

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-[2-(2-Chlorophenyl)-2-hydroxyethyl]propan-2-aminium nitrate

Hai Feng,^a* Zhan Tang,^a Lin-Jun Xie^b and Bin-Tao Xing^a

^aCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and ^bCollege of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China Correspondence e-mail: fenghai289289@163.com

Received 14 December 2009; accepted 17 December 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.045; wR factor = 0.145; data-to-parameter ratio = 19.0.

In the title compound, $C_{11}H_{17}CINO^+ \cdot NO_3^-$, the side chain of the ethylammonium group is orientated approximately perpendicular to the benzene ring, the dihedral angle between the C/C/N plane of the ethylammonium group and the benzene ring being 79.40 $(18)^{\circ}$. In the crystal structure, intermolecular O-H···O and N-H···O hydrogen bonds are observed between the cation and the anion.

Related literature

For related structures, see: Tang, Xu, Zhang & Feng (2009); Tang, Xu, Zheng & Feng (2009).

Experimental

Crystal data

$C_{11}H_{17}CINO^+ \cdot NO_3^-$	a = 11.9551 (6) Å
$M_r = 276.72$	b = 10.4563 (5) Å
Monoclinic, $P2_1/n$	c = 12.2968 (7) Å

$\beta = 115.109 \ (1)^{\circ}$
$V = 1391.91 (12) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation

Data collection

Rigaku R-AXIS RAPID	
diffractometer	
Absorption correction: multi-scan	
(ABSCOR; Higashi, 1995)	
$T_{\min} = 0.900, \ T_{\max} = 0.940$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ 167 parameters $wR(F^2) = 0.145$ H-atom parameters constrained S = 1.00 $\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.49 \text{ e} \text{ Å}^{-3}$ 3179 reflections

Table 1	
Hydrogen-bond geometry (Å, °)).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H2A \cdots O4$ $N1 - H2B \cdots O2^{i}$ $O1 - H101 \cdots O4^{ii}$	0.90 0.90 0.82	1.97 1.93 1.98	2.843 (2) 2.8234 (19) 2.7614 (19)	163 170 158

Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 1.

Data collection: PROCESS-AUTO (Rigaku/MSC, 2006); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2504).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2006). PROCESS-AUTO. Rigaku/MSC. The Woodlands, Texas, USA.
- Rigaku/MSC (2007). CrystalStructure. Rigaku/MSC. The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tang, Z., Xu, M., Zhang, H.-C. & Feng, H. (2009). Acta Cryst. E65, 01670.
- Tang, Z., Xu, M., Zheng, G.-R. & Feng, H. (2009). Acta Cryst. E65, 01501.

 $\mu = 0.28 \text{ mm}^{-1}$. T – 296 K

 $R_{\rm int} = 0.031$

 $0.38 \times 0.36 \times 0.22 \text{ mm}$

13380 measured reflections

3179 independent reflections 1833 reflections with $I > 2\sigma(I)$

supporting information

Acta Cryst. (2010). E66, o391 [https://doi.org/10.1107/S1600536809054506] N-[2-(2-Chlorophenyl)-2-hydroxyethyl]propan-2-aminium nitrate

Hai Feng, Zhan Tang, Lin-Jun Xie and Bin-Tao Xing

S1. Comment

A recent study reports the structure of bis{*N*-[2-(2-chlorophenyl)-2-hydroxyethyl]propan-2-aminium} oxalate (Tang, Xu, Zhang & Feng, 2009), which was synthesized by oxalic acid and clorprenaline (Tang, Xu, Zheng & Feng, 2009). Here using nitric acid instead of oxalic acid and following a similar synthetic procedure yields the title compound, (I).

In the molecular structure (Fig. 1), the Cl atom and the phenyl plane is almost planar with a deviation of 0.0118 Å. The dihedral angle between the plane formed by C1/C2/C8 and the benzene plane is 81.23 (18)°, which shows that the two planes are almost perpendicular. O—H…O and N—H…O hydrogen bonds are found in the crystal structure.

S2. Experimental

Racemic clorprenaline was prepared by clorprenaline hydrochloride purchased from ShangHai Shengxin Medicine & Chemical Co., Ltd. ShangHai, China. Clorprenaline hydrochloride and NaOH in a molar ratio of 1:1 were mixed and dissolved in a methanol-water solution (1:1 v/v). The precipitate formed was filtered off, washed with water and dried. It was used without further purification. Racemic clorprenaline (3.0 g, 0.014 mol) was dissolved in ethanol (30 ml), then nitric acid was added to give pH of about 2. The resulting solution was concentrated and colorless crystals of (I) were obtained within one day at ambient temperature.

S3. Refinement

All H atoms were placed in calculated positions and allowed to ride on their parent atoms, with C—H = 0.93 (aromatic), 0.98 (methine), 0.97 (methylene), 0.96 Å (methyl), O—H = 0.82 Å and N—H = 0.90 Å, and with U_{iso} (H) = 1.2–1.5 times U_{eq} of the parent atoms.

The molecular structure of the title compound, with atom labels, showing 40% probability displacement ellipsoids.

N-[2-(2-Chlorophenyl)-2-hydroxyethyl]propan-2-aminium nitrate

Crystal data

C₁₁H₁₇ClNO⁺·NO₃⁻ $M_r = 276.72$ Monoclinic, P2₁/n Hall symbol: -P 2yn a = 11.9551 (6) Å b = 10.4563 (5) Å c = 12.2968 (7) Å $\beta = 115.109$ (1)° V = 1391.91 (12) Å³ Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer Radiation source: rolling anode Graphite monochromator Detector resolution: 10.00 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\min} = 0.900, T_{\max} = 0.940$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.145$ S = 1.003179 reflections 167 parameters F(000) = 584 $D_x = 1.320 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7750 reflections $\theta = 3.1-27.4^{\circ}$ $\mu = 0.28 \text{ mm}^{-1}$ T = 296 KChunk, colorless $0.38 \times 0.36 \times 0.22 \text{ mm}$

13380 measured reflections 3179 independent reflections 1833 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 27.4^\circ, \ \theta_{min} = 3.1^\circ$ $h = -15 \rightarrow 15$ $k = -13 \rightarrow 13$ $l = -15 \rightarrow 15$

0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0508P)^2 + 0.8267P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.37 \text{ e} \text{ Å}^{-3}$

Special details

 $\Delta \rho_{\min} = -0.49 \text{ e} \text{ Å}^{-3}$ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.031 (2)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.50104 (7)	0.95849 (7)	0.13939 (6)	0.1022 (3)	
N2	0.28600 (14)	0.45390 (15)	0.33777 (14)	0.0580 (4)	
N1	0.37095 (12)	0.76881 (13)	0.40807 (13)	0.0468 (4)	
H2A	0.3748	0.6832	0.4169	0.056*	
H2B	0.3128	0.7862	0.3339	0.056*	
C8	0.49200 (14)	0.81542 (17)	0.41706 (16)	0.0489 (4)	
H8A	0.5552	0.7990	0.4973	0.059*	
H8B	0.4877	0.9071	0.4039	0.059*	
01	0.53694 (12)	0.61603 (12)	0.34203 (12)	0.0634 (4)	
H101	0.5812	0.5995	0.4126	0.095*	
O2	0.28728 (13)	0.33459 (13)	0.33095 (13)	0.0724 (5)	
03	0.23497 (15)	0.52046 (14)	0.24813 (13)	0.0787 (5)	
O4	0.33694 (14)	0.50469 (14)	0.43991 (12)	0.0734 (4)	
C9	0.33109 (16)	0.82528 (19)	0.49838 (17)	0.0568 (5)	
H8	0.3382	0.9186	0.4967	0.068*	
C1	0.52762 (16)	0.75053 (17)	0.32594 (16)	0.0521 (4)	
H1	0.4615	0.7673	0.2461	0.063*	
C2	0.64380 (17)	0.81197 (18)	0.33057 (17)	0.0560 (5)	
C7	0.6422 (2)	0.9062 (2)	0.25042 (18)	0.0650 (5)	
C3	0.75844 (18)	0.7782 (2)	0.4181 (2)	0.0776 (7)	
H3	0.7634	0.7155	0.4735	0.093*	
C10	0.4135 (2)	0.7788 (3)	0.62253 (19)	0.0801 (7)	
H9A	0.4150	0.6870	0.6232	0.096*	
H9B	0.3825	0.8089	0.6782	0.096*	
H9C	0.4957	0.8109	0.6455	0.096*	
C6	0.7495 (2)	0.9625 (2)	0.2564 (2)	0.0830 (6)	
H6	0.7457	1.0243	0.2006	0.100*	
C5	0.8610(2)	0.9267 (3)	0.3447 (3)	0.0923 (7)	
Н5	0.9333	0.9647	0.3496	0.111*	
C11	0.19628 (19)	0.7912 (3)	0.4610 (2)	0.0950 (9)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H10A	0.1473	0.8255	0.3826	0.114*
H10B	0.1690	0.8266	0.5176	0.114*
H10C	0.1874	0.6999	0.4590	0.114*
C4	0.8659 (2)	0.8349 (3)	0.4258 (3)	0.0942 (9)
H4	0.9416	0.8106	0.4861	0.113*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.1190 (5)	0.0985 (5)	0.0691 (3)	-0.0122 (4)	0.0207 (3)	0.0293 (3)
N2	0.0537 (8)	0.0524 (9)	0.0573 (9)	-0.0069 (7)	0.0134 (7)	0.0004 (7)
N1	0.0444 (7)	0.0437 (7)	0.0513 (7)	-0.0031 (6)	0.0193 (6)	-0.0005 (6)
C8	0.0448 (8)	0.0489 (9)	0.0546 (9)	-0.0036 (7)	0.0225 (7)	-0.0004 (7)
01	0.0721 (8)	0.0509 (7)	0.0686 (8)	-0.0004 (6)	0.0312 (6)	-0.0032 (6)
O2	0.0794 (9)	0.0485 (7)	0.0677 (8)	0.0020 (7)	0.0105 (7)	-0.0035 (6)
O3	0.0865 (10)	0.0630 (8)	0.0633 (8)	-0.0017 (8)	0.0093 (7)	0.0125 (7)
O4	0.0934 (10)	0.0564 (8)	0.0567 (8)	-0.0187 (7)	0.0185 (7)	-0.0061 (6)
C9	0.0538 (9)	0.0598 (11)	0.0636 (10)	-0.0034 (8)	0.0315 (8)	-0.0127 (9)
C1	0.0557 (9)	0.0533 (10)	0.0497 (9)	0.0023 (8)	0.0247 (7)	0.0062 (8)
C2	0.0629 (9)	0.0551 (10)	0.0619 (10)	0.0007 (8)	0.0378 (8)	0.0024 (8)
C7	0.0842 (12)	0.0617 (12)	0.0610 (10)	-0.0040 (10)	0.0422 (9)	-0.0010 (9)
C3	0.0563 (10)	0.0833 (15)	0.0978 (15)	0.0062 (11)	0.0371 (10)	0.0233 (12)
C10	0.0859 (13)	0.1027 (18)	0.0609 (11)	-0.0001 (13)	0.0401 (10)	-0.0077 (11)
C6	0.1148 (14)	0.0703 (14)	0.0984 (13)	-0.0136 (13)	0.0785 (11)	-0.0028 (11)
C5	0.0847 (12)	0.0848 (16)	0.1380 (19)	-0.0117 (13)	0.0768 (13)	-0.0115 (15)
C11	0.0604 (11)	0.130 (2)	0.1072 (17)	-0.0126 (13)	0.0480 (11)	-0.0340 (16)
C4	0.0587 (11)	0.1000 (19)	0.132 (2)	0.0021 (13)	0.0478 (13)	0.0155 (16)

Geometric parameters (Å, °)

Cl1—C7	1.748 (2)	C1—H1	0.9800
N2—O3	1.225 (2)	C2—C3	1.382 (3)
N2—O2	1.251 (2)	C2—C7	1.388 (3)
N2—O4	1.258 (2)	C7—C6	1.385 (3)
N1—C8	1.486 (2)	C3—C4	1.381 (3)
N1—C9	1.503 (2)	С3—Н3	0.9300
N1—H2A	0.9000	C10—H9A	0.9600
N1—H2B	0.9000	C10—H9B	0.9600
C8—C1	1.517 (3)	С10—Н9С	0.9600
C8—H8A	0.9700	C6—C5	1.366 (3)
C8—H8B	0.9700	С6—Н6	0.9300
01—C1	1.418 (2)	C5—C4	1.368 (4)
O1—H101	0.8200	С5—Н5	0.9300
C9—C10	1.504 (3)	C11—H10A	0.9600
C9—C11	1.519 (3)	C11—H10B	0.9600
С9—Н8	0.9800	C11—H10C	0.9600
C1—C2	1.509 (3)	C4—H4	0.9300

O3—N2—O2	121.46 (16)	C3—C2—C1	120.90 (18)
O3—N2—O4	120.26 (16)	C7—C2—C1	122.68 (17)
O2—N2—O4	118.27 (16)	C6—C7—C2	122.1 (2)
C8—N1—C9	114.86 (13)	C6C7Cl1	118.28 (17)
C8—N1—H2A	108.6	C2C7Cl1	119.66 (16)
C9—N1—H2A	108.6	C4—C3—C2	122.0 (2)
C8—N1—H2B	108.6	C4—C3—H3	119.0
C9—N1—H2B	108.6	C2—C3—H3	119.0
H2A—N1—H2B	107.5	C9—C10—H9A	109.5
N1—C8—C1	111.59 (14)	C9—C10—H9B	109.5
N1—C8—H8A	109.3	H9A—C10—H9B	109.5
C1—C8—H8A	109.3	C9—C10—H9C	109.5
N1—C8—H8B	109.3	H9A—C10—H9C	109.5
C1—C8—H8B	109.3	H9B—C10—H9C	109.5
H8A—C8—H8B	108.0	C5—C6—C7	119.7 (2)
C1-O1-H101	109.5	C5—C6—H6	120.2
N1—C9—C10	110.28 (16)	C7—C6—H6	120.2
N1—C9—C11	108.21 (16)	C6—C5—C4	119.8 (2)
C10-C9-C11	112.7 (2)	C6—C5—H5	120.1
N1—C9—H8	108.5	C4—C5—H5	120.1
С10—С9—Н8	108.5	C9—C11—H10A	109.5
С11—С9—Н8	108.5	C9—C11—H10B	109.5
O1—C1—C2	113.60 (15)	H10A—C11—H10B	109.5
O1—C1—C8	111.75 (15)	C9—C11—H10C	109.5
C2—C1—C8	108.90 (15)	H10A—C11—H10C	109.5
O1—C1—H1	107.4	H10B—C11—H10C	109.5
C2—C1—H1	107.4	C5—C4—C3	120.0 (2)
C8—C1—H1	107.4	C5—C4—H4	120.0
C3—C2—C7	116.40 (19)	C3—C4—H4	120.0
C9—N1—C8—C1	177.99 (14)	C1—C2—C7—C6	179.4 (2)
C8—N1—C9—C10	-68.4 (2)	C3—C2—C7—C11	-178.09 (18)
C8—N1—C9—C11	167.93 (18)	C1—C2—C7—C11	0.5 (3)
N1—C8—C1—O1	-59.77 (18)	C7—C2—C3—C4	0.0 (4)
N1—C8—C1—C2	173.93 (14)	C1—C2—C3—C4	-178.7 (2)
O1—C1—C2—C3	-44.5 (3)	C2—C7—C6—C5	-1.1 (4)
C8—C1—C2—C3	80.7 (2)	Cl1—C7—C6—C5	177.8 (2)
01—C1—C2—C7	136.94 (19)	C7—C6—C5—C4	0.6 (4)
C8—C1—C2—C7	-97.8 (2)	C6—C5—C4—C3	0.2 (4)
C3—C2—C7—C6	0.8 (3)	C2—C3—C4—C5	-0.5 (4)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H2A…O4	0.90	1.97	2.843 (2)	163

			supporting	supporting informatio		
N1—H2 B ···O2 ⁱ	0.90	1.93	2.8234 (19)	170		
01—H101····O4 ⁿ	0.82	1.98	2.7614 (19)	158		

Symmetry codes: (i) -*x*+1/2, *y*+1/2, -*z*+1/2; (ii) -*x*+1, -*y*+1, -*z*+1.