Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[diagua(μ_3 -1*H*-benzimidazole-5.6-dicarboxylato- $\kappa^4 N^3$: O^5 . O^6 : O^6')magnesium(II)]

Hao Wang,^a Xiao-Fei Li,^b Wen-Dong Song,^c* Xiao-Tian Ma^c and Juan-Hua Liu^c

^aCollege of Food Science and Technology, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China, ^bCollege of Agriculture, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China, and College of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China

Correspondence e-mail: songwd60@163.com

Received 28 December 2009; accepted 8 January 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.036; wR factor = 0.090; data-to-parameter ratio = 7.0.

In the title complex, $[Mg(C_9H_4N_2O_4)(H_2O)_2]_n$, the Mg^{II} atom is six-coordinated by one N and three O atoms from three different 1H-benzimidazole-5,6-dicarboxylate ligands and two O atoms from two water molecules, forming a slightly distorted octahedral geometry. The ligand links the Mg^{II} centres into a three-dimensional network. Extensive N- $H \cdots O$ and $O - H \cdots O$ hydrogen bonds exist between the ligands and water molecules, stabilizing the crystal structure.

Related literature

0

0

ĊΗ2

For related structures of 1*H*-benzimidazole-5,6-dicarboxylate complexes, see: Song, Wang, Hu et al. (2009); Song, Wang, Li et al. (2009); Song, Wang, Qin et al. (2009); Wang et al. (2009).

Experimental

Crystal data $[Mg(C_9H_4N_2O_4)(H_2O_2)]$ $M_r = 264.48$ Monoclinic, Cc a = 7.4793 (15) Å b = 18.958 (4) Å c = 7.3132 (15) Å $\beta = 99.38 (3)^{\circ}$

V = 1023.1 (4) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.20 \text{ mm}^{-1}$ T = 293 K $0.30 \times 0.25 \times 0.21 \text{ mm}$

-0

-Ma

Mg

 $R_{\rm int} = 0.031$

4611 measured reflections

1143 independent reflections

1096 reflections with $I > 2\sigma(I)$

Data collection

Rigaku/MSC Mercury CCD diffractometer Absorption correction: multi-scan (REQAB; Jacobson, 1998) $T_{\rm min} = 0.943, T_{\rm max} = 0.960$

Refinement

N

N

$R[F^2 > 2\sigma(F^2)] = 0.036$	2 restraints
$wR(F^2) = 0.090$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$
1143 reflections	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$
163 parameters	

Table 1

Selected bond lengths (Å).

Ig1−N1	2.195 (3)	$Mg1-O4^{ii}$ $Mg1-O1W$ $Mg1-O2W$	2.113 (3)
Ig1−O1 ⁱ	2.051 (3)		2.063 (3)
Ig1−O3 ⁱ	2.106 (3)		2.074 (3)
		-	

Symmetry codes: (i) $x, -y + 1, z - \frac{1}{2}$; (ii) $x + \frac{1}{2}, y + \frac{1}{2}, z$.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N3-H3···O1 ⁱⁱⁱ	0.86	2.29	2.992 (4)	138
$O1W - H1W \cdot \cdot \cdot O2^{iv}$	0.84	1.84	2.651 (4)	163
$O1W - H2W \cdot \cdot \cdot O3^{ii}$	0.84	1.92	2.734 (4)	164
$O2W - H3W \cdots O4^{iv}$	0.84	2.27	3.068 (4)	160
$O2W - H4W \cdots O2^{v}$	0.84	1.87	2.685 (4)	164

Symmetry codes: (ii) $x + \frac{1}{2}, y + \frac{1}{2}, z$; (iii) $x - 1, -y + 1, z - \frac{1}{2}$; (iv) $x, -y + 1, z + \frac{1}{2}$; (v) $x - \frac{1}{2}, y + \frac{1}{2}, z.$

Data collection: CrystalStructure (Rigaku/MSC, 2002); cell refinement: CrystalStructure; data reduction: CrystalStructure; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

The authors acknowledge Guang Dong Ocean University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2269).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Jacobson, R. (1998). REQAB. Private communication to Molecular Structure Corporation, The Woodlands, Texas, USA.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Song, W.-D., Wang, H., Hu, S.-W., Qin, P.-W. & Li, S.-J. (2009). Acta Cryst. E65, m701
- Song, W.-D., Wang, H., Li, S.-J., Qin, P.-W. & Hu, S.-W. (2009). Acta Cryst. E65, m702
- Song, W.-D., Wang, H., Qin, P.-W., Li, S.-J. & Hu, S.-W. (2009). Acta Cryst. E65, m672
- Wang, H., Song, W.-D., Li, S.-J., Miao, D.-L. & Liu, J. (2009). Acta Cryst. E65, m1423.

supporting information

Acta Cryst. (2010). E66, m151 [https://doi.org/10.1107/S1600536810001029]

Poly[diaqua(μ_3 -1*H*-benzimidazole-5,6-dicarboxylato- $\kappa^4 N^3$: O^5 , O^6 : O^6)magnesium(II)]

Hao Wang, Xiao-Fei Li, Wen-Dong Song, Xiao-Tian Ma and Juan-Hua Liu

S1. Comment

1*H*-Benzimidazole-5,6-dicarboxylic acid (H₂L) can function as a multidentate ligand and several complexes formed from this ligand have been reported recently, including *catena*-poly[[diaqua(1,10-phenanthroline- $\kappa^2 N, N'$) nickel(II)]- μ -L- $\kappa^2 N^3:O^6$] (Song, Wang, Hu *et al.*, 2009), pentaaqua(L- κN^3)cobalt(II) pentahydrate (Song, Wang, Li *et al.*, 2009), pentaaqua(L- κN^3)nickel(II) pentahydrate (Song, Wang, Qin *et al.*, 2009) and tetraaquabis(L- κN^3)cobalt(II) dimethylformamide disolvate dihydrate (Wang *et al.*, 2009). However, the Mg complex of the H₂L ligand has not been reported up to now.

As shown in Fig. 1, the Mg^{II} atom is six-coordinated by one N and three O atoms from three different *L* ligands, and two O atoms from two water molecules (Table 1), showing a slightly distorted octahedral geometry. The equatorial plane is defined by O1W, O2W, O1ⁱ and O3ⁱ atoms, while N1 and O4ⁱⁱ occupy the axial positions [symmetry codes: (i) x, 1 - y, -1/2 + z; (ii) 1/2 + x, 1/2 + y, z]. Intermolecular O—H…O and N—H…O hydrogen bonds between the ligand and the coordinated water molecules stabilize the structure (Table 2 and Fig 2).

S2. Experimental

A mixture of MgCl₂ (1.0 mmol), H_2L (0.6 mmol), CH_3CN (6 ml) and water (4 ml) was added to a 20 ml Teflon-lined stainless container, which was heated to 150°C and held at that temperature for 5 d. After cooling to room temperature, colourless crystals were recovered by filtration.

S3. Refinement

C- and N-bound H atoms were placed at calculated positions and treated as riding on the parent C or N atoms, with C— H = 0.93 and N—H = 0.86 Å, and with $U_{iso}(H) = 1.2U_{eq}(C, N)$. The water H atoms were located in a difference Fourier map and refined as riding with a distance restraint of O—H = 0.84 Å and with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

The structure of the title compound, showing the 30% probability displacement ellipsoids. [Symmetry codes: (i) x, 1 - y, -1/2 + z; (ii) 1/2 + x, 1/2 + y, z.]

Figure 2

A view of the three-dimensional network structure of the title compound. Hydrogen bonds are shown as dashed lines.

Poly[diaqua(μ_3 -1*H*-benzimidazole-5,6-dicarboxylato- $\kappa^4 N^3$: O^5, O^6 : O^6)magnesium(II)]

Crystal data	
$[Mg(C_9H_4N_2O_4)(H_2O)_2]$	<i>b</i> = 18.958 (4) Å
$M_r = 264.48$	c = 7.3132 (15) Å
Monoclinic, Cc	$\beta = 99.38 (3)^{\circ}$
Hall symbol: C -2yc	V = 1023.1 (4) Å ³
a = 7.4793 (15) Å	Z = 4

F(000) = 544 $D_x = 1.717 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4114 reflections $\theta = 3.6-27.5^{\circ}$

Data collection

Rigaku/MSC Mercury CCD 4611 measured reflections diffractometer 1143 independent reflections Radiation source: fine-focus sealed tube 1096 reflections with $I > 2\sigma(I)$ Graphite monochromator $R_{\rm int} = 0.031$ $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.6^{\circ}$ ω scans $h = -9 \rightarrow 9$ Absorption correction: multi-scan (REQAB; Jacobson, 1998) $k = -24 \rightarrow 24$ $l = -8 \rightarrow 9$ $T_{\rm min} = 0.943, T_{\rm max} = 0.960$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.036$ Hydrogen site location: inferred from $wR(F^2) = 0.090$ neighbouring sites S = 1.06H-atom parameters constrained 1143 reflections $w = 1/[\sigma^2(F_o^2) + (0.04P)^2 + 2P]$ where $P = (F_0^2 + 2F_c^2)/3$ 163 parameters 2 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$ Primary atom site location: structure-invariant direct methods $\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$

 $\mu = 0.20 \text{ mm}^{-1}$ T = 293 K

Block, colourless

 $0.30 \times 0.25 \times 0.21 \text{ mm}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$	
Mg1	0.27807 (16)	0.68928 (5)	0.63241 (16)	0.0172 (3)	
01	0.4349 (4)	0.37147 (14)	0.9888 (4)	0.0234 (5)	
O2	0.5047 (4)	0.37926 (16)	0.7087 (4)	0.0317 (7)	
03	0.1320 (4)	0.28489 (12)	0.8699 (4)	0.0237 (6)	
O4	-0.0733 (4)	0.28304 (12)	0.6132 (3)	0.0236 (6)	
N1	0.0678 (5)	0.61142 (15)	0.6633 (5)	0.0214 (6)	
N3	-0.2035 (5)	0.56134 (16)	0.6122 (5)	0.0271 (7)	
H3	-0.3196	0.5577	0.5874	0.033*	
C1	0.0380 (5)	0.31481 (16)	0.7326 (5)	0.0173 (6)	
C2	0.0549 (5)	0.39389 (16)	0.7123 (5)	0.0182 (7)	
C3	-0.1002 (5)	0.43318 (18)	0.6560 (5)	0.0223 (7)	
H2	-0.2127	0.4116	0.6240	0.027*	
C4	-0.0816 (5)	0.50629 (18)	0.6490 (5)	0.0206 (7)	
C5	0.0876 (5)	0.53907 (17)	0.6828 (5)	0.0184 (7)	
C6	0.2438 (5)	0.49930 (18)	0.7332 (5)	0.0185 (7)	
H1	0.3574	0.5206	0.7531	0.022*	
C7	0.2259 (4)	0.42738 (16)	0.7529 (4)	0.0154 (6)	
C8	0.3985 (5)	0.38839 (17)	0.8204 (5)	0.0173 (7)	
C9	-0.1073 (6)	0.62155 (18)	0.6224 (6)	0.0262 (8)	
H9	-0.1599	0.6659	0.6023	0.031*	
O1W	0.4663 (4)	0.65596 (14)	0.8537 (4)	0.0289 (6)	

supporting information

H1W	0.4573	0.6408	0.9598	0.043*
H2W	0.5355	0.6911	0.8601	0.043*
O2W	0.1388 (5)	0.75021 (15)	0.7982 (5)	0.0374 (8)
H3W	0.0660	0.7342	0.8639	0.056*
H4W	0.1176	0.7927	0.7704	0.056*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mg1	0.0191 (6)	0.0134 (4)	0.0184 (5)	-0.0004 (4)	0.0009 (4)	0.0004 (4)
01	0.0186 (13)	0.0310 (13)	0.0202 (12)	0.0004 (10)	0.0019 (11)	0.0074 (10)
O2	0.0247 (16)	0.0462 (17)	0.0253 (14)	0.0133 (12)	0.0075 (12)	0.0005 (12)
03	0.0274 (14)	0.0165 (11)	0.0235 (12)	-0.0008 (10)	-0.0074 (11)	0.0006 (9)
O4	0.0281 (15)	0.0195 (12)	0.0203 (13)	-0.0067 (10)	-0.0045 (11)	0.0014 (9)
N1	0.0215 (16)	0.0167 (13)	0.0265 (15)	0.0018 (11)	0.0058 (12)	0.0039 (11)
N3	0.0147 (16)	0.0249 (14)	0.0400 (19)	0.0032 (12)	-0.0009 (14)	0.0065 (13)
C1	0.0195 (17)	0.0151 (13)	0.0175 (16)	-0.0016 (12)	0.0043 (14)	-0.0002 (11)
C2	0.0197 (18)	0.0150 (14)	0.0192 (16)	-0.0024 (12)	0.0008 (14)	0.0015 (12)
C3	0.0184 (18)	0.0204 (16)	0.0274 (19)	-0.0040 (13)	0.0011 (15)	0.0023 (13)
C4	0.0151 (19)	0.0216 (16)	0.0244 (18)	0.0023 (12)	0.0011 (14)	0.0045 (13)
C5	0.0191 (17)	0.0160 (14)	0.0203 (16)	-0.0019 (12)	0.0035 (14)	0.0016 (12)
C6	0.0129 (16)	0.0198 (15)	0.0224 (17)	-0.0022 (11)	0.0018 (14)	0.0008 (12)
C7	0.0151 (16)	0.0178 (14)	0.0134 (14)	0.0002 (12)	0.0027 (13)	-0.0002 (11)
C8	0.0154 (17)	0.0154 (14)	0.0204 (17)	-0.0024 (11)	0.0007 (14)	-0.0011 (11)
C9	0.024 (2)	0.0208 (16)	0.034 (2)	0.0068 (14)	0.0050 (17)	0.0067 (14)
O1W	0.0340 (15)	0.0271 (13)	0.0225 (12)	-0.0071 (11)	-0.0043 (12)	0.0052 (10)
O2W	0.0486 (19)	0.0219 (12)	0.0476 (19)	0.0063 (12)	0.0251 (16)	-0.0022 (12)

Geometric parameters (Å, °)

Mg1—N1	2.195 (3)	C1—C2	1.514 (4)	
Mg1—O1 ⁱ	2.051 (3)	C2—C3	1.384 (5)	
Mg1—O3 ⁱ	2.106 (3)	C2—C7	1.416 (5)	
Mg1—O4 ⁱⁱ	2.113 (3)	C3—C4	1.395 (5)	
Mg1—O1W	2.063 (3)	С3—Н2	0.9300	
Mg1—O2W	2.074 (3)	C4—C5	1.395 (5)	
O1—C8	1.259 (4)	C5—C6	1.388 (5)	
O2—C8	1.241 (4)	C6—C7	1.380 (5)	
O3—C1	1.263 (4)	C6—H1	0.9300	
O4—C1	1.257 (4)	С7—С8	1.499 (5)	
N1—C9	1.310 (5)	С9—Н9	0.9300	
N1C5	1.384 (4)	O1W—H1W	0.8401	
N3—C9	1.345 (5)	O1W—H2W	0.8400	
N3—C4	1.383 (5)	O2W—H3W	0.8399	
N3—H3	0.8600	O2W—H4W	0.8400	
O1 ⁱ —Mg1—O1W	81.69 (12)	C7—C2—C1	120.7 (3)	
O1 ⁱ —Mg1—O2W	174.71 (15)	C2—C3—C4	117.5 (3)	

O1W—Mg1—O2W	93.18 (14)	C2—C3—H2	121.2
O1 ⁱ —Mg1—O3 ⁱ	85.34 (12)	C4—C3—H2	121.3
O1W-Mg1-O3 ⁱ	166.51 (13)	N3—C4—C3	133.6 (3)
O2W-Mg1-O3 ⁱ	99.68 (13)	N3—C4—C5	104.4 (3)
O1 ⁱ —Mg1—O4 ⁱⁱ	95.02 (12)	C3—C4—C5	122.0 (3)
O1W—Mg1—O4 ⁱⁱ	90.61 (11)	N1—C5—C6	129.5 (3)
O2W—Mg1—O4 ⁱⁱ	83.68 (12)	N1—C5—C4	110.1 (3)
O3 ⁱ —Mg1—O4 ⁱⁱ	86.80 (11)	C6—C5—C4	120.3 (3)
O1 ⁱ —Mg1—N1	98.87 (12)	C7—C6—C5	118.2 (3)
O1W—Mg1—N1	97.00 (12)	С7—С6—Н1	120.9
O2W—Mg1—N1	82.98 (13)	С5—С6—Н1	120.9
O3 ⁱ —Mg1—N1	88.65 (12)	C6—C7—C2	121.4 (3)
O4 ⁱⁱ —Mg1—N1	164.98 (12)	C6—C7—C8	115.4 (3)
C8—O1—Mg1 ⁱⁱⁱ	126.4 (2)	C2—C7—C8	123.2 (3)
C1—O3—Mg1 ⁱⁱⁱ	139.4 (2)	O2—C8—O1	123.3 (3)
C1—O4—Mg1 ^{iv}	130.8 (2)	O2—C8—C7	117.5 (3)
C9—N1—C5	104.8 (3)	O1—C8—C7	119.0 (3)
C9—N1—Mg1	125.8 (2)	N1—C9—N3	113.2 (3)
C5—N1—Mg1	127.6 (3)	N1—C9—H9	123.4
C9—N3—C4	107.4 (3)	N3—C9—H9	123.4
C9—N3—H3	126.3	Mg1—O1W—H1W	133.0
C4—N3—H3	126.3	Mg1—O1W—H2W	97.9
O4—C1—O3	123.8 (3)	H1W—O1W—H2W	111.1
O4—C1—C2	117.6 (3)	Mg1—O2W—H3W	124.6
O3—C1—C2	118.6 (3)	Mg1—O2W—H4W	119.1
C3—C2—C7	120.4 (3)	H3W—O2W—H4W	111.8
C3—C2—C1	118.9 (3)		

Symmetry codes: (i) *x*, -*y*+1, *z*-1/2; (ii) *x*+1/2, *y*+1/2, *z*; (iii) *x*, -*y*+1, *z*+1/2; (iv) *x*-1/2, *y*-1/2, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H…A
N3—H3…O1 ^v	0.86	2.29	2.992 (4)	138
O1 <i>W</i> —H1 <i>W</i> ····O2 ⁱⁱⁱ	0.84	1.84	2.651 (4)	163
O1 <i>W</i> —H2 <i>W</i> ····O3 ⁱⁱ	0.84	1.92	2.734 (4)	164
O2 <i>W</i> —H3 <i>W</i> ····O4 ⁱⁱⁱ	0.84	2.27	3.068 (4)	160
O2W—H4 W ···O2 ^{vi}	0.84	1.87	2.685 (4)	164

Symmetry codes: (ii) *x*+1/2, *y*+1/2, *z*; (iii) *x*, -*y*+1, *z*+1/2; (v) *x*-1, -*y*+1, *z*-1/2; (vi) *x*-1/2, *y*+1/2, *z*.