

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(1,10-phenanthrolin-1-ium) hexabromidoplatinate(IV) dihydrate

Kwang Ha

School of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea Correspondence e-mail: hakwang@chonnam.ac.kr

Received 17 December 2009; accepted 23 December 2009

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.013 Å; R factor = 0.037; wR factor = 0.095; data-to-parameter ratio = 15.9.

The asymmetric unit of the title compound, $(C_{12}H_9N_2)_2$ -[PtBr₆]·2H₂O, contains a protonated 1,10-phenanthroline cation (H-phen), one half of a $[PtBr_6]^{2-}$ anionic complex and a solvent water molecule. The Pt^{IV} ion is located on an inversion centre and is coordinated in an octahedral environment by six Br atoms. The crystal structure displays numerous intermolecular π - π interactions between six-membered rings of H-phen, with a shortest centroid-centroid distance of 3.670 (5) Å, and intermolecular $N-H\cdots O$, $O-H\cdots Br$ and $O-H \cdots N$ hydrogen bonds.

Related literature

For the thermal decomposition of (H-phen)₂[PtBr₆]·H₂O, see: Liptay *et al.* (1992). For other $[PtBr_6]^{2-}$ complexes, see: Grundy & Brown (1970); Hu et al. (2009); Yusenko et al. (2002).

Experimental

Crystal data $(C_{12}H_9N_2)_2$ [PtBr₆]·2H₂O $M_r = 1073.01$ Triclinic, $P\overline{1}$ a = 8.1999 (6) Å b = 9.5808 (7) Å c = 9.6342 (7) Å $\alpha = 83.811 \ (1)^{\circ}$ $\beta = 73.300 (1)^{\circ}$

$\gamma = 74.961 \ (2)^{\circ}$	
$V = 699.67 (9) \text{ Å}^3$	
Z = 1	
Mo $K\alpha$ radiation	
$\mu = 13.61 \text{ mm}^{-1}$	
T = 200 K	
$0.21 \times 0.19 \times 0.11 \text{ mm}$	1

metal-organic compounds

 $R_{\rm int} = 0.026$

4327 measured reflections

2684 independent reflections

2236 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART 1000 CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\rm min} = 0.577, T_{\rm max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	169 parameters
$wR(F^2) = 0.095$	H-atom parameters constrained
S = 1.13	$\Delta \rho_{\rm max} = 1.77 \text{ e } \text{\AA}^{-3}$
2684 reflections	$\Delta \rho_{\rm min} = -1.37 \text{ e } \text{\AA}^{-3}$

Table 1

Selected bond lengths (Å).

Pt1-Br1	2.4755 (9)	Pt1-Br3	2.4725 (9)
Pt1-Br2	2.4743 (9)		

Table 2	
Hydrogen-bond geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H11···O1 ⁱ	0.88	2.00	2.741 (12)	142
O1−H21···Br1 ⁱⁱ	1.01	2.63	3.463 (9)	139
$O1 - H22 \cdot \cdot \cdot N2^{iii}$	1.04	2.28	2.890 (12)	116

Symmetry codes: (i) x + 1, y - 1, z; (ii) x, y + 1, z - 1; (iii) -x + 1, -y + 1, -z.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0094056).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2266).

References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Grundy, H. D. & Brown, I. D. (1970). Can. J. Chem. 48, 1151-1154.
- Hu, J. J., Li, F. & Andy Hor, T. S. (2009). Organometallics, 28, 1212-1220. Liptay, G., Zsakó, J., Várhelyi, Cs. & Novák, Cs. (1992). J. Therm. Anal. 38,
- 2301-2310.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Yusenko, K. V., Gromilov, S. A., Baidina, I. A., Shubin, Yu. V., Korol'kov, I. V., Drebushchak, T. N., Basova, T. V. & Korenev, S. V. (2002). J. Struct. Chem. 43, 649-655.

supporting information

Acta Cryst. (2010). E66, m105 [https://doi.org/10.1107/S1600536809055196]

Bis(1,10-phenanthrolin-1-ium) hexabromidoplatinate(IV) dihydrate

Kwang Ha

S1. Comment

The compound, $(H-phen)_2(PtBr_6)$. H_2O (H-phen is monoprotonated 1,10-phenanthroline cation), was previously prepared by the reaction of $H_2PtBr_6.6H_2O$ with 1,10-phenanthroline and HBr, and its thermal decomposition was studied by means of derivatography and differential scanning calorimetry (Liptay *et al.*, 1992).

The asymmetric unit of the title compound, (H-phen)₂(PtBr₆).2H₂O, contains a protonated 1,10-phenanthroline cation, one half of a PtBr₆ anionic complex and a solvent water molecule (Fig. 1). In the complex, the Pt^{IV} ion is coordinated in an almost perfect octahedral environment by six Br atoms and a centre of inversion is located at the Pt atom with the special position (1/2, 0, 1/2). The Pt—Br bond lengths are nearly equivalent with the range of 2.4725 (9)–2.4755 (9) Å (Table 1) and the *cis* Br—Pt—Br bond angles lie in the range of 89.41 (3)–90.59 (3)°. These values are similar to those found in the complexes K₂PtBr₆ (Grundy & Brown, 1970), [Rh(NH₃)₅Cl][PtBr₆] (Yusenko *et al.*, 2002) and (C₂₁H₁₉N₂)₂(PtBr₆) (Hu *et al.*, 2009). The crystal structure displays numerous intermolecular π - π interactions between sixmembered rings of H-phen, with a shortest centroid–centroid distance of 3.670 (5) Å. There are also intermolecular N—H···O, O—H···Br and O—H···N hydrogen bonds (Fig. 2 and Table 2).

S2. Experimental

To a solution of K_2PtBr_6 (0.101 g, 0.134 mmol) in H_2O (10 ml) was added 1,10-phenanthroline (0.027 g, 0.147 mmol). The mixture was stirred for 8 h at room temperature. The precipitate obtained was separated by filtration, washed with acetone and dried at 50 °C, to give a dark orange powder (0.051 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH₃CN solution.

S3. Refinement

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95, N—H = 0.88 Å and $U_{iso}(H) = 1.2U_{eq}(C, N)$]. The H atoms of the water molecule were located from difference Fourier maps, but not refined [$U_{iso}(H) = 1.5U_{eq}(O)$]. The highest peak (1.77 e Å⁻³) and the deepest hole (-1.37 e Å⁻³) in the difference Fourier map are located 1.11 and 1.27 Å, respectively, from the atoms Pt1 and Br1.

The structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) 1-x, -y, 1-z.]

Figure 2

View of the unit-cell contents of the title compound. Hydrogen bonds are drawn with dashed lines.

Z = 1

F(000) = 498

 $\theta = 2.2 - 26.0^{\circ}$

T = 200 K

Block, red

 $\mu = 13.61 \text{ mm}^{-1}$

 $0.21 \times 0.19 \times 0.11 \text{ mm}$

 $D_{\rm x} = 2.547 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2462 reflections

Bis(1,10-phenanthrolin-1-ium) hexabromidoplatinate(IV) dihydrate

Crystal data

 $(C_{12}H_9N_2)_2[PtBr_6]\cdot 2H_2O$ $M_r = 1073.01$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 8.1999 (6) Å b = 9.5808 (7) Å c = 9.6342 (7) Å a = 83.811 (1)° $\beta = 73.300$ (1)° $\gamma = 74.961$ (2)° V = 699.67 (9) Å³

Data collection

Bruker SMART 1000 CCD	4327 measured reflections
diffractometer	2684 independent reflections
Radiation source: fine-focus sealed tube	2236 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.026$
φ and ω scans	$\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 2.2^\circ$
Absorption correction: multi-scan	$h = -10 \rightarrow 5$
(SADABS; Bruker, 2001)	$k = -11 \rightarrow 11$
$T_{\min} = 0.577, \ T_{\max} = 1.000$	$l = -11 \rightarrow 11$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.037$ Hydrogen site location: inferred from $wR(F^2) = 0.095$ neighbouring sites *S* = 1.13 H-atom parameters constrained 2684 reflections $w = 1/[\sigma^2(F_0^2) + (0.0229P)^2 + 6.779P]$ 169 parameters where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ 0 restraints $\Delta \rho_{\rm max} = 1.77 \text{ e} \text{ Å}^{-3}$ Primary atom site location: structure-invariant direct methods $\Delta \rho_{\rm min} = -1.37 \ {\rm e} \ {\rm \AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Pt1	0.5000	0.0000	0.5000	0.02001 (15)	
Br1	0.55354 (13)	-0.02152 (11)	0.74241 (10)	0.0305 (2)	
Br2	0.81815 (12)	-0.08964 (11)	0.38859 (10)	0.0314 (2)	
Br3	0.53880 (12)	0.24992 (10)	0.47143 (10)	0.0285 (2)	
N1	0.9383 (10)	0.2591 (8)	0.1579 (8)	0.0297 (18)	
H11	0.9642	0.1848	0.1025	0.036*	
N2	0.8156 (10)	0.2812 (9)	-0.0880(8)	0.0299 (18)	
C1	0.9906 (13)	0.2386 (12)	0.2773 (10)	0.036 (2)	
H1	1.0493	0.1445	0.3033	0.043*	

C2	0.9605 (13)	0.3535 (12)	0.3656 (11)	0.036 (2)
H2	1.0002	0.3395	0.4507	0.044*
C3	0.8717 (12)	0.4879 (11)	0.3265 (10)	0.032 (2)
Н3	0.8486	0.5676	0.3860	0.038*
C4	0.8147 (12)	0.5086 (10)	0.1992 (9)	0.0236 (19)
C5	0.7304 (12)	0.6471 (10)	0.1520 (10)	0.026 (2)
Н5	0.7092	0.7287	0.2083	0.032*
C6	0.6798 (12)	0.6644 (10)	0.0280 (10)	0.029 (2)
H6	0.6250	0.7582	-0.0021	0.035*
C7	0.7080 (11)	0.5430 (11)	-0.0586 (9)	0.024 (2)
C8	0.6533 (12)	0.5559 (11)	-0.1871 (9)	0.027 (2)
H8	0.5988	0.6480	-0.2212	0.033*
С9	0.6794 (12)	0.4360 (11)	-0.2609 (10)	0.028 (2)
H9	0.6441	0.4425	-0.3476	0.034*
C10	0.7605 (13)	0.3001 (11)	-0.2063 (10)	0.032 (2)
H10	0.7761	0.2169	-0.2586	0.039*
C11	0.7892 (11)	0.4034 (11)	-0.0142 (9)	0.025 (2)
C12	0.8468 (11)	0.3880 (9)	0.1150 (9)	0.0203 (18)
O1	0.1634 (13)	1.0222 (10)	0.0141 (10)	0.072 (3)
H21	0.2326	0.9999	-0.0891	0.109*
H22	0.1943	0.9525	0.0984	0.109*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	0.0223 (3)	0.0181 (3)	0.0209 (3)	-0.00115 (19)	-0.01071 (19)	-0.00139 (18)
Br1	0.0391 (6)	0.0287 (5)	0.0263 (5)	-0.0014 (4)	-0.0189 (4)	-0.0018 (4)
Br2	0.0222 (5)	0.0312 (6)	0.0382 (5)	0.0001 (4)	-0.0090 (4)	-0.0045 (4)
Br3	0.0360 (5)	0.0207 (5)	0.0313 (5)	-0.0061 (4)	-0.0134 (4)	-0.0008 (4)
N1	0.034 (5)	0.016 (4)	0.031 (4)	0.004 (3)	-0.007 (4)	0.002 (3)
N2	0.034 (5)	0.031 (5)	0.021 (4)	-0.007 (4)	0.001 (3)	-0.011 (3)
C1	0.032 (5)	0.040 (6)	0.034 (5)	-0.010 (5)	-0.014 (4)	0.023 (5)
C2	0.032 (6)	0.052 (7)	0.035 (6)	-0.019 (5)	-0.018 (4)	0.002 (5)
C3	0.030 (5)	0.034 (6)	0.029 (5)	-0.006 (4)	-0.004 (4)	-0.003 (4)
C4	0.031 (5)	0.020 (5)	0.028 (5)	-0.012 (4)	-0.019 (4)	0.010 (4)
C5	0.033 (5)	0.018 (5)	0.032 (5)	0.000 (4)	-0.017 (4)	-0.006 (4)
C6	0.024 (5)	0.020 (5)	0.047 (6)	0.000 (4)	-0.019 (4)	-0.004 (4)
C7	0.016 (4)	0.037 (6)	0.020 (4)	-0.007(4)	-0.004 (3)	-0.004 (4)
C8	0.023 (5)	0.031 (6)	0.028 (5)	-0.008 (4)	-0.009 (4)	0.007 (4)
C9	0.027 (5)	0.034 (6)	0.025 (5)	-0.006 (4)	-0.008 (4)	-0.003 (4)
C10	0.042 (6)	0.024 (5)	0.028 (5)	-0.010 (5)	0.000 (4)	-0.006 (4)
C11	0.014 (4)	0.035 (6)	0.024 (5)	-0.005 (4)	-0.004 (4)	0.000 (4)
C12	0.018 (4)	0.018 (5)	0.023 (4)	-0.005 (4)	-0.004 (3)	0.002 (3)
O1	0.085 (7)	0.052 (6)	0.058 (6)	0.005 (5)	-0.005 (5)	0.003 (5)

Geometric parameters (Å, °)

1				
Pt1—Br1	2.4755 (9)	C4—C5	1.421 (12)	
Pt1—Br2	2.4743 (9)	C5—C6	1.353 (13)	
Pt1—Br3	2.4725 (9)	С5—Н5	0.9500	
N1-C1	1.319 (12)	C6—C7	1.436 (12)	
N1-C12	1.358 (11)	С6—Н6	0.9500	
N1—H11	0.8800	C7—C11	1.411 (13)	
N2C10	1.321 (12)	C7—C8	1.417 (12)	
N2—C11	1.371 (12)	C8—C9	1.354 (13)	
C1—C2	1.391 (15)	C8—H8	0.9500	
C1—H1	0.9500	C9—C10	1.420 (14)	
C2—C3	1.377 (15)	С9—Н9	0.9500	
C2—H2	0.9500	C10—H10	0.9500	
C3—C4	1.411 (12)	C11—C12	1.434 (12)	
С3—Н3	0.9500	O1—H21	1.01	
C4—C12	1.409 (12)	O1—H22	1.04	
Br3 ⁱ —Pt1—Br3	180.0	C12—C4—C3	118.5 (8)	
Br3 ⁱ —Pt1—Br2	90.59 (3)	C12—C4—C5	119.3 (8)	
Br3—Pt1—Br2	89.41 (3)	C3—C4—C5	122.2 (8)	
Br3 ⁱ —Pt1—Br2 ⁱ	89.41 (3)	C6—C5—C4	121.0 (8)	
Br3—Pt1—Br2 ⁱ	90.59 (3)	С6—С5—Н5	119.5	
Br2—Pt1—Br2 ⁱ	180.00 (2)	С4—С5—Н5	119.5	
Br3 ⁱ —Pt1—Br1	90.44 (3)	C5—C6—C7	120.9 (9)	
Br3—Pt1—Br1	89.56 (3)	С5—С6—Н6	119.6	
Br2—Pt1—Br1	89.99 (3)	С7—С6—Н6	119.6	
Br2 ⁱ —Pt1—Br1	90.01 (3)	C11—C7—C8	117.5 (8)	
$Br3^{i}$ — $Pt1$ — $Br1^{i}$	89.56 (3)	C11—C7—C6	119.8 (8)	
Br3—Pt1—Br1 ⁱ	90.44 (3)	C8—C7—C6	122.6 (9)	
Br2—Pt1—Br1 ⁱ	90.01 (3)	C9—C8—C7	119.4 (9)	
$Br2^{i}$ —Pt1— $Br1^{i}$	89.99 (3)	С9—С8—Н8	120.3	
Br1—Pt1—Br1 ⁱ	180.000(1)	С7—С8—Н8	120.3	
C1—N1—C12	124.0 (9)	C8—C9—C10	118.7 (9)	
C1—N1—H11	118.0	С8—С9—Н9	120.6	
C12—N1—H11	118.0	С10—С9—Н9	120.6	
C10-N2-C11	116.2 (8)	N2-C10-C9	124.7 (9)	
N1-C1-C2	120.6 (10)	N2-C10-H10	117.7	
N1—C1—H1	119.7	C9—C10—H10	117.7	
C2-C1-H1	119.7	N2-C11-C7	123.5 (8)	
C3—C2—C1	118.3 (9)	N2-C11-C12	118.1 (8)	
С3—С2—Н2	120.8	C7—C11—C12	118.4 (8)	
C1—C2—H2	120.8	N1—C12—C4	117.8 (8)	
C2—C3—C4	120.7 (9)	N1—C12—C11	121.7 (8)	
С2—С3—Н3	119.6	C4—C12—C11	120.5 (8)	
С4—С3—Н3	119.6	H21—O1—H22	119.7	
C12—N1—C1—C2	-2.9 (14)	C10—N2—C11—C12	179.9 (8)	

N1—C1—C2—C3	1.3 (14)	C8—C7—C11—N2	-0.7 (12)
C1—C2—C3—C4	-0.7 (14)	C6—C7—C11—N2	177.7 (8)
C2-C3-C4-C12	1.6 (13)	C8—C7—C11—C12	179.5 (7)
C2—C3—C4—C5	-176.9 (9)	C6-C7-C11-C12	-2.0 (12)
C12—C4—C5—C6	0.3 (13)	C1—N1—C12—C4	3.7 (13)
C3—C4—C5—C6	178.8 (9)	C1—N1—C12—C11	-178.4 (8)
C4—C5—C6—C7	0.8 (14)	C3—C4—C12—N1	-2.9 (12)
C5—C6—C7—C11	0.1 (13)	C5-C4-C12-N1	175.6 (8)
C5—C6—C7—C8	178.4 (9)	C3—C4—C12—C11	179.1 (8)
С11—С7—С8—С9	0.4 (12)	C5-C4-C12-C11	-2.4 (12)
C6—C7—C8—C9	-177.9 (8)	N2-C11-C12-N1	5.5 (12)
C7—C8—C9—C10	0.3 (13)	C7—C11—C12—N1	-174.7 (8)
C11—N2—C10—C9	0.7 (13)	N2-C11-C12-C4	-176.6 (8)
C8—C9—C10—N2	-0.9 (14)	C7—C11—C12—C4	3.2 (12)
C10—N2—C11—C7	0.1 (12)		

Symmetry code: (i) -x+1, -y, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N1—H11…O1 ⁱⁱ	0.88	2.00	2.741 (12)	142
O1—H21···Br1 ⁱⁱⁱ	1.01	2.63	3.463 (9)	139
$O1$ — $H22$ ··· $N2^{iv}$	1.04	2.28	2.890 (12)	116

Symmetry codes: (ii) *x*+1, *y*-1, *z*; (iii) *x*, *y*+1, *z*-1; (iv) -*x*+1, -*y*+1, -*z*.