

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[[diaquasodium]-di-µ-aqua] 2-(2-pyridyl)quinoline-4-carboxylate]

Hu-Jun Hao,^{a,b} Cui-Wu Lin,^b Xian-Hong Yin,^a* Fei-Long Hu^a and Yue Zhuang^a

^aCollege of Chemistry and Ecological Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China, and ^bSchool of Chemistry & Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China

Correspondence e-mail: yxhphd@163.com

Received 11 November 2009; accepted 15 December 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.035; wR factor = 0.103; data-to-parameter ratio = 16.7.

In the title compound, $[Na(H_2O)_4](C_{15}H_9N_2O_2)$, the Na⁺ ion is coordinated by six water molecules in an octahedral geometry. The NaO₆ octahedra are connected by sharing edges, forming a cationic chain along the *b*-axis direction. O-H···O and O-H···N hydrogen bonds link the chains and the 2-(2-pyridyl)quinoline-4-carboxylate anions into a two-dimensional network parallel to (100).

Related literature

For the syntheses of sodium 2-(2-pyridyl)quinoline-4carboxylate and 2-(2-pyridyl)quinoline-4-carboxylic acid, see: Bass *et al.* (1997); Convers *et al.* (2004). For the structures of 2-(2-pyridyl)-4-methylcarboxyquinoline and its Ru complex, see: Farah *et al.* (2003).

V = 1653.8 (3) Å³

Mo $K\alpha$ radiation

 $0.43 \times 0.35 \times 0.30 \text{ mm}$

14472 measured reflections

3647 independent reflections

2902 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.13 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.028$

218 parameters

 $\Delta \rho_{\rm max} = 0.30 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.19$ e Å⁻³

Z = 4

Experimental

Crystal data

 $[Na(H_2O)_4](C_{15}H_9N_2O_2)$ $M_r = 344.30$ Monoclinic, $P2_1/c$ a = 19.0409 (17) Å b = 5.2987 (5) Å c = 16.8305 (16) Å $\beta = 103.107$ (5)°

Data collection

Siemens SMART 1000 CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.944, T_{\rm max} = 0.962$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.103$ S = 1.053647 reflections

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3−H50···N2	0.85	2.02	2.8657 (14)	172
$O3-H51\cdots O2^{i}$	0.85	1.92	2.7722 (14)	174
$O4-H4A\cdots O5^{i}$	0.85	1.98	2.8222 (14)	172
$O4-H4B\cdots O1^{ii}$	0.85	1.91	2.7494 (14)	171
$O5-H5A\cdots O2$	0.82	2.04	2.8093 (14)	156
$O5-H5B\cdots O2^{ii}$	0.85	1.97	2.8243 (13)	178
$O6-H6A\cdotsO1^{iii}$	0.85	2.10	2.8914 (14)	156
$O6-H6B\cdots O3^{iv}$	0.85	2.00	2.8321 (14)	168

Symmetry codes: (i) x, y - 1, z; (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) $x, -y + \frac{5}{2}, z + \frac{1}{2}$; (iv) x, y + 1, z.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

This work was supported by the Innovation Project (gxunchx2009080) of Guangxi University for Nationalities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2255).

References

Bass, Y., Morgan, R. J., Donovan, R. J. & Baker, A. D. (1997). *Synth. Commun.* **27**, 2165–2169.

Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Convers, E., Tye, H. & Whittaker, M. (2004). *Tetrahedron*, **60**, 8729–8738. Farah, A. A., Stynes, D. V. & Pietro, W. J. (2003). *Inorg. Chim. Acta*, **343**, 295–

306. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2010). E66, m113 [https://doi.org/10.1107/S1600536809053999]
catena-Poly[[[diaquasodium]-di-µ-aqua] 2-(2-pyridyl)quinoline-4-carboxylate]
Hu-Jun Hao, Cui-Wu Lin, Xian-Hong Yin, Fei-Long Hu and Yue Zhuang

S1. Comment

2-(2-pyridyl)quinoline-4-carboxylic acid is a 2,2'-bipyridyl-like ligand containing a carboxylate substituent, which represents a simple route to some important functionalities. The syntheses of sodium 2-(2-pyridyl)quinoline-4-carboxyl- ate and 2-(2-pyridyl)quinoline-4-carboxylic acid have been reported (Bass *et al.*, 1997; Convers *et al.*, 2004). The structures of 2-(2-pyridyl)-4-methylcarboxyquinoline and its Ru complex have been reported by Farah *et al.* (2003). Here we present the structure of a sodium salt of 2-(2-pyridyl)quinoline-4-carboxylate in a tetrahydrate form.

The molecular structure of the title compound is shown in Fig. 1. The Na^I ion is coordinated by six water molecules in an octahedral geometry. Each coordination octahedron is connected with two adjacent ones by sharing edges, forming a cationic $[Na(H_2O)_4]_n$ chain along the *b* direction (Fig. 2).

In the crystal structure, the cationic chains and the organic anions are linked through O–H…O and O–H…N hydrogen bonds into a layer structure (Table 1 and Fig. 3).

S2. Experimental

Sodium 2-(2-pyridyl)quinoline-4-carboxylate was prepared by a literature method (Bass *et al.*,1997). Colourless crystals were obtained by slow evaporation of an aqueous solution of this compound at room temperature.

S3. Refinement

H atoms bonded C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms of water molecules were found from difference Fourier maps and refined as riding atoms, with O—H = 0.85 Å and with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

The structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, 2 - y, 1 - z.]

Figure 2

The chain of NaO₆ octahedra along the *b* axis. [Symmetry codes: (i) 1 - *x*, 1 - *y*, 1 - *z*; (ii) 1 - *x*, 2 - *y*, 1 - *z*.]

Figure 3

Crystal packing of the title compound viewed along the *b* axis. Dashed lines indicate hydrongen bonds.

catena-Poly[[[diaquasodium]-di-*µ*-aqua] 2-(2-pyridyl)quinoline-4-carboxylate]

Crystal data [Na(H₂O)₄](C₁₅H₉N₂O₂) $M_r = 344.30$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 19.0409 (17) Å b = 5.2987 (5) Å c = 16.8305 (16) Å $\beta = 103.107 (5)^{\circ}$ V = 1653.8 (3) Å³ Z = 4Data collection

Siemens SMART 1000 CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator F(000) = 720 $D_x = 1.383 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 1202 reflections $\theta = 2.2-27.2^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.43 \times 0.35 \times 0.30 \text{ mm}$

 φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.944, T_{\max} = 0.962$

14472 measured reflections	$\theta_{\rm max} = 27.2^\circ, \ \theta_{\rm min} = 2.2^\circ$
3647 independent reflections	$h = -24 \longrightarrow 24$
2902 reflections with $I > 2\sigma(I)$	$k = -6 \rightarrow 6$
$R_{\rm int} = 0.028$	$l = -21 \rightarrow 21$
Refinement	

Refinement on F^2

 $wR(F^2) = 0.103$

3647 reflections

218 parameters 0 restraints

direct methods

S = 1.05

Least-squares matrix: full

Primary atom site location: structure-invariant

 $R[F^2 > 2\sigma(F^2)] = 0.035$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0509P)^2 + 0.3055P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.30$ e Å⁻³ $\Delta\rho_{min} = -0.19$ e Å⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Nal	0.46104 (3)	0.74129 (10)	0.43759 (3)	0.03736 (16)
O4	0.53878 (5)	0.39638 (18)	0.42708 (6)	0.0400 (2)
H4A	0.5271	0.2741	0.3940	0.060*
H4B	0.5767	0.4622	0.4175	0.060*
N1	0.12262 (5)	1.0815 (2)	0.20495 (6)	0.0327 (3)
N2	0.21437 (6)	0.6022 (2)	0.34054 (7)	0.0374 (3)
O6	0.40941 (6)	1.10971 (19)	0.47560 (6)	0.0480 (3)
H6A	0.3835	1.1346	0.5099	0.072*
H6B	0.3901	1.2170	0.4397	0.072*
05	0.49772 (5)	0.96277 (19)	0.33032 (6)	0.0414 (2)
H5A	0.4620	1.0010	0.2950	0.062*
H5B	0.5315	0.8953	0.3123	0.062*
O3	0.36524 (5)	0.5014 (2)	0.36062 (6)	0.0427 (3)
H50	0.3215	0.5470	0.3541	0.064*
H51	0.3705	0.4282	0.3174	0.064*
C7	0.20528 (7)	1.3150 (2)	0.14024 (7)	0.0304 (3)
O2	0.38821 (5)	1.2386 (2)	0.22633 (6)	0.0442 (3)
C9	0.17739 (6)	0.9467 (2)	0.24487 (7)	0.0301 (3)
01	0.34259 (5)	1.1583 (2)	0.09542 (6)	0.0528 (3)
C11	0.24896 (7)	0.9854 (3)	0.23664 (8)	0.0326 (3)
H11	0.2865	0.8904	0.2675	0.039*
C12	0.26262 (6)	1.1624 (3)	0.18334 (7)	0.0305 (3)
C13	0.15995 (7)	0.7438 (2)	0.29892 (7)	0.0314 (3)
C14	0.33714 (7)	1.1890 (3)	0.16692 (8)	0.0341 (3)
C15	0.13590 (7)	1.2676 (2)	0.15413 (8)	0.0314 (3)
C16	0.07768 (7)	1.4199 (3)	0.11366 (9)	0.0402 (3)
H16	0.0316	1.3888	0.1212	0.048*
C17	0.21427 (8)	1.5153 (3)	0.08769 (8)	0.0389 (3)
H17	0.2596	1.5482	0.0782	0.047*
C18	0.19828 (8)	0.4159 (3)	0.38732 (9)	0.0439 (3)

H18	0.2360	0.3186	0.4167	0.053*
C19	0.07401 (8)	0.5048 (3)	0.35213 (9)	0.0415 (3)
H19	0.0268	0.4718	0.3554	0.050*
C20	0.15707 (8)	1.6597 (3)	0.05106 (9)	0.0449 (4)
H20	0.1637	1.7919	0.0172	0.054*
C21	0.12967 (8)	0.3599 (3)	0.39460 (9)	0.0426 (3)
H21	0.1212	0.2273	0.4274	0.051*
C22	0.08920 (7)	0.7007 (3)	0.30439 (8)	0.0387 (3)
H22	0.0522	0.8031	0.2761	0.046*
C23	0.08833 (8)	1.6110 (3)	0.06398 (9)	0.0446 (4)
H23	0.0496	1.7104	0.0383	0.054*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Na1	0.0418 (3)	0.0330 (3)	0.0387 (3)	0.0028 (2)	0.0121 (2)	0.0002 (2)
04	0.0428 (6)	0.0361 (6)	0.0460 (6)	-0.0033 (4)	0.0199 (4)	-0.0019 (4)
N1	0.0270 (5)	0.0375 (7)	0.0341 (6)	0.0005 (5)	0.0081 (4)	-0.0017 (5)
N2	0.0330 (6)	0.0410 (7)	0.0399 (6)	0.0035 (5)	0.0116 (5)	0.0036 (5)
06	0.0596 (7)	0.0408 (6)	0.0493 (6)	0.0129 (5)	0.0244 (5)	0.0061 (5)
05	0.0392 (5)	0.0473 (6)	0.0385 (5)	0.0090 (5)	0.0105 (4)	0.0020 (4)
O3	0.0328 (5)	0.0516 (6)	0.0431 (5)	0.0054 (4)	0.0073 (4)	-0.0010 (5)
C7	0.0299 (6)	0.0330 (7)	0.0283 (6)	-0.0004 (5)	0.0065 (5)	-0.0040 (5)
O2	0.0270 (5)	0.0637 (7)	0.0421 (5)	-0.0008(4)	0.0082 (4)	0.0001 (5)
С9	0.0277 (6)	0.0346 (7)	0.0286 (6)	0.0009 (5)	0.0081 (5)	-0.0035 (5)
01	0.0405 (6)	0.0841 (8)	0.0389 (5)	0.0043 (5)	0.0197 (4)	-0.0019 (5)
C11	0.0270 (6)	0.0392 (8)	0.0321 (6)	0.0048 (5)	0.0075 (5)	0.0020 (5)
C12	0.0266 (6)	0.0372 (7)	0.0285 (6)	-0.0002(5)	0.0078 (5)	-0.0042 (5)
C13	0.0300 (6)	0.0352 (7)	0.0301 (6)	0.0004 (5)	0.0092 (5)	-0.0036 (5)
C14	0.0297 (7)	0.0376 (8)	0.0373 (7)	0.0033 (5)	0.0126 (5)	0.0033 (5)
C15	0.0281 (6)	0.0340 (7)	0.0313 (6)	0.0001 (5)	0.0054 (5)	-0.0053 (5)
C16	0.0304 (7)	0.0451 (9)	0.0428 (8)	0.0047 (6)	0.0035 (6)	0.0002 (6)
C17	0.0395 (7)	0.0412 (8)	0.0368 (7)	-0.0029 (6)	0.0101 (6)	0.0007 (6)
C18	0.0430 (8)	0.0426 (9)	0.0472 (8)	0.0074 (6)	0.0126 (6)	0.0087 (6)
C19	0.0361 (7)	0.0478 (9)	0.0432 (7)	-0.0082 (6)	0.0146 (6)	-0.0019 (6)
C20	0.0521 (9)	0.0400 (8)	0.0407 (8)	0.0014 (7)	0.0068 (6)	0.0063 (6)
C21	0.0513 (9)	0.0369 (8)	0.0430 (8)	-0.0032 (7)	0.0177 (6)	0.0025 (6)
C22	0.0297 (7)	0.0473 (9)	0.0399 (7)	0.0009 (6)	0.0100 (5)	0.0034 (6)
C23	0.0426 (8)	0.0423 (9)	0.0440 (8)	0.0096 (6)	-0.0008 (6)	0.0023 (6)

Geometric parameters (Å, °)

Na1—O6	2.3393 (11)	O2—C14	1.2544 (16)
Na1—O3	2.3559 (11)	C9—C11	1.4157 (17)
Na1—O4	2.3834 (11)	C9—C13	1.4935 (18)
Na1—O5	2.3867 (11)	O1—C14	1.2419 (16)
Na1—O4 ⁱ	2.3909 (11)	C11—C12	1.3632 (18)
Na1—O6 ⁱⁱ	2.6848 (13)	C11—H11	0.9300

Na1—Na1 ⁱ	3.4262 (11)	C12—C14	1.5124 (17)
Na1—Na1 ⁱⁱ	3.5661 (11)	C13—C22	1.3897 (18)
O4—H4A	0.85	C15—C16	1.4148 (18)
O4—H4B	0.85	C16—C23	1.357 (2)
N1—C9	1.3159 (17)	С16—Н16	0.9300
N1-C15	1.3660 (17)	C17—C20	1.359 (2)
N2-C18	1 3408 (18)	C17—H17	0.9300
N_2 C13	1.3409(17)	C18 - C21	1372(2)
06—H6A	0.85	C18—H18	0.9300
06 H6B	0.85	C_{10} C_{21}	1.371(2)
05 454	0.85	$C_{19} = C_{21}$	1.371(2) 1 383(2)
05 H5P	0.82	$C_{10} = C_{22}$	1.383(2)
03-1150	0.85	C19—H19	0.9300
03—H50	0.85	$C_{20} = C_{23}$	1.399 (2)
	0.85	C20—H20	0.9300
	1.4152 (17)	C21—H21	0.9300
C/CI/	1.4167 (19)	С22—Н22	0.9300
C7—C12	1.4187 (18)	C23—H23	0.9300
O6—Na1—O3	106.24 (4)	H50—O3—H51	108.7
06—Na1—O4	165.19 (4)	C15—C7—C17	119.05 (12)
03—Na1—04	87.81 (4)	C15—C7—C12	116.97 (11)
06—Na1—05	90 56 (4)	C17 - C7 - C12	123.93(12)
03—Na1—05	99.92 (4)	N1-C9-C11	123.33(12) 122.72(12)
$04 - N_{21} - 05$	91 59 (4)	N1 - C9 - C13	122.72(12)
$O6$ Na1 $O4^{i}$	91.59 (4) 84.49 (4)	$C_{11} = C_{12} = C_{13}$	110.22(11) 121.04(11)
O_{3} Na1 O_{4}^{i}	101 12 (4)	$C_{12} = C_{13} = C_{13}$	121.04(11) 110.71(12)
O_3 Na1 O_4	101.12(4)	C_{12} C_{11} U_{11}	119.71(12)
04 Na1 04^{i}	00.20 (4) 158 04 (4)	$C_1 = C_1 = H_1$	120.1
O_{3} Na1 O_{4}	138.94 (4)		120.1
06 —Na1— $06^{\circ\circ}$	89.83 (4)	CII = CI2 = C/	119.27 (11)
03 —Na1— 06°	163.58 (4)		120.75 (12)
04—Nal—O6 ⁿ	75.91 (4)	C/C12C14	119.91 (11)
O5—Nal—O6 ⁿ	82.92 (4)	N2-C13-C22	121.29 (12)
$O4^{i}$ —Na1—O6 ⁱⁱ	76.62 (4)	N2—C13—C9	117.95 (11)
O6—Na1—Na1 ⁱ	127.27 (4)	C22—C13—C9	120.76 (12)
O3—Na1—Na1 ⁱ	96.20 (3)	O1—C14—O2	125.45 (12)
O4—Na1—Na1 ⁱ	44.23 (3)	O1—C14—C12	116.92 (12)
O5—Na1—Na1 ⁱ	132.11 (4)	O2—C14—C12	117.63 (11)
O4 ⁱ —Na1—Na1 ⁱ	44.05 (3)	N1—C15—C16	118.50 (11)
O6 ⁱⁱ —Na1—Na1 ⁱ	70.68 (3)	N1—C15—C7	122.94 (12)
O6—Na1—Na1 ⁱⁱ	48.84 (3)	C16—C15—C7	118.57 (12)
O3—Na1—Na1 ⁱⁱ	154.91 (4)	C23—C16—C15	120.79 (13)
O4—Na1—Na1 ⁱⁱ	116.80 (3)	C23—C16—H16	119.6
O5—Na1—Na1 ⁱⁱ	85.04 (3)	C15—C16—H16	119.6
O4 ⁱ —Na1—Na1 ⁱⁱ	76.28 (3)	C20—C17—C7	120.47 (13)
O6 ⁱⁱ —Na1—Na1 ⁱⁱ	40.99 (2)	C20—C17—H17	119.8
Na1—O4—Na1 ⁱ	91.72 (4)	С7—С17—Н17	119.8
Na1—O4—H4A	123.9	N2-C18-C21	124.12 (14)
Na1 ⁱ —O4—H4A	109.5	N2—C18—H18	117.9

Na1—O4—H4B	105.6	C21—C18—H18	117.9
Na1 ⁱ —O4—H4B	119.2	C21—C19—C22	118.97 (13)
H4A—O4—H4B	107.2	С21—С19—Н19	120.5
C9—N1—C15	118.28 (11)	С22—С19—Н19	120.5
C18—N2—C13	117.78 (12)	C17—C20—C23	120.49 (14)
Na1—O6—Na1 ⁱⁱ	90.17 (4)	С17—С20—Н20	119.8
Na1—O6—H6A	131.3	C23—C20—H20	119.8
Na1 ⁱⁱ —O6—H6A	100.8	C19—C21—C18	118.11 (14)
Na1—O6—H6B	120.3	C19—C21—H21	120.9
Na1 ⁱⁱ —O6—H6B	112.7	C18—C21—H21	120.9
H6A—O6—H6B	98.9	C19—C22—C13	119.71 (13)
Na1—O5—H5A	109.5	C19—C22—H22	120.1
Na1—O5—H5B	116.0	C13—C22—H22	120.1
H5A—O5—H5B	114.6	C16—C23—C20	120.62 (13)
Na1—O3—H50	122.1	С16—С23—Н23	119.7
Na1—O3—H51	119.3	С20—С23—Н23	119.7
O6—Na1—O4—Na1 ⁱ	60.71 (16)	N1—C9—C13—C22	1.18 (18)
O3—Na1—O4—Na1 ⁱ	-101.20 (4)	C11—C9—C13—C22	-177.58 (12)
O5—Na1—O4—Na1 ⁱ	158.93 (4)	C11—C12—C14—O1	120.27 (15)
O4 ⁱ —Na1—O4—Na1 ⁱ	0.0	C7—C12—C14—O1	-56.85 (18)
O6 ⁱⁱ —Na1—O4—Na1 ⁱ	76.64 (4)	C11—C12—C14—O2	-59.32 (18)
Na1 ⁱⁱ —Na1—O4—Na1 ⁱ	73.68 (4)	C7—C12—C14—O2	123.56 (14)
O3—Na1—O6—Na1 ⁱⁱ	176.58 (4)	C9—N1—C15—C16	-177.42 (12)
O4—Na1—O6—Na1 ⁱⁱ	15.43 (16)	C9—N1—C15—C7	2.51 (18)
O5—Na1—O6—Na1 ⁱⁱ	-82.92 (4)	C17—C7—C15—N1	-178.81 (12)
O4 ⁱ —Na1—O6—Na1 ⁱⁱ	76.58 (3)	C12—C7—C15—N1	-1.38 (18)
O6 ⁱⁱ —Na1—O6—Na1 ⁱⁱ	0.0	C17—C7—C15—C16	1.13 (18)
Na1 ⁱ —Na1—O6—Na1 ⁱⁱ	65.29 (5)	C12—C7—C15—C16	178.56 (12)
C15—N1—C9—C11	-0.61 (19)	N1-C15-C16-C23	178.51 (12)
C15—N1—C9—C13	-179.35 (10)	C7—C15—C16—C23	-1.4 (2)
N1—C9—C11—C12	-2.4 (2)	C15—C7—C17—C20	-0.1(2)
C13—C9—C11—C12	176.26 (12)	C12—C7—C17—C20	-177.32 (13)
C9—C11—C12—C7	3.49 (19)	C13—N2—C18—C21	0.6 (2)
C9—C11—C12—C14	-173.65 (12)	C7—C17—C20—C23	-0.7(2)
C15—C7—C12—C11	-1.68 (18)	C22—C19—C21—C18	-0.3(2)
C17—C7—C12—C11	175.61 (12)	N2-C18-C21-C19	-0.7(2)
C15—C7—C12—C14	175.49 (11)	C21—C19—C22—C13	1.3 (2)
C17—C7—C12—C14	-7.22 (19)	N2-C13-C22-C19	-1.5 (2)
C18—N2—C13—C22	0.5 (2)	C9—C13—C22—C19	177.24 (12)
C18—N2—C13—C9	-178.27 (12)	C15—C16—C23—C20	0.7 (2)
N1—C9—C13—N2	179.93 (11)	C17—C20—C23—C16	0.4 (2)
C11—C9—C13—N2	1.16 (18)		~ /
	× /		

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+1.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O3—H50…N2	0.85	2.02	2.8657 (14)	172
O3—H51…O2 ⁱⁱⁱ	0.85	1.92	2.7722 (14)	174
O4—H4A···O5 ⁱⁱⁱ	0.85	1.98	2.8222 (14)	172
O4— $H4B$ ···O1 ^{iv}	0.85	1.91	2.7494 (14)	171
O5—H5A···O2	0.82	2.04	2.8093 (14)	156
O5—H5 <i>B</i> ···O2 ^{iv}	0.85	1.97	2.8243 (13)	178
O6—H6A…O1 ^v	0.85	2.10	2.8914 (14)	156
O6—H6 <i>B</i> ···O3 ^{vi}	0.85	2.00	2.8321 (14)	168

Hydrogen-bond geometry (Å, °)

Symmetry codes: (iii) *x*, *y*-1, *z*; (iv) -*x*+1, *y*-1/2, -*z*+1/2; (v) *x*, -*y*+5/2, *z*+1/2; (vi) *x*, *y*+1, *z*.