Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Octaaquabis (μ_{2} - $1 H$-pyrazole-3,5-dicarboxylato)tricopper(II) tetrahydrate

Zhi-Gang Li, ${ }^{\text {a }}$ Shao-Ai Li, ${ }^{\text {a }}$ De-Quan Liu, ${ }^{\text {a }}$ Yi-Hua Huang ${ }^{\text {b }}$ and Jing-Wei Xu ${ }^{\text {c* }}$

${ }^{\text {a }}$ Shenzhen Environmental Monitoring Center, Shenzhen 518008, People's Republic of China, ${ }^{\mathbf{b}}$ Shenzhen Environmental Protecting Bureau, Shenzhen 518008, People's Republic of China, and ${ }^{\mathrm{c}}$ State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
Correspondence e-mail: jwxu@ciac.jl.cn

Received 22 November 2009; accepted 13 January 2010
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.036 ; w R$ factor $=0.095$; data-to-parameter ratio $=11.8$.

In the trinucler $\mathrm{Cu}^{\mathrm{II}}$ complex molecule of the title compound, $\left[\mathrm{Cu}_{3}\left(\mathrm{C}_{5} \mathrm{HN}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$, the central $\mathrm{Cu}^{\mathrm{II}}$ atom is located on an inversion centre and is coordinated in a distorted octahedral geometry. The equatorial sites are occupied by two N and two O atoms from two pyrazole-3,5dicarboxylate ligands and the axial positions are occupied by two water molecules. The two other symmetry-related $\mathrm{Cu}^{\text {II }}$ atoms are pentacoordinated and assume a square-pyramidal geometry. In the crystal structure, coordinated and uncoordinated water molecules and carboxylate O atoms are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

For general background to coordination polymers, see: Yaghi et al. (2003); Kitagawa et al. (2004). For related structures, see: King et al. (2003); Li (2005). For graph-set motifs, see: Bernstein et al. (1995).

Experimental

Crystal data

$\left[\mathrm{Cu}_{3}\left(\mathrm{C}_{5} \mathrm{HN}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$	$a=8.9455(6) \AA$
$M_{r}=712.97$	$b=9.1018(7) \AA$
Triclinic, $P \overline{1}$	$c=9.1125(7) \AA$

$$
\begin{aligned}
& \alpha=103.485(1)^{\circ} \\
& \beta=90.924(1)^{\circ} \\
& \gamma=117.505(1)^{\circ} \\
& V=633.31(8) \AA^{\circ} \\
& Z=1
\end{aligned}
$$

> Mo $K \alpha$ radiation
> $\mu=2.59 \mathrm{~mm}^{-1}$
> $T=293 \mathrm{~K}$
> $0.17 \times 0.13 \times 0.05 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.666, T_{\text {max }}=0.877$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.095$
$S=1.08$
2412 reflections
205 parameters
12 restraints

H atoms treated by a mixture of
3535 measured reflections
2412 independent reflections
2198 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.010$
indenent and constrained independent and constrained refinement
$\Delta \rho_{\text {max }}=0.89 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.54 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 1^{\text {i }}$	0.87 (3)	2.28 (4)	3.050 (4)	148 (4)
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{O}^{\text {ii }}$	0.87 (4)	2.16 (4)	3.021 (5)	172 (4)
O6-H6A \cdots O $8^{\text {iiii }}$	0.87 (4)	2.38 (5)	3.078 (4)	137 (4)
$\mathrm{O} 6-\mathrm{H} 6 B \cdots \mathrm{O} 2^{\text {iii }}$	0.87 (6)	2.30 (6)	3.077 (4)	149 (4)
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 1^{\text {ii }}$	0.80 (4)	2.16 (4)	2.860 (4)	147 (4)
$\mathrm{O} 7-\mathrm{H} 7 B \cdots \mathrm{O} 4^{\text {iv }}$	0.81 (4)	1.91 (4)	2.715 (4)	171 (4)
$\mathrm{O} 8-\mathrm{H} 8 A \cdots \mathrm{O}^{\text {v }}$	0.81 (3)	2.06 (3)	2.854 (4)	169 (4)
$\mathrm{O} 8-\mathrm{H} 8 B \cdots \mathrm{O} 1$	0.81 (5)	2.03 (5)	2.836 (4)	175 (4)
$\mathrm{O} 9-\mathrm{H} 9 \mathrm{~A} \cdots \mathrm{O} 4^{\text {vi }}$	0.87 (4)	2.26 (4)	3.061 (4)	154 (4)

Symmetry codes: (i) $x, y, z-1$; (ii) $-x+1,-y+2,-z+1$; (iii) $-x,-y+1,-z+1$; (iv) $x-1, y, z$; (v) $x, y, z+1$; (vi) $x-1, y-1, z$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINTPlus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the National Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2499).

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
King, P., Clerac, R., Anson, C. E., Coulon, C. \& Powell, A. K. (2003). Inorg. Chem. 423, 705-714.
Kitagawa, S., Kitaura, R. \& Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334 2375.

Li, X.-H. (2005). Acta Cryst. E61, m2405-m2407.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. \& Kim, J. (2003). Nature (London), 423, 705-714.

supporting information

Octaaquabis ($\mu_{2}-1 H$-pyrazole-3,5-dicarboxylato)tricopper(II) tetrahydrate

Zhi-Gang Li, Shao-Ai Li, De-Quan Liu, Yi-Hua Huang and Jing-Wei Xu

S1. Comment

The design and synthesis of novel coordination architectures is a fertile field due to the intriguing network topologies and potential a pplications as new classes of materials (Yaghi et al., 2003; Kitagawa et al., 2004). The ligand of pyrazole-3,5dicarboxylic acid has several potential coordination sites involving both two N atoms of the pyrazole ring and four carboxylate O atoms. These multifunctional coordination sites are highly accessible to metal ions, as such, the ligand can coordinate as a mono-, bi-, or tetradentate ligand and can act to link together metal centers through a number of bridging modes ($\mathrm{Li}, 2005$). The divalent copper atoms are easily to precipitate with the OH^{-}when the pyrazole-3,5-dicarboxylic acids are deprotoned in base water solution, the mixed solution can obtain coordianted polymer single crystals in hydrothermal condition (King et al., 2003). Nevertheless, when the ammonia was added to the mixed solution, because of the complexing action between the copper atoms and NH_{3}, the turbid soltuion became clear. After the ammonia slowly evaporated, we obtained the blue crystals, compound (I), as shown in Fig.1, a copper(II) trimer.

The central copper atom, Cu , lies on a crystallographic inversion center. The Cu 1 atom has a six-coordinate octahedral geometry, in which two O atoms and two N atoms from two pyrazole-3,5-dicarboxylate ligands occupy the equatorial plane, and the axial coordination sites are occupied two water molecules; the $\mathrm{Cu}-\mathrm{N} / \mathrm{O}$ bond distances range from 2.003 (2) to 2.437 (3) \AA. The other two symmetry-related copper atoms, Cu 2 , have a pentacoordinate square-pyramidal geometry, where a pyrazole nitrogen N 2 and a carboxylate oxygen O 3 from one pyrazole-3,5-dicarboxylate ligand occupy two coordination sites and the remaining three positions are occupied by water molecules; the $\mathrm{Cu}-\mathrm{N} / \mathrm{O}$ bond distances range from 1.984 (2) to 2.237 (2) Å. The pyrazole-3,5-dicarboxylate ligand is not strictly planar. Deviation from the mean plane defined by the pyrazole ring is seen for both carboxylate groups with values ranging from 0.034 (1) to 0.205 (1) Å. The dihedral angle between the two carboxylate mean planes is 11.3 (3) ${ }^{\circ}$. It can be seen that the ligand bite angle at the two different copper centers Cu1 and Cu2 is similar, 74.8 (4) and $80.6(4)^{\circ}$, respectively. This implies that the pyrazole-3,5-dicarboxylate ligand is a fairly rigid ligand and retains its integrity on metal chelation.
In the asymmetric unit, there are two lattice water molecules, four coordinated water molecules and carboxylate O atoms, which form complexed hydrogen-bonding interactions. Two lattice water molecules and its symmetric equivalents together with two carboxylate O atoms from two trimers form a hydrogen-bonded chair conformation, generating an $R_{4}{ }^{6}(6)$ motif (Bernstein et al., 1995). Meanwhile, the four lattice water molecules in each $R_{4}{ }^{6}(6)$ motif also bind four another trimers by $\mathrm{O} 7-\mathrm{H} 7 \mathrm{~B} \cdots \mathrm{O} 4$ hydrogen bond interaction, and $\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{O} 8$ hydrogen bond interaction. Those strong hydrogen-bonding interactions as well as some weaker interactions, such as O5—H5A $\cdots \mathrm{O} 1, \mathrm{O} 6-\mathrm{H} 6 \mathrm{~A} \cdots \mathrm{O}, \mathrm{O} 6-$ H6B $\cdots \mathrm{O} 2$ and $\mathrm{O} 9 — \mathrm{H} 9 \mathrm{~A} \cdots \mathrm{O} 4$, extend the crystal structure into a three-dimensional supramolecular network (Fig. 2).

S2. Experimental

The title complex was prepared by the addition of $\mathrm{Cu}\left(\mathrm{BF}_{4}\right)_{2}(20 \mathrm{mmol})$ and pyrazole-3,5-dicarboxylic acid (30 mmol) to 40 ml water. The mixture was stirred for 1 h , a blue precipitate was obtained. A minimum amount of ammonia (14 M)
was added to give a blue solution. Suitable crystals were obtained after standing at room temperature for several days (yield 51% based on Cu).

S3. Refinement

Atom H 2 was placed geometrically $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=U_{\text {eq }}(\mathrm{C})$. The H atoms bonded to O atoms of water molecules were located in a difference Fourier map and refined, with a bond distance restriction $[\mathrm{O}-\mathrm{H}=0.82(2) \AA]$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$.

Figure 1
A view of (I), with the atom-labeling scheme and 30% probability displacement ellipsoids. [Symmetry code: (A) 1-x, $1-$ $y,-z$.

Figure 2
Perspective view of packing structure of (I) along the c axis. For the sake of clarity, H atoms not involved in hydrogen bonds have been omitted.

Octaaquabis(μ_{2}-1H-pyrazole-3,5-dicarboxylato)tricopper(II) tetrahydrate

Crystal data

$\left[\mathrm{Cu}_{3}\left(\mathrm{C}_{5} \mathrm{HN}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=712.97$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=8.9455$ (6) Å
$b=9.1018$ (7) \AA
$c=9.1125$ (7) \AA
$\alpha=103.485(1)^{\circ}$
$\beta=90.924(1)^{\circ}$
$\gamma=117.505(1)^{\circ}$
$V=633.31(8) \AA^{3}$
$Z=1$
$F(000)=361$
$D_{\mathrm{x}}=1.869 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2128 reflections
$\theta=2.3-26.0^{\circ}$
$\mu=2.59 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Tabular, blue
$0.17 \times 0.13 \times 0.05 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.666, T_{\text {max }}=0.877$

> 3535 measured reflections
> 2412 independent reflections
> 2198 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.010$
> $\theta_{\max }=26.0^{\circ}, \theta_{\min }=2.3^{\circ}$
> $h=-10 \rightarrow 11$
> $k=-11 \rightarrow 9$
> $l=-11 \rightarrow 9$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.095$
$S=1.08$
2412 reflections
205 parameters
12 restraints
Primary atom site location: structure-invariant direct methods

```
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
\(w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0495 P)^{2}+1.615 P\right]\)
where \(P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3\)
\((\Delta / \sigma)_{\max }=0.042\)
\(\Delta \rho_{\text {max }}=0.89 \mathrm{e}^{-3}\)
\(\Delta \rho_{\text {min }}=-0.54 \mathrm{e}^{-3}\)
```


Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Cu1	0.5000	0.5000	0.0000	$0.01250(16)$
Cu2	$0.18693(5)$	$0.39943(5)$	$0.35269(4)$	$0.01365(14)$
O1	$0.4661(3)$	$0.8149(3)$	$0.7106(3)$	$0.0205(5)$
O2	$0.2463(3)$	$0.5801(3)$	$0.5590(3)$	$0.0180(5)$
O3	$0.8061(3)$	$0.6833(3)$	$0.0762(3)$	$0.0187(5)$
O4	$0.9786(3)$	$0.8716(3)$	$0.2903(3)$	$0.0198(5)$
O5	$0.4555(4)$	$0.6959(4)$	$-0.0015(3)$	$0.0319(7)$
H5A	$0.420(6)$	$0.690(7)$	$-0.093(3)$	0.038^{*}
H5B	$0.541(5)$	$0.797(4)$	$0.040(5)$	0.038^{*}
O6	$-0.0225(4)$	$0.2439(4)$	$0.4269(4)$	$0.0318(7)$
H6A	$-0.091(5)$	$0.148(4)$	$0.360(5)$	0.038^{*}
H6B	$-0.083(6)$	$0.291(6)$	$0.468(5)$	0.038^{*}
O7	$0.2443(4)$	$0.8545(4)$	$0.1630(3)$	$0.0268(6)$
H7A	$0.330(4)$	$0.923(5)$	$0.219(5)$	0.032^{*}
H7B	$0.159(4)$	$0.848(6)$	$0.198(5)$	0.032^{*}

O8	$0.2631(4)$	$0.9378(4)$	$0.8781(3)$	$0.0280(6)$
H8A	$0.245(6)$	$0.913(6)$	$0.958(3)$	0.034^{*}
H8B	$0.316(5)$	$0.899(6)$	$0.826(5)$	0.034^{*}
O9	$0.1851(4)$	$0.2020(4)$	$0.1939(4)$	$0.0335(7)$
H9A	$0.104(5)$	$0.102(4)$	$0.195(6)$	0.040^{*}
H9B	$0.282(4)$	$0.202(7)$	$0.197(6)$	0.040^{*}
O10	$0.0459(4)$	$0.4770(5)$	$0.2092(4)$	$0.0415(8)$
H10A	$0.102(6)$	$0.580(4)$	$0.202(6)$	0.050^{*}
H10B	$-0.052(4)$	$0.452(7)$	$0.238(6)$	0.050^{*}
N1	$0.5326(3)$	$0.5804(4)$	$0.2330(3)$	$0.0135(6)$
N2	$0.4214(3)$	$0.5670(4)$	$0.3334(3)$	$0.0136(6)$
C1	$0.5045(4)$	$0.6944(4)$	$0.4637(4)$	$0.0136(6)$
C2	$0.6742(4)$	$0.7934(4)$	$0.4484(4)$	$0.0151(7)$
H2	0.7597	0.8884	0.5196	0.015^{*}
C3	$0.6852(4)$	$0.7162(4)$	$0.3012(4)$	$0.0125(6)$
C4	$0.4011(4)$	$0.6993(4)$	$0.5882(4)$	$0.0153(7)$
C5	$0.8344(4)$	$0.7607(4)$	$0.2152(4)$	$0.0136(7)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	$0.0145(3)$	$0.0118(3)$	$0.0090(3)$	$0.0055(2)$	$0.0011(2)$	$0.0007(2)$
Cu2	$0.0111(2)$	$0.0123(2)$	$0.0137(2)$	$0.00298(17)$	$0.00279(15)$	$0.00235(16)$
O1	$0.0194(12)$	$0.0210(13)$	$0.0134(12)$	$0.0060(11)$	$0.0028(10)$	$-0.0012(10)$
O2	$0.0141(12)$	$0.0167(12)$	$0.0181(12)$	$0.0045(10)$	$0.0046(9)$	$0.0018(10)$
O3	$0.0171(12)$	$0.0216(13)$	$0.0122(12)$	$0.0056(10)$	$0.0040(9)$	$0.0030(10)$
O4	$0.0116(11)$	$0.0210(13)$	$0.0172(12)$	$0.0012(10)$	$0.0018(9)$	$0.0026(10)$
O5	$0.0366(17)$	$0.0299(16)$	$0.0294(16)$	$0.0160(14)$	$0.0037(13)$	$0.0082(13)$
O6	$0.0251(15)$	$0.0303(16)$	$0.0354(17)$	$0.0099(13)$	$0.0063(12)$	$0.0076(13)$
O7	$0.0209(14)$	$0.0209(14)$	$0.0335(16)$	$0.0080(12)$	$0.0098(12)$	$0.0025(12)$
O8	$0.0286(15)$	$0.0294(16)$	$0.0257(15)$	$0.0154(13)$	$0.0053(12)$	$0.0033(12)$
O9	$0.0323(16)$	$0.0270(16)$	$0.0358(17)$	$0.0100(13)$	$0.0082(13)$	$0.0076(13)$
O10	$0.0351(18)$	$0.0381(19)$	$0.054(2)$	$0.0156(16)$	$0.0024(16)$	$0.0220(16)$
N1	$0.0125(13)$	$0.0140(14)$	$0.0123(13)$	$0.0050(11)$	$0.0035(10)$	$0.0035(11)$
N2	$0.0119(13)$	$0.0146(14)$	$0.0112(13)$	$0.0044(11)$	$0.0020(10)$	$0.0018(11)$
C1	$0.0136(15)$	$0.0139(16)$	$0.0119(15)$	$0.0057(13)$	$0.0014(12)$	$0.0032(12)$
C2	$0.0125(15)$	$0.0157(17)$	$0.0132(16)$	$0.0039(13)$	$0.0005(12)$	$0.0031(13)$
C3	$0.0127(15)$	$0.0126(16)$	$0.0103(15)$	$0.0047(13)$	$-0.0010(12)$	$0.0027(12)$
C4	$0.0149(16)$	$0.0166(17)$	$0.0152(16)$	$0.0081(14)$	$0.0031(13)$	$0.0047(13)$
C5	$0.0150(16)$	$0.0130(17)$	$0.0133(16)$	$0.0064(14)$	$0.0037(13)$	$0.0048(13)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Cu} 1-\mathrm{O} 5$	$2.001(3)$	$\mathrm{O} 6-\mathrm{H} 6 \mathrm{~B}$	$0.87(6)$
$\mathrm{Cu} 1-\mathrm{O} 5^{\mathrm{i}}$	$2.001(3)$	$\mathrm{O} 7-\mathrm{H} 7 \mathrm{~A}$	$0.80(2)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.047(3)$	$\mathrm{O} 7-\mathrm{H} 7 \mathrm{~B}$	$0.81(2)$
$\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.047(3)$	$\mathrm{O}-\mathrm{H} 8 \mathrm{~A}$	$0.81(2)$
$\mathrm{Cu}-\mathrm{O} 3^{\mathrm{i}}$	$2.437(2)$	$\mathrm{O} 8-\mathrm{H} 8 \mathrm{~B}$	$0.81(5)$

Cu1-O3	2.437 (2)	O9--H9A	0.87 (2)
Cu2-N2	1.985 (3)	O9-H9B	0.87 (5)
Cu2-O6	2.002 (3)	O10-H10A	0.85 (2)
Cu2-09	2.021 (3)	O10-H10B	0.86 (5)
$\mathrm{Cu} 2-\mathrm{O} 2$	2.059 (2)	N1-N2	1.345 (4)
Cu2-O10	2.236 (3)	N1-C3	1.354 (4)
O1-C4	1.247 (4)	N2-C1	1.357 (4)
O2-C4	1.277 (4)	C1-C2	1.392 (5)
O3-C5	1.255 (4)	C1-C4	1.481 (5)
O4-C5	1.264 (4)	C2-C3	1.390 (5)
O5-H5A	0.87 (2)	C2-H2	0.9300
O5-H5B	0.87 (2)	C3-C5	1.497 (4)
O6-H6A	0.87 (2)		
O5-Cu1-O5 ${ }^{\text {i }}$	180.0	Cu2-O6-H6B	116 (3)
O5-Cu1-N1	87.36 (12)	H6A-O6-H6B	108 (5)
$\mathrm{O} 5-\mathrm{Cu} 1-\mathrm{N} 1$	92.64 (12)	H7A-O7-H7B	113 (5)
O5-Cu1-N1 ${ }^{\text {i }}$	92.64 (12)	H8A-O8-H8B	117 (5)
$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1^{\text {i }}$	87.36 (12)	$\mathrm{Cu} 2-\mathrm{O}-\mathrm{H} 9 \mathrm{~A}$	114 (3)
N1-Cu1-N1 ${ }^{\text {i }}$	180.00 (18)	Cu2-09-H9B	114 (3)
$\mathrm{O} 5-\mathrm{Cu}-\mathrm{O3}^{\text {i }}$	85.89 (11)	H9A-O9-H9B	110 (5)
$\mathrm{O} 5^{\text {i- }} \mathrm{Cu} 1-\mathrm{O3}^{\text {i }}$	94.11 (11)	Cu2-O10-H10A	115 (4)
N1-Cu1-O3 ${ }^{\text {i }}$	105.11 (9)	Cu2-O10-H10B	109 (4)
$\mathrm{N} 1^{\text {i }}-\mathrm{Cu} 1-\mathrm{O3}^{\text {i }}$	74.89 (9)	H10A-O10-H10B	114 (6)
O5-Cu1-O3	94.11 (11)	N2-N1-C3	107.6 (3)
O5i-Cu1-O3	85.89 (11)	N2-N1-Cu1	132.2 (2)
N1-Cu1-O3	74.89 (9)	C3-N1-Cu1	116.3 (2)
$\mathrm{N1}{ }^{\text {i }}$ - $\mathrm{Cu} 1-\mathrm{O} 3$	105.11 (9)	N1-N2-C1	108.4 (3)
$\mathrm{O} 3{ }^{\text {i- }} \mathrm{Cu} 1-\mathrm{O} 3$	180.0	N1-N2-Cu2	137.8 (2)
N2-Cu2-O6	165.29 (12)	C1-N2-Cu2	113.2 (2)
N2-Cu2-09	93.98 (12)	N2-C1-C2	110.0 (3)
O6-Cu2-O9	92.94 (13)	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 4$	115.9 (3)
N2-Cu2-O2	80.69 (10)	C2-C1-C4	134.1 (3)
O6-Cu2-O2	88.18 (11)	C3-C2-C1	103.4 (3)
$\mathrm{O} 9-\mathrm{Cu} 2-\mathrm{O} 2$	158.66 (12)	C3-C2-H2	128.3
N2-Cu2-O10	97.78 (12)	C1-C2-H2	128.3
O6-Cu2-O10	93.87 (13)	N1-C3-C2	110.6 (3)
O9-Cu2-O10	99.41 (14)	N1-C3-C5	119.3 (3)
$\mathrm{O} 2-\mathrm{Cu} 2-\mathrm{O} 10$	101.78 (12)	C2-C3-C5	130.1 (3)
C4-O2-Cu2	114.3 (2)	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{O} 2$	124.6 (3)
C5-O3-Cu1	109.0 (2)	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 1$	120.1 (3)
Cu1-O5-H5A	111 (3)	$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 1$	115.2 (3)
Cu1-O5-H5B	115 (3)	O3-C5-O4	125.8 (3)
H5A-O5-H5B	110 (5)	O3-C5-C3	117.4 (3)
Cu2-O6-H6A	115 (3)	O4-C5-C3	116.8 (3)

Symmetry code: (i) $-x+1,-y+1,-z$.

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O5-H5A $\cdots \mathrm{O} 1^{\text {ii }}$	0.87 (3)	2.28 (4)	3.050 (4)	148 (4)
O5-H5B \cdots O8 $8^{\text {iii }}$	0.87 (4)	2.16 (4)	3.021 (5)	172 (4)
O6- $\mathrm{H} 6 A \cdots \mathrm{O} 8^{\text {iv }}$	0.87 (4)	2.38 (5)	3.078 (4)	137 (4)
O6- $\mathrm{H} 6 B^{\cdots} \mathrm{O} 2^{\mathrm{iv}}$	0.87 (6)	2.30 (6)	3.077 (4)	149 (4)
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 1^{\text {iii }}$	0.80 (4)	2.16 (4)	2.860 (4)	147 (4)
O7- $77 B^{\cdots}{ }^{\text {¢ }}$	0.81 (4)	1.91 (4)	2.715 (4)	171 (4)
$\mathrm{O} 8-\mathrm{H} 8 A \cdots \mathrm{O} 7^{\mathrm{vi}}$	0.81 (3)	2.06 (3)	2.854 (4)	169 (4)
$\mathrm{O} 8-\mathrm{H} 8 B \cdots \mathrm{O} 1$	0.81 (5)	2.03 (5)	2.836 (4)	175 (4)
O9—-H9 ${ }^{\cdots}$ O $4^{\text {vii }}$	0.87 (4)	2.26 (4)	3.061 (4)	154 (4)

Symmetry codes: (ii) $x, y, z-1$; (iii) $-x+1,-y+2,-z+1$; (iv) $-x,-y+1,-z+1$; (v) $x-1, y, z$; (vi) $x, y, z+1$; (vii) $x-1, y-1, z$.

