6)$ $-0.0007 (5)$ $-0.0119 (5)$ N4A $0.0344 (6)$ $0.0360 (7)$ $0.0262 (6)$ $-0.0104 (5)$ $0.0003 (5)$ $-0.0107 (5)$ N5A $0.0477 (7)$ $0.0474 (8)$ $0.0311 (7)$ $-0.0121 (6)$ $-0.0043 (5)$ $-0.0100 (5)$ C1A $0.0392 (8)$ $0.0361 (8)$ $0.0248 (6)$ $-0.0131 (6)$ $0.0039 (5)$ $-0.0100 (5)$ C2A $0.0367 (8)$ $0.0372 (8)$ $0.0336 (7)$ $-0.0166 (6)$ $0.0018 (6)$ $-0.0132 (6)$ C4A $0.0502 (9)$ $0.0402 (8)$ $0.0358 (8)$ $-0.0159 (7)$ $0.0019 (6)$ $-0.0082 (6)$ C5A $0.0546 (10)$ $0.0343 (8)$ $0.0238 (6)$ $-0.0101 (6)$ $-0.0007 (6)$ $-0.0082 (6)$ C7A $0.0495 (9)$ $0.0448 (9)$ $0.0381 (8)$ $-0.0037 (7)$ $-0.0097 (7)$ $-0.0135 (7)$ C8A $0.0321 (7)$ $0.0344 (7)$ $0.0227 (7)$ $-0.0087 (6)$ $0.0001 (6)$ $-0.0097 (6)$ C10A $0.0389 (8)$ $0.0396 (8)$ $0.0299 (7)$ $-0.0158 (6)$ $0.0035 (6)$ $-0.0107 (5)$ C9A $0.0409 (8)$ $0.0419 (8)$ $0.0229 (7)$ $-0.0158 (6)$ $0.0035 (6)$ $-0.0107 (6)$ C11A $0.0285 (7)$ $0.0364 (7)$ $0.0274 (7)$ -0.007		U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N2A 0.0504 (8) 0.0383 (7) 0.0242 (6) -0.0166 (6) -0.0026 (5) -0.0088 (5)N3A 0.0419 (7) 0.0404 (7) 0.0270 (6) -0.0152 (6) -0.0007 (5) -0.0119 (5)N4A 0.0344 (6) 0.0360 (7) 0.0262 (6) -0.0104 (5) 0.0003 (5) -0.0107 (5)N5A 0.0437 (7) 0.0474 (8) 0.0311 (7) -0.0121 (6) -0.0043 (5) -0.0129 (6)C1A 0.0392 (8) 0.0361 (8) 0.0248 (6) -0.0136 (6) 0.0018 (6) -0.0109 (6)C2A 0.0367 (8) 0.0372 (8) 0.0345 (8) -0.0159 (7) 0.0019 (6) -0.0132 (6)C3A 0.0381 (8) 0.0463 (9) 0.0345 (8) -0.0195 (7) 0.0028 (6) -0.0132 (6)C4A 0.502 (9) 0.0402 (8) 0.0358 (8) -0.0195 (7) 0.0028 (6) -0.0082 (6)C5A 0.0546 (10) 0.0343 (8) 0.0238 (6) -0.0101 (6) 0.0001 (6) -0.0082 (6)C6A 0.0413 (8) 0.0394 (8) 0.0228 (6) -0.0037 (7) -0.0097 (7) -0.0135 (7)C8A 0.0321 (7) 0.0344 (7) 0.0271 (7) -0.0087 (6) 0.0005 (5) -0.0107 (5)C9A 0.4049 (8) 0.0419 (8) 0.0299 (7) -0.0188 (6) 0.0025 (6) -0.0153 (6)C10A 0.0396 (8) 0.0299 (7) -0.0186 (6) 0.0003 (5) -0.0107 (6)C11A 0.0285 (7) 0.0364 (7) 0.0271 (7) -0.0076 (6) 0.0032 (N1A	0.0455 (8)	0.0539 (9)	0.0633 (10)	-0.0141 (7)	-0.0140 (7)	-0.0198 (8)
N3A $0.0419(7)$ $0.0404(7)$ $0.0270(6)$ $-0.0152(6)$ $-0.0007(5)$ $-0.0119(5)$ N4A $0.0344(6)$ $0.0360(7)$ $0.0262(6)$ $-0.0104(5)$ $0.0003(5)$ $-0.0107(5)$ N5A $0.0437(7)$ $0.0474(8)$ $0.0311(7)$ $-0.0121(6)$ $-0.0043(5)$ $-0.0129(6)$ C1A $0.0392(8)$ $0.0361(8)$ $0.0248(6)$ $-0.0131(6)$ $0.0039(5)$ $-0.0100(5)$ C2A $0.0367(8)$ $0.0372(8)$ $0.0336(7)$ $-0.0106(6)$ $0.0018(6)$ $-0.0132(6)$ C3A $0.0381(8)$ $0.0463(9)$ $0.0345(8)$ $-0.0159(7)$ $0.0028(6)$ $-0.0132(6)$ C4A $0.502(9)$ $0.0402(8)$ $0.0358(8)$ $-0.0197(7)$ $-0.0007(6)$ $-0.0082(6)$ C5A $0.0546(10)$ $0.0343(8)$ $0.0319(7)$ $-0.0101(6)$ $0.0001(6)$ $-0.0084(6)$ C7A $0.0495(9)$ $0.0448(9)$ $0.0381(8)$ $-0.0037(7)$ $-0.0097(7)$ $-0.0135(7)$ C8A $0.321(7)$ $0.0344(7)$ $0.0271(7)$ $-0.0087(6)$ $0.0005(5)$ $-0.0107(5)$ C9A $0.0409(8)$ $0.0419(8)$ $0.0332(8)$ $-0.0184(6)$ $0.0025(6)$ $-0.0153(6)$ C10A $0.339(8)$ $0.0396(8)$ $0.0299(7)$ $-0.0158(6)$ $0.0016(5)$ $-0.0100(6)$ C11A $0.0285(7)$ $0.0364(7)$ $0.0271(7)$ $-0.0087(6)$ $0.0016(5)$ $-0.0100(6)$ C1A $0.0391(8)$ $0.0497(9)$ $0.0274(7)$ $-0.0076(6)$ $0.0016(5)$ $-0.0100(6)$ C1A $0.0391(8)$	N2A	0.0504 (8)	0.0383 (7)	0.0242 (6)	-0.0166 (6)	-0.0026 (5)	-0.0088 (5)
N4A 0.0344 (6) 0.0360 (7) 0.0262 (6) -0.0104 (5) 0.0003 (5) -0.0107 (5)N5A 0.0437 (7) 0.0474 (8) 0.0311 (7) -0.0121 (6) -0.0043 (5) -0.0129 (6)C1A 0.0392 (8) 0.0361 (8) 0.0248 (6) -0.0131 (6) 0.0039 (5) -0.0100 (5)C2A 0.0367 (8) 0.0372 (8) 0.0336 (7) -0.0106 (6) 0.0018 (6) -0.0199 (6)C3A 0.0381 (8) 0.0463 (9) 0.0345 (8) -0.0159 (7) 0.0028 (6) -0.0132 (6)C4A 0.0502 (9) 0.0402 (8) 0.0358 (8) -0.0197 (7) 0.0028 (6) -0.0130 (6)C5A 0.0546 (10) 0.0343 (8) 0.0319 (7) -0.0109 (7) -0.0007 (6) -0.0082 (6)C6A 0.0413 (8) 0.0394 (8) 0.0238 (6) -0.0101 (6) 0.0001 (6) -0.0084 (6)C7A 0.0495 (9) 0.0448 (9) 0.0381 (8) -0.0037 (7) -0.0097 (7) -0.0153 (6)C7A 0.0495 (9) 0.0448 (9) 0.0321 (8) -0.0037 (7) -0.0097 (7) -0.0153 (6)C10A 0.0389 (8) 0.0396 (8) 0.0299 (7) -0.0158 (6) 0.0005 (5) -0.0107 (5)C9A 0.0409 (8) 0.0396 (8) 0.0299 (7) -0.0158 (6) 0.0003 (5) -0.0106 (6)C11A 0.0285 (7) 0.0364 (7) 0.0271 (7) -0.0056 (6) 0.0003 (5) -0.0100 (6)C12A 0.0304 (7) 0.0350 (7) 0.0271 (7) -0.0056	N3A	0.0419 (7)	0.0404 (7)	0.0270 (6)	-0.0152 (6)	-0.0007 (5)	-0.0119 (5)
N5A 0.0437 (7) 0.0474 (8) 0.0311 (7) -0.0121 (6) -0.0043 (5) -0.0129 (6)C1A 0.0392 (8) 0.0361 (8) 0.0248 (6) -0.0131 (6) 0.0039 (5) -0.0100 (5)C2A 0.0367 (8) 0.0372 (8) 0.0336 (7) -0.0106 (6) 0.0018 (6) -0.0199 (6)C3A 0.0381 (8) 0.0463 (9) 0.0345 (8) -0.0159 (7) 0.0019 (6) -0.0132 (6)C4A 0.0502 (9) 0.0402 (8) 0.0358 (8) -0.0195 (7) 0.0028 (6) -0.0130 (6)C5A 0.0546 (10) 0.0343 (8) 0.0238 (6) -0.0101 (6) 0.0007 (6) -0.0082 (6)C6A 0.0413 (8) 0.0394 (8) 0.0238 (6) -0.0101 (6) 0.0007 (6) -0.0084 (6)C7A 0.0495 (9) 0.0448 (9) 0.0381 (8) -0.0037 (7) -0.0097 (7) -0.0135 (7)C8A 0.0321 (7) 0.0344 (7) 0.0271 (7) -0.0087 (6) 0.0005 (5) -0.0107 (5)C9A 0.0409 (8) 0.0419 (8) 0.0299 (7) -0.0184 (6) 0.0025 (6) -0.0097 (6)C11A 0.0285 (7) 0.0364 (7) 0.0274 (7) -0.0076 (6) 0.0016 (5) -0.0106 (6)C12A 0.0304 (7) 0.0350 (7) 0.0274 (7) -0.0076 (6) 0.0003 (5) -0.0106 (6)C12A 0.0304 (7) 0.0350 (7) 0.0274 (7) -0.0076 (6) 0.0003 (6) -0.0121 (6)C13A 0.0391 (8) 0.0466 (9) 0.0326 (7) -0.0125	N4A	0.0344 (6)	0.0360 (7)	0.0262 (6)	-0.0104 (5)	0.0003 (5)	-0.0107 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N5A	0.0437 (7)	0.0474 (8)	0.0311 (7)	-0.0121 (6)	-0.0043 (5)	-0.0129 (6)
C2A $0.0367 (8)$ $0.0372 (8)$ $0.0336 (7)$ $-0.0106 (6)$ $0.0018 (6)$ $-0.0109 (6)$ C3A $0.0381 (8)$ $0.0463 (9)$ $0.0345 (8)$ $-0.0159 (7)$ $0.0019 (6)$ $-0.0132 (6)$ C4A $0.0502 (9)$ $0.0402 (8)$ $0.0358 (8)$ $-0.0195 (7)$ $0.0028 (6)$ $-0.0130 (6)$ C5A $0.0546 (10)$ $0.0343 (8)$ $0.0319 (7)$ $-0.0109 (7)$ $-0.0007 (6)$ $-0.0082 (6)$ C6A $0.0413 (8)$ $0.0394 (8)$ $0.0238 (6)$ $-0.0101 (6)$ $0.0001 (6)$ $-0.0084 (6)$ C7A $0.0495 (9)$ $0.0448 (9)$ $0.0381 (8)$ $-0.0037 (7)$ $-0.0097 (7)$ $-0.0135 (7)$ C8A $0.0321 (7)$ $0.0344 (7)$ $0.0271 (7)$ $-0.0087 (6)$ $0.0005 (5)$ $-0.0107 (5)$ C9A $0.0409 (8)$ $0.0419 (8)$ $0.0332 (8)$ $-0.0184 (6)$ $0.0025 (6)$ $-0.0153 (6)$ C10A $0.0389 (8)$ $0.0396 (8)$ $0.0299 (7)$ $-0.0158 (6)$ $0.0035 (6)$ $-0.0097 (6)$ C11A $0.0285 (7)$ $0.0364 (7)$ $0.0271 (7)$ $-0.0076 (6)$ $0.0016 (5)$ $-0.0100 (6)$ C12A $0.304 (7)$ $0.0350 (7)$ $0.0271 (7)$ $-0.0076 (6)$ $0.0003 (5)$ $-0.0100 (6)$ C13A $0.0391 (8)$ $0.0466 (9)$ $0.0306 (8)$ $-0.0125 (7)$ $0.0032 (6)$ $-0.0121 (6)$ C14A $0.0451 (9)$ $0.0457 (9)$ $0.0226 (7)$ $-0.0050 (7)$ $-0.0026 (6)$ $-0.0132 (6)$ C15A $0.0460 (9)$ $0.0457 (9)$ $0.0226 (7)$ -0.0050	C1A	0.0392 (8)	0.0361 (8)	0.0248 (6)	-0.0131 (6)	0.0039 (5)	-0.0100 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2A	0.0367 (8)	0.0372 (8)	0.0336 (7)	-0.0106 (6)	0.0018 (6)	-0.0109 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3A	0.0381 (8)	0.0463 (9)	0.0345 (8)	-0.0159 (7)	0.0019 (6)	-0.0132 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4A	0.0502 (9)	0.0402 (8)	0.0358 (8)	-0.0195 (7)	0.0028 (6)	-0.0130 (6)
C6A 0.0413 (8) 0.0394 (8) 0.0238 (6) -0.0101 (6) 0.0001 (6) -0.0084 (6)C7A 0.0495 (9) 0.0448 (9) 0.0381 (8) -0.0037 (7) -0.0097 (7) -0.0135 (7)C8A 0.0321 (7) 0.0344 (7) 0.0271 (7) -0.0087 (6) 0.0005 (5) -0.0107 (5)C9A 0.0409 (8) 0.0419 (8) 0.0332 (8) -0.0184 (6) 0.0025 (6) -0.0153 (6)C10A 0.0389 (8) 0.0396 (8) 0.0299 (7) -0.0158 (6) 0.0035 (6) -0.0097 (6)C11A 0.0285 (7) 0.0364 (7) 0.0274 (7) -0.0076 (6) 0.0016 (5) -0.0106 (6)C12A 0.0304 (7) 0.0350 (7) 0.0271 (7) -0.0056 (6) 0.0003 (5) -0.0100 (6)C13A 0.0391 (8) 0.0466 (9) 0.0366 (8) -0.0124 (7) 0.0032 (6) -0.0121 (6)C14A 0.0451 (9) 0.0457 (9) 0.0262 (7) -0.0050 (7) -0.0026 (6) -0.0132 (6)C16A 0.0379 (8) 0.0411 (8) 0.0281 (7) -0.0123 (6) 0.0003 (6) -0.0103 (6)N1B 0.0666 (11) 0.0661 (11) 0.0539 (9) -0.0375 (9) 0.0477 (8) -0.0222 (8)N2B 0.0444 (7) 0.0495 (8) 0.0322 (7) -0.0205 (6) 0.0025 (5) -0.0117 (6)N3B 0.0504 (8) 0.0514 (8) 0.0397 (7) -0.0241 (7) 0.0042 (5) -0.0118 (6)	C5A	0.0546 (10)	0.0343 (8)	0.0319 (7)	-0.0109 (7)	-0.0007 (6)	-0.0082 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6A	0.0413 (8)	0.0394 (8)	0.0238 (6)	-0.0101 (6)	0.0001 (6)	-0.0084 (6)
C8A 0.0321 (7) 0.0344 (7) 0.0271 (7) -0.0087 (6) 0.0005 (5) -0.0107 (5)C9A 0.0409 (8) 0.0419 (8) 0.0332 (8) -0.0184 (6) 0.0025 (6) -0.0153 (6)C10A 0.0389 (8) 0.0396 (8) 0.0299 (7) -0.0158 (6) 0.0035 (6) -0.0097 (6)C11A 0.0285 (7) 0.0364 (7) 0.0274 (7) -0.0076 (6) 0.0016 (5) -0.0106 (6)C12A 0.0304 (7) 0.0350 (7) 0.0271 (7) -0.0056 (6) 0.0003 (5) -0.0100 (6)C13A 0.0391 (8) 0.0466 (9) 0.0306 (8) -0.0144 (7) 0.0032 (6) -0.0121 (6)C14A 0.0451 (9) 0.0497 (9) 0.0278 (8) -0.0125 (7) 0.0073 (6) -0.0099 (6)C15A 0.0460 (9) 0.0457 (9) 0.0262 (7) -0.0050 (7) -0.0026 (6) -0.0132 (6)C16A 0.0379 (8) 0.0411 (8) 0.0281 (7) -0.0123 (6) 0.0003 (6) -0.0122 (8)N1B 0.0666 (11) 0.0661 (11) 0.0539 (9) -0.0375 (9) 0.0447 (8) -0.0222 (8)N2B 0.0444 (7) 0.0495 (8) 0.0332 (7) -0.0205 (6) 0.0025 (5) -0.0117 (6)N3B 0.0504 (8) 0.0514 (8) 0.0397 (7) -0.0241 (7) 0.0042 (5) -0.0118 (5)	C7A	0.0495 (9)	0.0448 (9)	0.0381 (8)	-0.0037 (7)	-0.0097 (7)	-0.0135 (7)
C9A $0.0409(8)$ $0.0419(8)$ $0.0332(8)$ $-0.0184(6)$ $0.0025(6)$ $-0.0153(6)$ C10A $0.0389(8)$ $0.0396(8)$ $0.0299(7)$ $-0.0158(6)$ $0.0035(6)$ $-0.0097(6)$ C11A $0.0285(7)$ $0.0364(7)$ $0.0274(7)$ $-0.0076(6)$ $0.0016(5)$ $-0.0106(6)$ C12A $0.0304(7)$ $0.0350(7)$ $0.0271(7)$ $-0.0056(6)$ $0.0003(5)$ $-0.0100(6)$ C13A $0.0391(8)$ $0.0466(9)$ $0.0306(8)$ $-0.0144(7)$ $0.0032(6)$ $-0.0121(6)$ C14A $0.0451(9)$ $0.0497(9)$ $0.0278(8)$ $-0.0125(7)$ $0.0073(6)$ $-0.0099(6)$ C15A $0.0460(9)$ $0.0457(9)$ $0.0262(7)$ $-0.0050(7)$ $-0.0026(6)$ $-0.0132(6)$ C16A $0.0379(8)$ $0.0411(8)$ $0.0281(7)$ $-0.0123(6)$ $0.0003(6)$ $-0.0103(6)$ N1B $0.0666(11)$ $0.0661(11)$ $0.0539(9)$ $-0.0375(9)$ $0.0047(8)$ $-0.0222(8)$ N2B $0.0444(7)$ $0.0495(8)$ $0.0397(7)$ $-0.0205(6)$ $0.0025(5)$ $-0.0117(6)$ N3B $0.0504(8)$ $0.0514(8)$ $0.0397(7)$ $-0.0123(5)$ $0.0042(5)$ $-0.0118(5)$	C8A	0.0321 (7)	0.0344 (7)	0.0271 (7)	-0.0087 (6)	0.0005 (5)	-0.0107 (5)
C10A $0.0389(8)$ $0.0396(8)$ $0.0299(7)$ $-0.0158(6)$ $0.0035(6)$ $-0.0097(6)$ C11A $0.0285(7)$ $0.0364(7)$ $0.0274(7)$ $-0.0076(6)$ $0.0016(5)$ $-0.0106(6)$ C12A $0.0304(7)$ $0.0350(7)$ $0.0271(7)$ $-0.0056(6)$ $0.0003(5)$ $-0.0100(6)$ C13A $0.0391(8)$ $0.0466(9)$ $0.0306(8)$ $-0.0144(7)$ $0.0032(6)$ $-0.0121(6)$ C14A $0.0451(9)$ $0.0497(9)$ $0.0278(8)$ $-0.0125(7)$ $0.0073(6)$ $-0.0099(6)$ C15A $0.0460(9)$ $0.0457(9)$ $0.0262(7)$ $-0.0050(7)$ $-0.0026(6)$ $-0.0132(6)$ C16A $0.0379(8)$ $0.0411(8)$ $0.0281(7)$ $-0.0123(6)$ $0.0003(6)$ $-0.0103(6)$ N1B $0.0666(11)$ $0.0661(11)$ $0.0539(9)$ $-0.0375(9)$ $0.0047(8)$ $-0.0222(8)$ N2B $0.0444(7)$ $0.0495(8)$ $0.0397(7)$ $-0.0205(6)$ $0.0025(5)$ $-0.0117(6)$ N3B $0.0504(8)$ $0.0514(8)$ $0.0397(7)$ $-0.0123(5)$ $0.0042(5)$ $-0.0118(5)$	C9A	0.0409 (8)	0.0419 (8)	0.0332 (8)	-0.0184 (6)	0.0025 (6)	-0.0153 (6)
C11A $0.0285(7)$ $0.0364(7)$ $0.0274(7)$ $-0.0076(6)$ $0.0016(5)$ $-0.0106(6)$ C12A $0.0304(7)$ $0.0350(7)$ $0.0271(7)$ $-0.0056(6)$ $0.0003(5)$ $-0.0100(6)$ C13A $0.0391(8)$ $0.0466(9)$ $0.0306(8)$ $-0.0144(7)$ $0.0032(6)$ $-0.0121(6)$ C14A $0.0451(9)$ $0.0497(9)$ $0.0278(8)$ $-0.0125(7)$ $0.0073(6)$ $-0.0099(6)$ C15A $0.0460(9)$ $0.0457(9)$ $0.0262(7)$ $-0.0050(7)$ $-0.0026(6)$ $-0.0132(6)$ C16A $0.0379(8)$ $0.0411(8)$ $0.0281(7)$ $-0.0123(6)$ $0.0003(6)$ $-0.0103(6)$ N1B $0.0666(11)$ $0.0661(11)$ $0.0539(9)$ $-0.0375(9)$ $0.0047(8)$ $-0.0222(8)$ N2B $0.0444(7)$ $0.0495(8)$ $0.0397(7)$ $-0.0205(6)$ $0.0025(5)$ $-0.0117(6)$ N3B $0.0504(8)$ $0.0514(8)$ $0.0397(7)$ $-0.0123(5)$ $0.0042(5)$ $-0.0118(5)$	C10A	0.0389 (8)	0.0396 (8)	0.0299 (7)	-0.0158 (6)	0.0035 (6)	-0.0097 (6)
C12A $0.0304(7)$ $0.0350(7)$ $0.0271(7)$ $-0.0056(6)$ $0.0003(5)$ $-0.0100(6)$ C13A $0.0391(8)$ $0.0466(9)$ $0.0306(8)$ $-0.0144(7)$ $0.0032(6)$ $-0.0121(6)$ C14A $0.0451(9)$ $0.0497(9)$ $0.0278(8)$ $-0.0125(7)$ $0.0073(6)$ $-0.0099(6)$ C15A $0.0460(9)$ $0.0457(9)$ $0.0262(7)$ $-0.0050(7)$ $-0.0026(6)$ $-0.0132(6)$ C16A $0.0379(8)$ $0.0411(8)$ $0.0281(7)$ $-0.0123(6)$ $0.0003(6)$ $-0.0103(6)$ N1B $0.0666(11)$ $0.0661(11)$ $0.0539(9)$ $-0.0375(9)$ $0.0047(8)$ $-0.0222(8)$ N2B $0.0444(7)$ $0.0495(8)$ $0.0332(7)$ $-0.0205(6)$ $0.0025(5)$ $-0.0117(6)$ N3B $0.0504(8)$ $0.0514(8)$ $0.0397(7)$ $-0.0123(5)$ $0.0042(5)$ $-0.0118(5)$	C11A	0.0285 (7)	0.0364 (7)	0.0274 (7)	-0.0076 (6)	0.0016 (5)	-0.0106 (6)
C13A $0.0391(8)$ $0.0466(9)$ $0.0306(8)$ $-0.0144(7)$ $0.0032(6)$ $-0.0121(6)$ C14A $0.0451(9)$ $0.0497(9)$ $0.0278(8)$ $-0.0125(7)$ $0.0073(6)$ $-0.0099(6)$ C15A $0.0460(9)$ $0.0457(9)$ $0.0262(7)$ $-0.0050(7)$ $-0.0026(6)$ $-0.0132(6)$ C16A $0.0379(8)$ $0.0411(8)$ $0.0281(7)$ $-0.0123(6)$ $0.0003(6)$ $-0.0103(6)$ N1B $0.0666(11)$ $0.0661(11)$ $0.0539(9)$ $-0.0375(9)$ $0.0047(8)$ $-0.0222(8)$ N2B $0.0444(7)$ $0.0495(8)$ $0.0332(7)$ $-0.0205(6)$ $0.0025(5)$ $-0.0117(6)$ N3B $0.0504(8)$ $0.0514(8)$ $0.0397(7)$ $-0.0123(5)$ $0.0042(5)$ $-0.0118(5)$	C12A	0.0304 (7)	0.0350 (7)	0.0271 (7)	-0.0056 (6)	0.0003 (5)	-0.0100 (6)
C14A $0.0451(9)$ $0.0497(9)$ $0.0278(8)$ $-0.0125(7)$ $0.0073(6)$ $-0.0099(6)$ C15A $0.0460(9)$ $0.0457(9)$ $0.0262(7)$ $-0.0050(7)$ $-0.0026(6)$ $-0.0132(6)$ C16A $0.0379(8)$ $0.0411(8)$ $0.0281(7)$ $-0.0123(6)$ $0.0003(6)$ $-0.0103(6)$ N1B $0.0666(11)$ $0.0661(11)$ $0.0539(9)$ $-0.0375(9)$ $0.0047(8)$ $-0.0222(8)$ N2B $0.0444(7)$ $0.0495(8)$ $0.0332(7)$ $-0.0205(6)$ $0.0025(5)$ $-0.0117(6)$ N3B $0.0504(8)$ $0.0514(8)$ $0.0397(7)$ $-0.0123(5)$ $0.0042(5)$ $-0.0118(5)$	C13A	0.0391 (8)	0.0466 (9)	0.0306 (8)	-0.0144 (7)	0.0032 (6)	-0.0121 (6)
C15A0.0460 (9)0.0457 (9)0.0262 (7)-0.0050 (7)-0.0026 (6)-0.0132 (6)C16A0.0379 (8)0.0411 (8)0.0281 (7)-0.0123 (6)0.0003 (6)-0.0103 (6)N1B0.0666 (11)0.0661 (11)0.0539 (9)-0.0375 (9)0.0047 (8)-0.0222 (8)N2B0.0444 (7)0.0495 (8)0.0332 (7)-0.0205 (6)0.0025 (5)-0.0117 (6)N3B0.0504 (8)0.0514 (8)0.0397 (7)-0.0241 (7)0.0054 (6)-0.0182 (6)N4B0.0319 (6)0.0393 (7)0.0362 (7)-0.0123 (5)0.0042 (5)-0.0118 (5)	C14A	0.0451 (9)	0.0497 (9)	0.0278 (8)	-0.0125 (7)	0.0073 (6)	-0.0099 (6)
C16A0.0379 (8)0.0411 (8)0.0281 (7)-0.0123 (6)0.0003 (6)-0.0103 (6)N1B0.0666 (11)0.0661 (11)0.0539 (9)-0.0375 (9)0.0047 (8)-0.0222 (8)N2B0.0444 (7)0.0495 (8)0.0332 (7)-0.0205 (6)0.0025 (5)-0.0117 (6)N3B0.0504 (8)0.0514 (8)0.0397 (7)-0.0241 (7)0.0054 (6)-0.0182 (6)N4B0.0319 (6)0.0393 (7)0.0362 (7)-0.0123 (5)0.0042 (5)-0.0118 (5)	C15A	0.0460 (9)	0.0457 (9)	0.0262 (7)	-0.0050 (7)	-0.0026 (6)	-0.0132 (6)
N1B0.0666 (11)0.0661 (11)0.0539 (9)-0.0375 (9)0.0047 (8)-0.0222 (8)N2B0.0444 (7)0.0495 (8)0.0332 (7)-0.0205 (6)0.0025 (5)-0.0117 (6)N3B0.0504 (8)0.0514 (8)0.0397 (7)-0.0241 (7)0.0054 (6)-0.0182 (6)N4B0.0319 (6)0.0393 (7)0.0362 (7)-0.0123 (5)0.0042 (5)-0.0118 (5)	C16A	0.0379 (8)	0.0411 (8)	0.0281 (7)	-0.0123 (6)	0.0003 (6)	-0.0103 (6)
N2B 0.0444 (7) 0.0495 (8) 0.0332 (7) -0.0205 (6) 0.0025 (5) -0.0117 (6) N3B 0.0504 (8) 0.0514 (8) 0.0397 (7) -0.0241 (7) 0.0054 (6) -0.0182 (6) N4B 0.0319 (6) 0.0393 (7) 0.0362 (7) -0.0123 (5) 0.0042 (5) -0.0118 (5)	N1B	0.0666 (11)	0.0661 (11)	0.0539 (9)	-0.0375 (9)	0.0047 (8)	-0.0222 (8)
N3B 0.0504 (8) 0.0514 (8) 0.0397 (7) -0.0241 (7) 0.0054 (6) -0.0182 (6) N4B 0.0319 (6) 0.0393 (7) 0.0362 (7) -0.0123 (5) 0.0042 (5) -0.0118 (5)	N2B	0.0444 (7)	0.0495 (8)	0.0332 (7)	-0.0205 (6)	0.0025 (5)	-0.0117 (6)
N4B 0.0319 (6) 0.0393 (7) 0.0362 (7) -0.0123 (5) 0.0042 (5) -0.0118 (5)	N3B	0.0504 (8)	0.0514 (8)	0.0397 (7)	-0.0241 (7)	0.0054 (6)	-0.0182 (6)
	N4B	0.0319 (6)	0.0393 (7)	0.0362 (7)	-0.0123 (5)	0.0042 (5)	-0.0118 (5)

supporting information

N5B	0.0513 (9)	0.0535 (9)	0.0423 (8)	-0.0134 (7)	-0.0011 (6)	-0.0183 (7)
C1B	0.0322 (7)	0.0371 (8)	0.0401 (8)	-0.0099 (6)	0.0039 (6)	-0.0101 (6)
C2B	0.0376 (8)	0.0407 (8)	0.0397 (8)	-0.0139 (7)	0.0062 (6)	-0.0117 (7)
C3B	0.0355 (8)	0.0400 (8)	0.0490 (9)	-0.0108 (6)	0.0017 (7)	-0.0145 (7)
C4B	0.0354 (8)	0.0401 (8)	0.0570 (10)	-0.0152 (7)	0.0061 (7)	-0.0123 (7)
C5B	0.0384 (8)	0.0433 (9)	0.0461 (9)	-0.0110 (7)	0.0081 (7)	-0.0067 (7)
C6B	0.0362 (8)	0.0424 (9)	0.0392 (8)	-0.0084 (7)	0.0032 (6)	-0.0084 (7)
C7B	0.0612 (11)	0.0611 (11)	0.0365 (9)	-0.0258 (9)	0.0064 (8)	-0.0079 (8)
C8B	0.0314 (7)	0.0384 (8)	0.0374 (8)	-0.0103 (6)	0.0033 (6)	-0.0127 (6)
C9B	0.0702 (12)	0.0605 (11)	0.0472 (10)	-0.0402 (10)	0.0110 (9)	-0.0229 (9)
C10B	0.0721 (13)	0.0568 (11)	0.0424 (9)	-0.0398 (10)	0.0124 (8)	-0.0164 (8)
C11B	0.0350 (8)	0.0407 (8)	0.0383 (8)	-0.0121 (6)	0.0061 (6)	-0.0124 (6)
C12B	0.0357 (8)	0.0403 (8)	0.0376 (8)	-0.0093 (6)	0.0047 (6)	-0.0132 (7)
C13B	0.0584 (11)	0.0587 (11)	0.0436 (10)	-0.0277 (9)	0.0129 (8)	-0.0176 (8)
C14B	0.0692 (13)	0.0637 (12)	0.0393 (9)	-0.0244 (10)	0.0153 (8)	-0.0140 (8)
C15B	0.0547 (10)	0.0569 (11)	0.0365 (9)	-0.0077 (8)	0.0032 (7)	-0.0174 (8)
C16B	0.0441 (9)	0.0460 (9)	0.0379 (8)	-0.0145 (7)	0.0023 (7)	-0.0125 (7)

Geometric parameters (Å, °)

N1A—C3A	1.394 (2)	N1B—C3B	1.386 (2)
N1A—H1AA	0.8800	N1B—H1BA	0.8800
N1A—H1AB	0.8800	N1B—H1BB	0.8800
N2A—C8A	1.3606 (19)	N2B—C8B	1.365 (2)
N2A—C1A	1.4186 (19)	N2B—C1B	1.406 (2)
N2A—H2AB	0.8800	N2B—H2BB	0.8800
N3A—C9A	1.334 (2)	N3B—C9B	1.328 (2)
N3A—C8A	1.3522 (19)	N3B—C8B	1.353 (2)
N4A—C11A	1.3371 (19)	N4B—C8B	1.333 (2)
N4A—C8A	1.3377 (18)	N4B—C11B	1.342 (2)
N5A—C16A	1.336 (2)	N5B—C16B	1.330 (2)
N5A—C15A	1.338 (2)	N5B—C15B	1.336 (3)
C1A—C2A	1.388 (2)	C1B—C2B	1.392 (2)
C1A—C6A	1.406 (2)	C1B—C6B	1.410 (2)
C2A—C3A	1.397 (2)	C2B—C3B	1.402 (2)
C2A—H2AA	0.9500	C2B—H2BA	0.9500
C3A—C4A	1.396 (2)	C3B—C4B	1.394 (2)
C4A—C5A	1.378 (2)	C4B—C5B	1.384 (3)
C4A—H4AA	0.9500	C4B—H4BA	0.9500
C5A—C6A	1.396 (2)	C5B—C6B	1.387 (2)
С5А—Н5АА	0.9500	С5В—Н5ВА	0.9500
C6A—C7A	1.505 (2)	C6B—C7B	1.505 (2)
С7А—Н7АА	0.9800	С7В—Н7ВА	0.9800
С7А—Н7АВ	0.9800	C7B—H7BB	0.9800
C7A—H7AC	0.9800	C7B—H7BC	0.9800
C9A—C10A	1.376 (2)	C9B—C10B	1.380 (3)
С9А—Н9АА	0.9500	С9В—Н9ВА	0.9500
C10A—C11A	1.389 (2)	C10B—C11B	1.387 (2)

supporting information

C10A—H10A	0.9500	C10B—H10B	0.9500
C11A—C12A	1.4776 (19)	C11B—C12B	1.482 (2)
C12A—C13A	1.392 (2)	C12B—C13B	1.387 (2)
C12A—C16A	1.392 (2)	C12B—C16B	1.394 (2)
C13A—C14A	1.382 (2)	C13B—C14B	1.387 (3)
C13A—H13A	0.9500	C13B—H13B	0.9500
C14A—C15A	1.382 (2)	C14B—C15B	1.375 (3)
C14A—H14A	0.9500	C14B—H14B	0.9500
C15A—H15A	0.9500	C15B—H15B	0.9500
C16A—H16A	0.9500	C16B—H16B	0.9500
C3A—N1A—H1AA	120.0	C3B—N1B—H1BA	120.0
C3A—N1A—H1AB	120.0	C3B—N1B—H1BB	120.0
H1AA—N1A—H1AB	120.0	H1BA—N1B—H1BB	120.0
C8A—N2A—C1A	125.27 (12)	C8B—N2B—C1B	132.56 (13)
C8A—N2A—H2AB	117.4	C8B—N2B—H2BB	113.7
C1A—N2A—H2AB	117.4	C1B—N2B—H2BB	113.7
C9A—N3A—C8A	115.26 (12)	C9B—N3B—C8B	114.62 (14)
C11A—N4A—C8A	116.85 (13)	C8B—N4B—C11B	116.88 (14)
C16A—N5A—C15A	117.00 (14)	C16B—N5B—C15B	116.92 (16)
C2A—C1A—C6A	121.09 (14)	C2B—C1B—N2B	122.80 (14)
C2A—C1A—N2A	119.94 (14)	C2B—C1B—C6B	120.89 (15)
C6A—C1A—N2A	118.97 (14)	N2B—C1B—C6B	116.30 (14)
C1A—C2A—C3A	120.97 (15)	C1B—C2B—C3B	120.59 (15)
C1A—C2A—H2AA	119.5	C1B—C2B—H2BA	119.7
СЗА—С2А—Н2АА	119.5	C3B—C2B—H2BA	119.7
N1A—C3A—C4A	120.05 (15)	N1B—C3B—C4B	120.74 (16)
N1A—C3A—C2A	121.35 (16)	N1B—C3B—C2B	120.41 (16)
C4A—C3A—C2A	118.55 (14)	C4B—C3B—C2B	118.76 (16)
C5A—C4A—C3A	119.66 (15)	C5B—C4B—C3B	119.87 (15)
С5А—С4А—Н4АА	120.2	C5B—C4B—H4BA	120.1
СЗА—С4А—Н4АА	120.2	C3B—C4B—H4BA	120.1
C4A—C5A—C6A	123.15 (15)	C4B—C5B—C6B	122.78 (16)
С4А—С5А—Н5АА	118.4	C4B—C5B—H5BA	118.6
С6А—С5А—Н5АА	118.4	C6B—C5B—H5BA	118.6
C5A—C6A—C1A	116.50 (14)	C5B—C6B—C1B	117.11 (16)
C5A—C6A—C7A	120.24 (15)	C5B—C6B—C7B	121.02 (15)
C1A—C6A—C7A	123.11 (14)	C1B—C6B—C7B	121.86 (15)
С6А—С7А—Н7АА	109.5	С6В—С7В—Н7ВА	109.5
С6А—С7А—Н7АВ	109.5	C6B—C7B—H7BB	109.5
H7AA—C7A—H7AB	109.5	H7BA—C7B—H7BB	109.5
C6A—C7A—H7AC	109.5	C6B-C7B-H7BC	109.5
H7AA—C7A—H7AC	109.5	H7BA—C7B—H7BC	109.5
H7AB—C7A—H7AC	109.5	H7BB—C7B—H7BC	109.5
N4A—C8A—N3A	125.95 (14)	N4B—C8B—N3B	126.65 (15)
N4A—C8A—N2A	118.49 (13)	N4B—C8B—N2B	120.66 (14)
N3A—C8A—N2A	115.53 (12)	N3B-C8B-N2B	112.68 (14)
N3A - C9A - C10A	123 62 (14)	N3B-C9B-C10B	123 72 (16)
	123.02 (17)		123.12 (10)

N3A—C9A—H9AA	118.2	N3B—C9B—H9BA	118.1
С10А—С9А—Н9АА	118.2	C10B—C9B—H9BA	118.1
C9A—C10A—C11A	116.47 (14)	C9B—C10B—C11B	116.98 (16)
C9A—C10A—H10A	121.8	C9B—C10B—H10B	121.5
C11A—C10A—H10A	121.8	C11B—C10B—H10B	121.5
N4A—C11A—C10A	121.83 (13)	N4B—C11B—C10B	121.01 (15)
N4A—C11A—C12A	115.68 (13)	N4B—C11B—C12B	116.35 (14)
C10A—C11A—C12A	122.49 (14)	C10B—C11B—C12B	122.65 (15)
C13A—C12A—C16A	117.58 (14)	C13B-C12B-C16B	117.07 (15)
C13A—C12A—C11A	122.18 (14)	C13B-C12B-C11B	122.48 (15)
C16A - C12A - C11A	120.21(13)	C16B - C12B - C11B	120.45(15)
C14A - C13A - C12A	119 29 (15)	C12B— $C13B$ — $C14B$	119 26 (18)
C14A - C13A - H13A	120.4	C12B $C13B$ $H13B$	120.4
C12A - C13A - H13A	120.1	C14B— $C13B$ — $H13B$	120.1
C_{13A} C_{14A} C_{15A}	118 45 (15)	C15B-C14B-C13B	118 68 (18)
C13A - C14A - H14A	120.8	C15B $C14B$ $H14B$	120.7
C15A - C14A - H14A	120.8	$C_{13B} = C_{14B} = H_{14B}$	120.7
N54 - C154 - C144	120.0 123.75(14)	N5B_C15B_C14B	123.59 (16)
N5A - C15A - H15A	118.1	N5B-C15B-H15B	118.2
$C_{14} = C_{15} = H_{15}$	118.1	C14B $C15B$ $H15B$	118.2
N5A - C16A - C12A	123 93 (14)	N5B-C16B-C12B	124 47 (16)
N5A - C16A - H16A	118.0	N5B-C16B-H16B	117.8
C_{12A} C_{16A} H_{16A}	118.0	$C_{12}B - C_{16}B - H_{16}B$	117.8
	110.0		117.0
C8A—N2A—C1A—C2A	53.0 (2)	C8B—N2B—C1B—C2B	-9.9(3)
C8A—N2A—C1A—C6A	-127.07(16)	C8B—N2B—C1B—C6B	168.66 (17)
C6A—C1A—C2A—C3A	0.2 (2)	N2B—C1B—C2B—C3B	177.37 (15)
N2A—C1A—C2A—C3A	-179.91 (14)	C6B—C1B—C2B—C3B	-1.1(3)
C1A—C2A—C3A—N1A	174.58 (15)	C1B—C2B—C3B—N1B	-176.01 (16)
C1A—C2A—C3A—C4A	26(2)		0.((0)
	-2.0(2)	C1B-C2B-C3B-C4B	0.6(3)
N1A—C3A—C4A—C5A	-2.6(2) -174.45(16)	C1B—C2B—C3B—C4B N1B—C3B—C4B—C5B	0.6 (3)
N1A—C3A—C4A—C5A C2A—C3A—C4A—C5A	-2.8(2) -174.45(16) 2.8(2)	C1B—C2B—C3B—C4B N1B—C3B—C4B—C5B C2B—C3B—C4B—C5B	0.6(3) 176.50(17) -0.1(3)
N1A—C3A—C4A—C5A C2A—C3A—C4A—C5A C3A—C4A—C5A—C6A	-2.6(2) -174.45(16) 2.8(2) -0.5(3)	C1B—C2B—C3B—C4B N1B—C3B—C4B—C5B C2B—C3B—C4B—C5B C3B—C4B—C5B—C6B	0.6 (3) 176.50 (17) -0.1 (3) 0.1 (3)
N1A—C3A—C4A—C5A C2A—C3A—C4A—C5A C3A—C4A—C5A—C6A C4A—C5A—C6A—C1A	-2.6(2) -174.45(16) 2.8(2) -0.5(3) -1.9(2)	C1B—C2B—C3B—C4B N1B—C3B—C4B—C5B C2B—C3B—C4B—C5B C3B—C4B—C5B—C6B C4B—C5B—C6B—C1B	$\begin{array}{c} 0.6 (3) \\ 176.50 (17) \\ -0.1 (3) \\ 0.1 (3) \\ -0.5 (3) \end{array}$
N1A—C3A—C4A—C5A C2A—C3A—C4A—C5A C3A—C4A—C5A—C6A C4A—C5A—C6A—C1A C4A—C5A—C6A—C7A	-2.6(2) -174.45(16) 2.8(2) -0.5(3) -1.9(2) 173.70(16)	C1B—C2B—C3B—C4B N1B—C3B—C4B—C5B C2B—C3B—C4B—C5B C3B—C4B—C5B—C6B C4B—C5B—C6B—C1B C4B—C5B—C6B—C7B	$\begin{array}{c} 0.6 (3) \\ 176.50 (17) \\ -0.1 (3) \\ 0.1 (3) \\ -0.5 (3) \\ 179.38 (17) \end{array}$
N1A—C3A—C4A—C5A C2A—C3A—C4A—C5A C3A—C4A—C5A—C6A C4A—C5A—C6A—C1A C4A—C5A—C6A—C7A C2A—C1A—C6A—C5A	-2.0(2) -174.45(16) 2.8(2) -0.5(3) -1.9(2) 173.70(16) 2.0(2)	C1B—C2B—C3B—C4B N1B—C3B—C4B—C5B C2B—C3B—C4B—C5B C3B—C4B—C5B—C6B C4B—C5B—C6B—C1B C4B—C5B—C6B—C7B C2B—C1B—C6B—C5B	$\begin{array}{c} 0.6 (3) \\ 176.50 (17) \\ -0.1 (3) \\ 0.1 (3) \\ -0.5 (3) \\ 179.38 (17) \\ 1.0 (2) \end{array}$
N1A—C3A—C4A—C5A C2A—C3A—C4A—C5A C3A—C4A—C5A—C6A C4A—C5A—C6A—C1A C4A—C5A—C6A—C7A C2A—C1A—C6A—C5A N2A—C1A—C6A—C5A	$\begin{array}{c} -2.6 (2) \\ -174.45 (16) \\ 2.8 (2) \\ -0.5 (3) \\ -1.9 (2) \\ 173.70 (16) \\ 2.0 (2) \\ -177.91 (13) \end{array}$	C1B—C2B—C3B—C4B N1B—C3B—C4B—C5B C2B—C3B—C4B—C5B C3B—C4B—C5B—C6B C4B—C5B—C6B—C1B C4B—C5B—C6B—C7B C2B—C1B—C6B—C5B N2B—C1B—C6B—C5B	0.6 (3) 176.50 (17) -0.1 (3) 0.1 (3) -0.5 (3) 179.38 (17) 1.0 (2) -177.55 (14)
N1A—C3A—C4A—C5A C2A—C3A—C4A—C5A C3A—C4A—C5A—C6A C4A—C5A—C6A—C1A C4A—C5A—C6A—C7A C2A—C1A—C6A—C5A N2A—C1A—C6A—C5A C2A—C1A—C6A—C5A	$\begin{array}{c} -2.6 (2) \\ -174.45 (16) \\ 2.8 (2) \\ -0.5 (3) \\ -1.9 (2) \\ 173.70 (16) \\ 2.0 (2) \\ -177.91 (13) \\ -173.39 (14) \end{array}$	C1B—C2B—C3B—C4B N1B—C3B—C4B—C5B C2B—C3B—C4B—C5B C3B—C4B—C5B—C6B C4B—C5B—C6B—C1B C4B—C5B—C6B—C7B C2B—C1B—C6B—C5B N2B—C1B—C6B—C5B C2B—C1B—C6B—C7B	$\begin{array}{c} 0.6 (3) \\ 176.50 (17) \\ -0.1 (3) \\ 0.1 (3) \\ -0.5 (3) \\ 179.38 (17) \\ 1.0 (2) \\ -177.55 (14) \\ -178.88 (16) \end{array}$
N1A—C3A—C4A—C5A C2A—C3A—C4A—C5A C3A—C4A—C5A—C6A C4A—C5A—C6A—C1A C4A—C5A—C6A—C7A C2A—C1A—C6A—C5A N2A—C1A—C6A—C5A C2A—C1A—C6A—C7A N2A—C1A—C6A—C7A	$\begin{array}{c} -2.6 (2) \\ -174.45 (16) \\ 2.8 (2) \\ -0.5 (3) \\ -1.9 (2) \\ 173.70 (16) \\ 2.0 (2) \\ -177.91 (13) \\ -173.39 (14) \\ 6.7 (2) \end{array}$	C1B—C2B—C3B—C4B N1B—C3B—C4B—C5B C2B—C3B—C4B—C5B C3B—C4B—C5B—C6B C4B—C5B—C6B—C1B C4B—C5B—C6B—C7B C2B—C1B—C6B—C5B N2B—C1B—C6B—C5B C2B—C1B—C6B—C7B N2B—C1B—C6B—C7B	$\begin{array}{c} 0.6 (3) \\ 176.50 (17) \\ -0.1 (3) \\ 0.1 (3) \\ -0.5 (3) \\ 179.38 (17) \\ 1.0 (2) \\ -177.55 (14) \\ -178.88 (16) \\ 2.6 (2) \end{array}$
N1A—C3A—C4A—C5A C2A—C3A—C4A—C5A C3A—C4A—C5A—C6A C4A—C5A—C6A—C1A C4A—C5A—C6A—C7A C2A—C1A—C6A—C5A N2A—C1A—C6A—C5A C2A—C1A—C6A—C7A N2A—C1A—C6A—C7A N2A—C1A—C6A—C7A C11A—N4A—C8A—N3A	$\begin{array}{c} -2.6 (2) \\ -174.45 (16) \\ 2.8 (2) \\ -0.5 (3) \\ -1.9 (2) \\ 173.70 (16) \\ 2.0 (2) \\ -177.91 (13) \\ -173.39 (14) \\ 6.7 (2) \\ -1.2 (2) \end{array}$	C1B—C2B—C3B—C4B N1B—C3B—C4B—C5B C2B—C3B—C4B—C5B C3B—C4B—C5B—C6B C4B—C5B—C6B—C1B C4B—C5B—C6B—C7B C2B—C1B—C6B—C5B N2B—C1B—C6B—C5B C2B—C1B—C6B—C7B N2B—C1B—C6B—C7B N2B—C1B—C6B—C7B C11B—N4B—C8B—N3B	$\begin{array}{c} 0.6 (3) \\ 176.50 (17) \\ -0.1 (3) \\ 0.1 (3) \\ -0.5 (3) \\ 179.38 (17) \\ 1.0 (2) \\ -177.55 (14) \\ -178.88 (16) \\ 2.6 (2) \\ 1.8 (2) \end{array}$
N1A—C3A—C4A—C5A C2A—C3A—C4A—C5A C3A—C4A—C5A—C6A C4A—C5A—C6A—C1A C4A—C5A—C6A—C7A C2A—C1A—C6A—C5A N2A—C1A—C6A—C5A C2A—C1A—C6A—C7A N2A—C1A—C6A—C7A C11A—N4A—C8A—N3A C11A—N4A—C8A—N2A	$\begin{array}{c} -2.6 (2) \\ -174.45 (16) \\ 2.8 (2) \\ -0.5 (3) \\ -1.9 (2) \\ 173.70 (16) \\ 2.0 (2) \\ -177.91 (13) \\ -173.39 (14) \\ 6.7 (2) \\ -1.2 (2) \\ 176.72 (13) \end{array}$	C1B—C2B—C3B—C4B N1B—C3B—C4B—C5B C2B—C3B—C4B—C5B C3B—C4B—C5B—C6B C4B—C5B—C6B—C1B C4B—C5B—C6B—C7B C2B—C1B—C6B—C5B N2B—C1B—C6B—C5B C2B—C1B—C6B—C7B N2B—C1B—C6B—C7B C1B—N4B—C8B—N3B C11B—N4B—C8B—N2B	$\begin{array}{c} 0.6 (3) \\ 176.50 (17) \\ -0.1 (3) \\ 0.1 (3) \\ -0.5 (3) \\ 179.38 (17) \\ 1.0 (2) \\ -177.55 (14) \\ -178.88 (16) \\ 2.6 (2) \\ 1.8 (2) \\ -179.01 (14) \end{array}$
N1A—C3A—C4A—C5A C2A—C3A—C4A—C5A C3A—C4A—C5A—C6A C4A—C5A—C6A—C1A C4A—C5A—C6A—C1A C2A—C1A—C6A—C5A N2A—C1A—C6A—C5A C2A—C1A—C6A—C7A N2A—C1A—C6A—C7A C11A—N4A—C8A—N3A C11A—N4A—C8A—N2A C9A—N3A—C8A—N4A	$\begin{array}{c} -2.6 (2) \\ -174.45 (16) \\ 2.8 (2) \\ -0.5 (3) \\ -1.9 (2) \\ 173.70 (16) \\ 2.0 (2) \\ -177.91 (13) \\ -173.39 (14) \\ 6.7 (2) \\ -1.2 (2) \\ 176.72 (13) \\ 0.7 (2) \end{array}$	C1B-C2B-C3B-C4B N1B-C3B-C4B-C5B C2B-C3B-C4B-C5B C3B-C4B-C5B-C6B C4B-C5B-C6B-C1B C4B-C5B-C6B-C7B C2B-C1B-C6B-C5B N2B-C1B-C6B-C5B C2B-C1B-C6B-C7B N2B-C1B-C6B-C7B C11B-N4B-C8B-N3B C11B-N4B-C8B-N2B C9B-N3B-C8B-N4B	$\begin{array}{c} 0.6 (3) \\ 176.50 (17) \\ -0.1 (3) \\ 0.1 (3) \\ -0.5 (3) \\ 179.38 (17) \\ 1.0 (2) \\ -177.55 (14) \\ -178.88 (16) \\ 2.6 (2) \\ 1.8 (2) \\ -179.01 (14) \\ -3.2 (3) \end{array}$
N1A—C3A—C4A—C5A C2A—C3A—C4A—C5A C3A—C4A—C5A—C6A C4A—C5A—C6A—C1A C4A—C5A—C6A—C1A C2A—C1A—C6A—C5A N2A—C1A—C6A—C5A C2A—C1A—C6A—C7A N2A—C1A—C6A—C7A N2A—C1A—C6A—C7A C11A—N4A—C8A—N3A C11A—N4A—C8A—N2A C9A—N3A—C8A—N4A C9A—N3A—C8A—N2A	-2.6(2) -174.45(16) 2.8(2) -0.5(3) -1.9(2) 173.70(16) 2.0(2) -177.91(13) -173.39(14) 6.7(2) -1.2(2) 176.72(13) 0.7(2) -177.29(13)	C1B—C2B—C3B—C4B N1B—C3B—C4B—C5B C2B—C3B—C4B—C5B C3B—C4B—C5B—C6B C4B—C5B—C6B—C1B C4B—C5B—C6B—C7B C2B—C1B—C6B—C5B N2B—C1B—C6B—C5B C2B—C1B—C6B—C7B N2B—C1B—C6B—C7B C11B—N4B—C8B—N3B C11B—N4B—C8B—N3B C9B—N3B—C8B—N4B C9B—N3B—C8B—N2B	$\begin{array}{c} 0.6 (3) \\ 176.50 (17) \\ -0.1 (3) \\ 0.1 (3) \\ -0.5 (3) \\ 179.38 (17) \\ 1.0 (2) \\ -177.55 (14) \\ -178.88 (16) \\ 2.6 (2) \\ 1.8 (2) \\ -179.01 (14) \\ -3.2 (3) \\ 177.55 (17) \end{array}$
N1A—C3A—C4A—C5A C2A—C3A—C4A—C5A C3A—C4A—C5A—C6A C4A—C5A—C6A—C1A C4A—C5A—C6A—C7A C2A—C1A—C6A—C5A N2A—C1A—C6A—C5A C2A—C1A—C6A—C7A N2A—C1A—C6A—C7A C11A—N4A—C8A—N3A C11A—N4A—C8A—N2A C9A—N3A—C8A—N4A C9A—N3A—C8A—N2A C1A—N2A—C8A—N4A	$\begin{array}{c} -2.6 (2) \\ -174.45 (16) \\ 2.8 (2) \\ -0.5 (3) \\ -1.9 (2) \\ 173.70 (16) \\ 2.0 (2) \\ -177.91 (13) \\ -173.39 (14) \\ 6.7 (2) \\ -1.2 (2) \\ 176.72 (13) \\ 0.7 (2) \\ -177.29 (13) \\ -1.1 (2) \end{array}$	C1B—C2B—C3B—C4B N1B—C3B—C4B—C5B C2B—C3B—C4B—C5B C3B—C4B—C5B—C6B C4B—C5B—C6B—C1B C4B—C5B—C6B—C7B C2B—C1B—C6B—C5B N2B—C1B—C6B—C5B C2B—C1B—C6B—C7B N2B—C1B—C6B—C7B C11B—N4B—C8B—N3B C11B—N4B—C8B—N3B C11B—N4B—C8B—N2B C9B—N3B—C8B—N4B C9B—N3B—C8B—N2B C1B—N2B—C8B—N4B	$\begin{array}{c} 0.6 (3) \\ 176.50 (17) \\ -0.1 (3) \\ 0.1 (3) \\ -0.5 (3) \\ 179.38 (17) \\ 1.0 (2) \\ -177.55 (14) \\ -178.88 (16) \\ 2.6 (2) \\ 1.8 (2) \\ -179.01 (14) \\ -3.2 (3) \\ 177.55 (17) \\ 9.8 (3) \end{array}$
N1A—C3A—C4A—C5A C2A—C3A—C4A—C5A C3A—C4A—C5A—C6A C4A—C5A—C6A—C1A C4A—C5A—C6A—C1A C4A—C5A—C6A—C7A C2A—C1A—C6A—C5A N2A—C1A—C6A—C7A N2A—C1A—C6A—C7A N2A—C1A—C6A—C7A C11A—N4A—C8A—N3A C11A—N4A—C8A—N2A C9A—N3A—C8A—N4A C9A—N3A—C8A—N4A C1A—N2A—C8A—N4A C1A—N2A—C8A—N4A	$\begin{array}{c} -2.6 (2) \\ -174.45 (16) \\ 2.8 (2) \\ -0.5 (3) \\ -1.9 (2) \\ 173.70 (16) \\ 2.0 (2) \\ -177.91 (13) \\ -173.39 (14) \\ 6.7 (2) \\ -1.2 (2) \\ 176.72 (13) \\ 0.7 (2) \\ -177.29 (13) \\ -1.1 (2) \\ 176.99 (14) \end{array}$	C1B—C2B—C3B—C4B N1B—C3B—C4B—C5B C2B—C3B—C4B—C5B C3B—C4B—C5B—C6B C4B—C5B—C6B—C1B C4B—C5B—C6B—C7B C2B—C1B—C6B—C5B N2B—C1B—C6B—C5B C2B—C1B—C6B—C7B N2B—C1B—C6B—C7B N2B—C1B—C6B—C7B C11B—N4B—C8B—N3B C11B—N4B—C8B—N2B C9B—N3B—C8B—N4B C9B—N3B—C8B—N4B C1B—N2B—C8B—N4B C1B—N2B—C8B—N3B	$\begin{array}{c} 0.6 (3) \\ 176.50 (17) \\ -0.1 (3) \\ 0.1 (3) \\ -0.5 (3) \\ 179.38 (17) \\ 1.0 (2) \\ -177.55 (14) \\ -178.88 (16) \\ 2.6 (2) \\ 1.8 (2) \\ -179.01 (14) \\ -3.2 (3) \\ 177.55 (17) \\ 9.8 (3) \\ -170.97 (17) \end{array}$
N1A—C3A—C4A—C5A C2A—C3A—C4A—C5A C3A—C4A—C5A—C6A C4A—C5A—C6A—C1A C4A—C5A—C6A—C1A C4A—C5A—C6A—C7A C2A—C1A—C6A—C5A N2A—C1A—C6A—C7A N2A—C1A—C6A—C7A N2A—C1A—C6A—C7A C11A—N4A—C8A—N3A C11A—N4A—C8A—N2A C9A—N3A—C8A—N4A C1A—N2A—C8A—N4A C1A—N2A—C8A—N4A C1A—N2A—C8A—N3A C8A—N3A—C9A—C10A	$\begin{array}{c} -2.6 (2) \\ -174.45 (16) \\ 2.8 (2) \\ -0.5 (3) \\ -1.9 (2) \\ 173.70 (16) \\ 2.0 (2) \\ -177.91 (13) \\ -173.39 (14) \\ 6.7 (2) \\ -1.2 (2) \\ 176.72 (13) \\ 0.7 (2) \\ -177.29 (13) \\ -1.1 (2) \\ 176.99 (14) \\ 0.0 (2) \end{array}$	C1B—C2B—C3B—C4B N1B—C3B—C4B—C5B C2B—C3B—C4B—C5B C3B—C4B—C5B—C6B C4B—C5B—C6B—C1B C4B—C5B—C6B—C7B C2B—C1B—C6B—C5B N2B—C1B—C6B—C5B C2B—C1B—C6B—C7B N2B—C1B—C6B—C7B C11B—N4B—C8B—N3B C11B—N4B—C8B—N3B C9B—N3B—C8B—N4B C9B—N3B—C8B—N4B C1B—N2B—C8B—N4B C1B—N2B—C8B—N3B C8B—N3B—C9B—C10B	$\begin{array}{c} 0.6 (3) \\ 176.50 (17) \\ -0.1 (3) \\ 0.1 (3) \\ -0.5 (3) \\ 179.38 (17) \\ 1.0 (2) \\ -177.55 (14) \\ -178.88 (16) \\ 2.6 (2) \\ 1.8 (2) \\ -179.01 (14) \\ -3.2 (3) \\ 177.55 (17) \\ 9.8 (3) \\ -170.97 (17) \\ 0.9 (3) \end{array}$
N1A—C3A—C4A—C5A C2A—C3A—C4A—C5A C3A—C4A—C5A—C6A C4A—C5A—C6A—C1A C4A—C5A—C6A—C1A C4A—C5A—C6A—C7A C2A—C1A—C6A—C5A N2A—C1A—C6A—C7A N2A—C1A—C6A—C7A C11A—N4A—C8A—N3A C11A—N4A—C8A—N3A C11A—N4A—C8A—N2A C9A—N3A—C8A—N4A C9A—N3A—C8A—N4A C1A—N2A—C8A—N4A C1A—N2A—C8A—N4A C1A—N2A—C8A—N4A C1A—N2A—C8A—N4A C1A—N2A—C8A—N3A C8A—N3A—C9A—C10A N3A—C9A—C10A—C11A	$\begin{array}{c} -2.6 (2) \\ -174.45 (16) \\ 2.8 (2) \\ -0.5 (3) \\ -1.9 (2) \\ 173.70 (16) \\ 2.0 (2) \\ -177.91 (13) \\ -173.39 (14) \\ 6.7 (2) \\ -1.2 (2) \\ 176.72 (13) \\ 0.7 (2) \\ -177.29 (13) \\ -1.1 (2) \\ 176.99 (14) \\ 0.0 (2) \\ -0.1 (2) \end{array}$	C1B—C2B—C3B—C4B N1B—C3B—C4B—C5B C2B—C3B—C4B—C5B C3B—C4B—C5B—C6B C4B—C5B—C6B—C1B C4B—C5B—C6B—C7B C2B—C1B—C6B—C5B N2B—C1B—C6B—C5B C2B—C1B—C6B—C7B N2B—C1B—C6B—C7B C11B—N4B—C8B—N3B C11B—N4B—C8B—N3B C11B—N4B—C8B—N2B C9B—N3B—C8B—N4B C9B—N3B—C8B—N4B C1B—N2B—C8B—N4B C1B—N2B—C8B—N4B C1B—N2B—C8B—N4B C1B—N2B—C8B—N3B C8B—N3B—C9B—C10B N3B—C9B—C10B—C11B	$\begin{array}{c} 0.6 (3) \\ 176.50 (17) \\ -0.1 (3) \\ 0.1 (3) \\ -0.5 (3) \\ 179.38 (17) \\ 1.0 (2) \\ -177.55 (14) \\ -178.88 (16) \\ 2.6 (2) \\ 1.8 (2) \\ -179.01 (14) \\ -3.2 (3) \\ 177.55 (17) \\ 9.8 (3) \\ -170.97 (17) \\ 0.9 (3) \\ 2.4 (3) \end{array}$

C8A—N4A—C11A—C12A C9A—C10A—C11A—N4A C9A—C10A—C11A—C12A N4A—C11A—C12A—C13A C10A—C11A—C12A—C13A N4A—C11A—C12A—C16A C10A—C11A—C12A—C16A C16A—C12A—C13A—C14A C11A—C12A—C13A—C14A C12A—C13A—C14A—C15A C16A—N5A—C15A—C14A C13A—C14A—C15A—N5A C15A—N5A—C16A—C12A C13A—C12A—C16A—N5A	$\begin{array}{c} -178.27\ (12)\\ -0.5\ (2)\\ 178.78\ (14)\\ 156.70\ (14)\\ -22.6\ (2)\\ -21.4\ (2)\\ 159.27\ (15)\\ -0.5\ (2)\\ -178.66\ (14)\\ 0.2\ (3)\\ -0.4\ (3)\\ 0.3\ (3)\\ 0.0\ (2)\\ 0.4\ (2)\end{array}$	C8B—N4B—C11B—C12B C9B—C10B—C11B—N4B C9B—C10B—C11B—C12B N4B—C11B—C12B—C13B C10B—C11B—C12B—C13B N4B—C11B—C12B—C16B C10B—C11B—C12B—C16B C16B—C12B—C13B—C14B C11B—C12B—C13B—C14B C12B—C13B—C14B—C15B C16B—N5B—C15B—C14B C13B—C14B—C15B—N5B C15B—N5B—C16B—N5B C13B—C12B—C16B—N5B	$\begin{array}{c} -178.07\ (13)\\ -3.9\ (3)\\ 176.12\ (18)\\ 173.11\ (16)\\ -6.9\ (3)\\ -6.2\ (2)\\ 173.81\ (18)\\ -0.3\ (3)\\ -179.66\ (17)\\ 0.4\ (3)\\ 0.0\ (3)\\ -0.2\ (3)\\ 0.2\ (3)\end{array}$
C13A—C12A—C16A—N5A C11A—C12A—C16A—N5A	0.4 (2) 178.63 (14)	C13B—C12B—C16B—N5B C11B—C12B—C16B—N5B	0.2 (3) 179.52 (16)

Hydrogen-bond geometry (Å, °)

D—H	H···A	$D \cdots A$	D—H···A
0.88	2.36	3.154 (2)	151
0.88	2.11	2.9815 (17)	170
0.88	2.31	3.130 (2)	155
0.95	2.87	3.7834 (19)	162
0.95	2.64	3.4709 (18)	146
	<i>D</i> —H 0.88 0.88 0.88 0.95 0.95	D—H H…A 0.88 2.36 0.88 2.11 0.88 2.31 0.95 2.87 0.95 2.64	D—HH···AD···A0.882.363.154 (2)0.882.112.9815 (17)0.882.313.130 (2)0.952.873.7834 (19)0.952.643.4709 (18)

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+2; (ii) -*x*, -*y*+2, -*z*+1; (iii) -*x*, -*y*+2, -*z*+2.