

 $\gamma = 112.877 \ (1)^{\circ}$ V = 1374.49 (10) Å³

Mo $K\alpha$ radiation

 $0.69 \times 0.41 \times 0.13 \text{ mm}$

46897 measured reflections

11933 independent reflections

11529 reflections with $I > 2\sigma(I)$

 $\mu = 1.94 \text{ mm}^-$ T = 100 K

 $R_{\rm int} = 0.020$

Z = 1

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tetra- μ -benzoato- $\kappa^4 O:O'; \kappa^3 O: O,O';\kappa^3O,O':O'$ -bis[(benzoato- κ^2O,O')-(1,10-phenanthroline- $\kappa^2 N, N'$)neodymium(III)]

Ping Howe Ooi,^a[‡] Siang Guan Teoh,^a Jia Hao Goh^b§ and Hoong-Kun Fun^b*¶

^aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 11 January 2010; accepted 25 January 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.016; wR factor = 0.071; data-to-parameter ratio = 31.5.

The complete molecule of the title compound, $[Nd_2(C_7H_5O_2)_6(C_{12}H_8N_2)_2]$, is generated by a crystallographic inversion center. The two Nd^{III} ions are linked by four bridging benzoate ions, with an Nd...Nd separation of 4.0360 (2) Å. As well as the bridging ligands, each Nd^{III} ion is coordinated by one N,N'-bidentate phenanthroline ligand and an O,O'-bidentate benzoate ion. The resulting irregular nine-coordinated geometry of the Nd^{III} ion is completed by seven O and two N atoms. The molecular structure is stabilized by intramolecular C-H···O hydrogen bonds. In the crystal structure, molecules are linked into infinite chains along the *c* axis by intermolecular $C-H \cdots O$ hydrogen bonds. The crystal structure is consolidated by weak intermolecular $C-H\cdots\pi$ interactions.

Related literature

For general background to and applications of Nd^{III} complexes, see: Swavey & Swavey (2009). For related Lnbenzoato complexes, see: Niu et al. (1999); Niu et al. (2002); Shi et al. (2001). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data

$[Nd_2(C_7H_5O_2)_6(C_{12}H_8N_2)_2]$	
$M_r = 1375.55$	
Triclinic, P1	
a = 10.7954 (3) Å	
b = 11.8702 (4) Å	
c = 12.2660 (7) Å	
$\alpha = 104.925 (1)^{\circ}$	
$\beta = 93.831 (1)^{\circ}$	

Data collection

Bruker SMART APEX DUO CCD diffractometer Absorption correction: multi-scan SADABS (Bruker, 2009) $T_{\min} = 0.347, T_{\max} = 0.784$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.016$	379 parameters
$vR(F^2) = 0.071$	H-atom parameters constrained
5 = 1.39	$\Delta \rho_{\rm max} = 1.26 \text{ e} \text{ Å}^{-3}$
1933 reflections	$\Delta \rho_{\rm min} = -1.51 \text{ e } \text{\AA}^{-3}$

Table 1

Selected bond lengths (Å).

Nd1-O4 ⁱ	2.3856 (10)	Nd1-O1	2.5475 (10)
Nd1-O6	2.4060 (10)	Nd1-N1	2.6288 (12)
Nd1-O5 ⁱ	2.4230 (10)	Nd1-N2	2.6870 (11)
Nd1-O2	2.4600 (10)	Nd1-O4	2.8039 (10)
Nd1-O3	2.4810 (10)		

Symmetry code: (i) -x, -y + 1, -z + 1.

[‡] Additional corresponding author: howieooi83@gmail.com.

[§] Thomson Reuters ResearcherID: C-7576-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Table 2

Hydrogen-bond geometry (Å, °).

Cg1, Cg2 and Cg5 are the centroids of the C28–C33, C21–C26 and C14–C19 phenyl rings, respectively. Cg3 and Cg4 are the centroids of the N2/C8–C12 and N1/C1–C15 pyridine rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
C3-H3A···O1 ⁱⁱ	0.93	2.57	3.4729 (19)	163
C11-H11A···O6	0.93	2.50	3.1239 (19)	125
$C26-H26A\cdots O2^{i}$	0.93	2.56	3.4393 (19)	158
$C7 - H7A \cdots Cg1^{iii}$	0.93	2.89	3.4554 (18)	121
$C16-H16A\cdots Cg2^{iv}$	0.93	2.98	3.7544 (18)	141
$C17 - H17A \cdot \cdot \cdot Cg3^{v}$	0.93	2.94	3.7287 (19)	143
$C24-H24A\cdots Cg4^{vi}$	0.93	2.81	3.6620 (17)	153
$C30-H30A\cdots Cg5^{vii}$	0.93	2.73	3.6435 (18)	167

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

SGT and PHO thank Universiti Sains Malaysia (USM) for the University Grant (No. 1001/229/PKIMIA/815002) for this research. HKF and JHG thank USM for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5308).

References

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Niu, S. Y., Jin, J., Bu, W. M., Yang, G. D., Cao, J. Q. & Yang, B. (1999). Chin. J. Struct. Chem. 18, 245–248.
- Niu, S. Y., Jin, J., Jin, X. L. & Yang, Z. Z. (2002). Solid State Sci. 4, 1103–1106. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Shi, Q., Hu, M., Cao, R., Liang, Y. & Hong, M. (2001). Acta Cryst. E57, m122– m123.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Swavey, S. & Swavey, R. (2009). Coord. Chem. Rev. 253, 2627-2638.

Acta Cryst. (2010). E66, m221–m222 [https://doi.org/10.1107/S1600536810003041]

Tetra- μ -benzoato- $\kappa^4 O:O'; \kappa^3 O:O,O'; \kappa^3 O,O':O'$ -bis[(benzoato- $\kappa^2 O,O'$)(1,10-phenanthroline- $\kappa^2 N,N'$)neodymium(III)]

Ping Howe Ooi, Siang Guan Teoh, Jia Hao Goh and Hoong-Kun Fun

S1. Comment

Lanthanide complexes with organic ligands, especially Nd^{III} complexes, are often used in magnetic resonance imaging (MRI) because Nd^{III} complexes emit in the near infrared region (NIR) (Swavey & Swavey, 2009). The crystal structure obtained from this complex are slightly different from the other Ln-benzoato complexes, such as La^{III} (Shi *et al.*, 2001), Sm^{III} (Niu *et al.*, 1999), and Gd^{III} (Niu *et al.*, 2002) due to the lanthanide contraction.

The asymmetric unit of the title complex (Fig. 1) lies on a crystallographic inversion center and comprises of one-half molecule [symmetry code of atoms labelled with suffix A: -x, -y+1, -z+1]. The two Nd^{III} ions are linked by four benzoate ions, with an Nd—Nd distance of 4.0360 (2) Å. Among the four benzoate ions, two of them also behave as chelating ligands to the Nd^{III} ions. Each Nd^{III} ion is coordinated by one phenanthroline heterocycle and a bidentate benzoate ion. The irregular nine-coordinated geometry of the Nd^{III} ion is completed by seven benzoate O atoms and two phenanthroline N atoms. Intramolecular C11—H11A···O6 and C26—H26A···O2 hydrogen bonds (Table 2) stabilize the molecular structure. Bond lengths of Nd—O and Nd—N are listed in Table 1. All other bond lengths and angles are comparable to a closely La-benzoato complex (Shi *et al.*, 2001).

In the crystal structure, intermolecular C3—H3A···O1 hydrogen bonds (Table 2) link the molecules into infinite chains along the *c* axis (Fig. 2). The crystal structure is further stabilized by weak intermolecular C7A—H7A···*Cg*1, C16—H16A···*Cg*2, C17—H17A···*Cg*3, C24—H24A···*Cg*4 and C30—H30A···*Cg*5 interactions (Table 2).

S2. Experimental

NdCl₃.6H₂O was prepared by dissolving neodymium oxide in hydrochloric acid and then dried. Metal salt (0.5 mmol) in methanol was added into a solution (methanol-H₂O, 1:1) of 1,10-phenanthroline (0.5 mmol) and benzoic acid (1.5 mmol). The mixture was refluxed for 24 h to give a pink solution. The solution was filtered at room temperature and purple plates of (I) were obtained after 10 days.

S3. Refinement

All aromatic hydrogen atoms were placed in their calculated positions, with C—H = 0.93 Å, and refined using a riding model with $U_{iso} = 1.2 U_{eq}(C)$. The highest residual electron density peak is located at 1.25 Å from O4 and the deepest hole is located at 1.51 Å from Nd1.

Figure 1

The molecular structure of (I) showing 20% probability displacement ellipsoids for non-H atoms. The suffix A corresponds to the symmetry code [-x, -y+1, -z+1].

Figure 2

The crystal structure of (I), viewed along the a axis, showing one-dimensional infinite chains along the c axis. Intermolecular hydrogen bonds are shown as dashed lines.

Tetra- μ -benzoato- $\kappa^4 O:O'; \kappa^3 O:O,O'; \kappa^3 O,O':O'$ -bis[(benzoato- $\kappa^2 O,O'$)(1,10- phenanthroline-

$\kappa^2 N$	<i>N'</i>)n	eodvm	ium	(111)]
		coa,		(/]

Crystal data	
$[Nd_2(C_7H_5O_2)_6(C_{12}H_8N_2)_2]$	$\gamma = 112.877 \ (1)^{\circ}$
$M_r = 1375.55$	$V = 1374.49 (10) Å^3$
Triclinic, P1	Z = 1
Hall symbol: -P 1	F(000) = 686
a = 10.7954 (3) Å	$D_{\rm x} = 1.662 {\rm ~Mg} {\rm ~m}^{-3}$
b = 11.8702 (4) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 12.2660 (7) Å	Cell parameters from 9761 reflections
$\alpha = 104.925 \ (1)^{\circ}$	$\theta = 3.0 - 37.6^{\circ}$
$\beta = 93.831 \ (1)^{\circ}$	$\mu = 1.94 \text{ mm}^{-1}$

T = 100 KPlate, purple

Data collection

Bruker SMART APEX DUO CCD diffractometer	46897 measured reflections 11933 independent reflections
Radiation source: fine-focus sealed tube	11529 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.020$
φ and ω scans	$\theta_{\rm max} = 35.0^\circ, \ \theta_{\rm min} = 2.7^\circ$
Absorption correction: multi-scan	$h = -17 \rightarrow 17$
SADABS (Bruker, 2009)	$k = -18 \rightarrow 19$
$T_{\min} = 0.347, \ T_{\max} = 0.784$	$l = -19 \rightarrow 19$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.016$	Hydrogen site location: inferred from
$wR(F^2) = 0.071$	neighbouring sites
<i>S</i> = 1.39	H-atom parameters constrained
11933 reflections	$w = 1/[\sigma^2(F_o^2) + (0.039P)^2 + 0.2397P]$
379 parameters	where $P = (F_0^2 + 2F_c^2)/3$

 $0.69 \times 0.41 \times 0.13 \text{ mm}$

direct methods

Primary atom site location: structure-invariant

0 restraints

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\text{max}} = 1.26 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -1.51 \text{ e } \text{\AA}^{-3}$

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Nd1	0.135991 (5)	0.561522 (5)	0.646953 (5)	0.01014 (3)	
01	0.07381 (10)	0.68363 (9)	0.82160 (9)	0.01641 (16)	
O2	0.27604 (10)	0.77974 (10)	0.77735 (9)	0.01605 (16)	
O3	0.15987 (11)	0.35844 (10)	0.56526 (9)	0.01848 (18)	
O4	0.00549 (10)	0.36146 (9)	0.44049 (9)	0.01530 (16)	
O5	0.08829 (10)	0.59147 (10)	0.34526 (9)	0.01613 (16)	
O6	0.24489 (10)	0.63755 (10)	0.49909 (9)	0.01578 (16)	
N1	0.19179 (12)	0.48650 (11)	0.82052 (10)	0.01452 (17)	
N2	0.38701 (11)	0.57086 (11)	0.69470 (10)	0.01398 (17)	
C1	0.30009 (13)	0.45576 (12)	0.82829 (11)	0.01378 (19)	
C2	0.10022 (15)	0.45161 (13)	0.88670 (12)	0.0171 (2)	
H2A	0.0266	0.4735	0.8822	0.021*	

C3	0.10869 (16)	0.38359 (14)	0.96296 (12)	0.0192 (2)
H3A	0.0440	0.3636	1.0096	0.023*
C4	0.21506 (16)	0.34718 (14)	0.96717 (12)	0.0195 (2)
H4A	0.2211	0.2992	1.0148	0.023*
C5	0.31456 (14)	0.38298 (13)	0.89895 (12)	0.0166 (2)
C6	0.42959 (16)	0.35029 (14)	0.90061 (13)	0.0202 (2)
H6A	0.4371	0.2993	0.9446	0.024*
C7	0.52686 (16)	0.39300 (15)	0.83879 (13)	0.0203(2)
H7A	0.6007	0.3712	0.8412	0.024*
C8	0.51832 (13)	0.47134 (13)	0.76955 (12)	0.0163 (2)
C9	0.61982 (14)	0.52029 (14)	0.70660 (13)	0.0191 (2)
H9A	0.6982	0.5055	0.7114	0.023*
C10	0.60218(14)	0.59012 (14)	0.63790(13)	0.0192(2)
H10A	0.6673	0.6218	0.5946	0.023*
C11	0.48338(14)	0.61251 (13)	0.63463(12)	0.0169(2)
HIIA	0.4718	0.6592	0.5876	0.020*
C12	0.40383(13)	0.50067(12)	0.76196 (11)	0.01365 (19)
C13	0.18596 (13)	0.30007(12) 0.78037(12)	0.83975 (11)	0.01332(19)
C14	0.21680(13)	0.89994(12)	0.03975(11) 0.93665(10)	0.01392(19) 0.01395(19)
C15	0.11566 (16)	0.09991(12) 0.91061(14)	0.99806(12)	0.01375(17)
H15A	0.0276	0.8449	0.9768	0.0107 (2)
C16	0.14606 (19)	1 01942 (16)	1.09120 (13)	0.022 0.0238 (3)
H16A	0.0783	1.0268	1.1317	0.0298 (5)
C17	0.0785 0.2775(2)	1.0200	1.1317	0.025
H17A	0.2773 (2)	1 1883	1.12555 (15)	0.0255 (5)
C18	0.2383 0.37860 (17)	1.1003 1 10783 (14)	1.1800	0.031°
U18A	0.37809 (17)	1.10705 (14)	1.00170 (13)	0.0231 (3)
C10	0.4007 0.34710 (15)	0.00048(13)	1.0652 0.06730 (12)	0.028°
U10A	0.34719 (13)	0.99948 (15)	0.90739 (12)	0.0170(2) 0.021*
П19А С20	0.4140 0.06862 (12)	0.9940	0.9249 0.47622 (11)	0.021°
C20	0.00802(12) 0.03417(12)	0.30308(12) 0.16578(11)	0.47033(11) 0.41277(11)	0.01303(18)
C21	0.03417(13) 0.12710(14)	0.10378(11) 0.11477(12)	0.41377(11) 0.42201(12)	0.01527(18)
C22	0.12/19(14)	0.114//(15)	0.43391 (12)	0.0103 (2)
H22A C22	0.2112	0.10/4	0.4820	0.020^{*}
C23	0.09434 (10)	-0.01436 (14)	0.38135 (13)	0.0196 (2)
п23А С24	0.1370	-0.0478	0.3939	0.023°
C24	-0.03202(17)	-0.09346 (14)	0.31012 (13)	0.0214 (2)
п24А С25	-0.0344	-0.1802	0.2738	0.020°
U25	-0.12551 (10)	-0.04510(15)	0.28990 (15)	0.0208 (2)
п23А	-0.2102	-0.0903	0.2424	0.023°
	-0.09184 (14)	0.08677 (13)	0.34117 (12)	0.0103 (2)
H26A	-0.1535	0.1207	0.3269	0.020*
C27	0.20609 (13)	0.65426 (12)	0.40696 (11)	0.01327(19)
C28	0.30895 (12)	0.75547 (12)	0.306/7(11)	0.01323 (18)
C29	0.268/2 (14)	0.78/61 (13)	0.27284 (12)	0.0171 (2)
H29A	0.1782	0.7453	0.2342	0.020*
C30	0.36372 (16)	0.88293 (15)	0.23681 (14)	0.0211 (2)
H30A	0.3362	0.9050	0.1750	0.025*
C31	0.49950(16)	0.94497/(14)	0.29314 (14)	0.0218 (2)

H31A	0.5628	1.0087	0.2692	0.026*
C32	0.54037 (15)	0.91166 (15)	0.38495 (14)	0.0230 (3)
H32A	0.6316	0.9519	0.4217	0.028*
C33	0.44521 (14)	0.81793 (14)	0.42247 (12)	0.0192 (2)
H33A	0.4729	0.7970	0.4850	0.023*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Nd1	0.01005 (3)	0.00866 (3)	0.01053 (3)	0.00329 (2)	0.00192 (2)	0.00210 (2)
01	0.0166 (4)	0.0123 (4)	0.0174 (4)	0.0039 (3)	0.0051 (3)	0.0028 (3)
O2	0.0153 (4)	0.0136 (4)	0.0154 (4)	0.0041 (3)	0.0038 (3)	0.0012 (3)
O3	0.0172 (4)	0.0130 (4)	0.0209 (4)	0.0069 (3)	-0.0032 (3)	-0.0010 (3)
O4	0.0173 (4)	0.0138 (4)	0.0179 (4)	0.0090 (3)	0.0041 (3)	0.0057 (3)
05	0.0132 (4)	0.0154 (4)	0.0163 (4)	0.0025 (3)	0.0025 (3)	0.0049 (3)
O6	0.0148 (4)	0.0176 (4)	0.0156 (4)	0.0058 (3)	0.0044 (3)	0.0074 (3)
N1	0.0149 (4)	0.0144 (4)	0.0145 (4)	0.0065 (3)	0.0031 (3)	0.0042 (3)
N2	0.0132 (4)	0.0125 (4)	0.0138 (4)	0.0044 (3)	0.0016 (3)	0.0021 (3)
C1	0.0148 (5)	0.0123 (4)	0.0127 (4)	0.0058 (4)	0.0007 (4)	0.0017 (4)
C2	0.0194 (5)	0.0165 (5)	0.0168 (5)	0.0079 (4)	0.0058 (4)	0.0060 (4)
C3	0.0229 (6)	0.0189 (6)	0.0176 (5)	0.0087 (5)	0.0066 (5)	0.0078 (4)
C4	0.0241 (6)	0.0177 (5)	0.0174 (5)	0.0084 (5)	0.0032 (4)	0.0072 (4)
C5	0.0185 (5)	0.0147 (5)	0.0157 (5)	0.0073 (4)	0.0000 (4)	0.0037 (4)
C6	0.0236 (6)	0.0174 (5)	0.0209 (6)	0.0109 (5)	-0.0003 (5)	0.0054 (4)
C7	0.0210 (6)	0.0189 (6)	0.0219 (6)	0.0125 (5)	-0.0003 (5)	0.0023 (5)
C8	0.0154 (5)	0.0145 (5)	0.0172 (5)	0.0078 (4)	0.0007 (4)	0.0004 (4)
C9	0.0161 (5)	0.0173 (5)	0.0221 (6)	0.0087 (4)	0.0036 (4)	0.0005 (4)
C10	0.0153 (5)	0.0185 (5)	0.0215 (6)	0.0067 (4)	0.0057 (4)	0.0023 (4)
C11	0.0146 (5)	0.0162 (5)	0.0178 (5)	0.0050 (4)	0.0037 (4)	0.0040 (4)
C12	0.0131 (4)	0.0120 (4)	0.0135 (5)	0.0053 (4)	0.0005 (4)	0.0005 (4)
C13	0.0151 (5)	0.0119 (4)	0.0124 (4)	0.0057 (4)	0.0020 (4)	0.0031 (4)
C14	0.0177 (5)	0.0122 (4)	0.0114 (4)	0.0067 (4)	0.0013 (4)	0.0026 (4)
C15	0.0237 (6)	0.0174 (5)	0.0171 (5)	0.0105 (5)	0.0060 (4)	0.0051 (4)
C16	0.0362 (8)	0.0233 (6)	0.0171 (6)	0.0191 (6)	0.0069 (5)	0.0037 (5)
C17	0.0409 (9)	0.0196 (6)	0.0164 (6)	0.0175 (6)	-0.0023 (5)	-0.0014 (5)
C18	0.0286 (7)	0.0146 (5)	0.0190 (6)	0.0065 (5)	-0.0049 (5)	0.0002 (4)
C19	0.0204 (5)	0.0142 (5)	0.0150 (5)	0.0058 (4)	-0.0009 (4)	0.0025 (4)
C20	0.0128 (4)	0.0101 (4)	0.0160 (5)	0.0053 (4)	0.0034 (4)	0.0027 (4)
C21	0.0143 (5)	0.0105 (4)	0.0146 (5)	0.0056 (4)	0.0024 (4)	0.0026 (4)
C22	0.0175 (5)	0.0141 (5)	0.0179 (5)	0.0087 (4)	0.0025 (4)	0.0030 (4)
C23	0.0259 (6)	0.0153 (5)	0.0200 (6)	0.0125 (5)	0.0047 (5)	0.0033 (4)
C24	0.0308 (7)	0.0131 (5)	0.0185 (5)	0.0099 (5)	0.0026 (5)	0.0011 (4)
C25	0.0235 (6)	0.0131 (5)	0.0192 (6)	0.0045 (4)	-0.0017 (5)	0.0008 (4)
C26	0.0173 (5)	0.0126 (5)	0.0165 (5)	0.0051 (4)	-0.0003 (4)	0.0033 (4)
C27	0.0137 (5)	0.0115 (4)	0.0145 (5)	0.0050 (4)	0.0047 (4)	0.0037 (4)
C28	0.0132 (4)	0.0116 (4)	0.0148 (5)	0.0045 (4)	0.0048 (4)	0.0044 (4)
C29	0.0158 (5)	0.0173 (5)	0.0211 (5)	0.0076 (4)	0.0048 (4)	0.0096 (4)
C30	0.0224 (6)	0.0202 (6)	0.0251 (6)	0.0089 (5)	0.0073 (5)	0.0136 (5)

C31	0.0216 (6)	0.0178 (6)	0.0246 (6)	0.0039 (5)	0.0084 (5)	0.0104 (5)
C32	0.0170 (5)	0.0219 (6)	0.0228 (6)	-0.0005 (5)	0.0024 (5)	0.0093 (5)
C33	0.0153 (5)	0.0191 (5)	0.0189 (5)	0.0016 (4)	0.0020 (4)	0.0082 (4)

Geometric parameters (Å, °)

Nd1—O4 ⁱ	2.3856 (10)	C10—H10A	0.9300
Nd1—O6	2.4060 (10)	C11—H11A	0.9300
Nd1—O5 ⁱ	2.4230 (10)	C13—C14	1.4996 (18)
Nd1—O2	2.4600 (10)	C14—C19	1.3879 (19)
Nd1—O3	2.4810 (10)	C14—C15	1.3942 (19)
Nd101	2.5475 (10)	C15—C16	1.393 (2)
Nd1—N1	2.6288 (12)	C15—H15A	0.9300
Nd1—N2	2.6870 (11)	C16—C17	1.385 (3)
Nd1O4	2.8039 (10)	C16—H16A	0.9300
O1—C13	1.2591 (16)	C17—C18	1.390 (3)
O2—C13	1.2781 (16)	C17—H17A	0.9300
O3—C20	1.2553 (16)	C18—C19	1.396 (2)
O4—C20	1.2736 (15)	C18—H18A	0.9300
O4—Nd1 ⁱ	2.3855 (10)	C19—H19A	0.9300
O5—C27	1.2607 (16)	C20—C21	1.4932 (17)
O5—Nd1 ⁱ	2.4230 (10)	C21—C26	1.3925 (18)
O6—C27	1.2684 (16)	C21—C22	1.3974 (18)
N1—C2	1.3304 (17)	C22—C23	1.3887 (19)
N1—C1	1.3579 (17)	C22—H22A	0.9300
N2	1.3266 (17)	C23—C24	1.389 (2)
N2—C12	1.3636 (17)	С23—Н23А	0.9300
C1—C5	1.4122 (19)	C24—C25	1.395 (2)
C1—C12	1.4427 (18)	C24—H24A	0.9300
C2—C3	1.404 (2)	C25—C26	1.3929 (19)
C2—H2A	0.9300	С25—Н25А	0.9300
C3—C4	1.378 (2)	C26—H26A	0.9300
С3—НЗА	0.9300	C27—C28	1.5034 (17)
C4—C5	1.408 (2)	C28—C33	1.3918 (19)
C4—H4A	0.9300	C28—C29	1.3965 (19)
C5—C6	1.438 (2)	C29—C30	1.3939 (19)
C6—C7	1.351 (2)	С29—Н29А	0.9300
С6—Н6А	0.9300	C30—C31	1.390 (2)
С7—С8	1.435 (2)	C30—H30A	0.9300
C7—H7A	0.9300	C31—C32	1.385 (2)
C8—C9	1.408 (2)	C31—H31A	0.9300
C8—C12	1.4118 (18)	C32—C33	1.394 (2)
C9—C10	1.376 (2)	С32—Н32А	0.9300
С9—Н9А	0.9300	С33—Н33А	0.9300
C10—C11	1.407 (2)		
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
O4 ¹ —Nd1—O6	73.10 (3)	С9—С10—Н10А	120.7
$O4^{i}$ —Nd1— $O5^{i}$	79.74 (3)	C11—C10—H10A	120.7

06-Nd1-05 ⁱ	135 40 (3)	N2_C11_C10	123 81 (13)
O_{i}^{i} Nd1 O_{i}^{i}	90 44 (4)	N_2 C_{11} H_{11} A	118.1
04 - 101 - 02	96.17 (2)	12 - 011 - 111A	110.1
00 Nd1 02	120.27(3)	$N_2 C_{12} C_8$	110.1 122.72(12)
O_3 — N_{d1} — O_2	129.27(3) 126.07(3)	$N_2 = C_{12} = C_{0}$	122.72(12)
04 101 03	120.97(3)	$N_2 = C_1 Z = C_1$	110.10(11)
06-Nd1-03	88.54 (4)	C_{8} $-C_{12}$ $-C_{1}$	119.17(12)
03 - Na1 - 03	80.45 (4)	01 - 012 - 014	121.55 (12)
02—Nd1— 03	138.41 (3)	01 - 013 - 014	120.10 (11)
O4 ⁱ —Nd1—O1	78.44 (3)	02-C13-C14	118.35 (11)
O6—Nd1—O1	129.08 (3)	OI—CI3—NdI	62.75 (7)
O5 ¹ —Nd1—O1	76.84 (3)	O2—C13—Nd1	58.84 (7)
O2—Nd1—O1	52.45 (3)	C14—C13—Nd1	176.57 (9)
O3—Nd1—O1	141.78 (4)	C19—C14—C15	119.60 (12)
O4 ⁱ —Nd1—N1	146.80 (3)	C19—C14—C13	120.12 (12)
O6—Nd1—N1	138.90 (3)	C15—C14—C13	120.26 (12)
O5 ⁱ —Nd1—N1	78.15 (3)	C16—C15—C14	120.19 (14)
O2—Nd1—N1	84.74 (4)	C16—C15—H15A	119.9
O3—Nd1—N1	72.90 (4)	C14—C15—H15A	119.9
O1—Nd1—N1	72.63 (3)	C17—C16—C15	119.79 (15)
O4 ⁱ —Nd1—N2	147.67 (3)	C17—C16—H16A	120.1
O6—Nd1—N2	77.31 (3)	C15—C16—H16A	120.1
O5 ⁱ —Nd1—N2	131.81 (3)	C16—C17—C18	120.50 (14)
O2—Nd1—N2	74.72 (3)	С16—С17—Н17А	119.8
03—Nd1—N2	63.86 (3)	C18—C17—H17A	119.8
01—Nd1—N2	111.81 (3)	C17 - C18 - C19	119 49 (15)
N1—Nd1—N2	61 62 (3)	C17—C18—H18A	120.3
$\Omega 4^{i}$ Nd1 $\Omega 4$	78 19 (3)	C19— $C18$ — $H18A$	120.3
06 Nd1 -04	73.81 (3)	C_{14} C_{19} C_{18}	120.38 (14)
O_{2}^{i} Nd1 O4	66 35 (3)	C_{14} C_{19} H_{19A}	110.8
03 - 101 - 04	150.00(3)	C18 C19 H19A	119.0
O_2 Nd1 O_4	139.09 (3) 48.81 (3)	C_{10} C_{10} C_{10} C_{10} C_{10}	119.0 121.21(12)
$O_1 Nd_1 O_4$	40.01(3)	03 - 020 - 04	121.21(12) 118.24(11)
NI NAL OA	139.10(3) 114.20(2)	03-020-021	110.34(11)
NI-Nul-04	114.30(3)	04 - 020 - 021	120.43 (11)
$N_2 = N_0 I = 04$	105.85(3)	$O_4 = C_{20} = N_{41}$	53.53(0)
C13 = O1 = Nd1	91.18 (8)	04-020 NdI	68.32 (7)
C13—02—Nd1	94.76 (8)	C21—C20—Nd1	167.86 (9)
C20—O3—Nd1	102.46 (8)	C26—C21—C22	119.87 (12)
$C20-O4-Nd1^{1}$	171.01 (9)	C26—C21—C20	120.95 (11)
C20—O4—Nd1	86.72 (7)	C22—C21—C20	119.08 (11)
Nd1 ⁱ —O4—Nd1	101.81 (3)	C23—C22—C21	120.12 (13)
C27—O5—Nd1 ⁱ	139.15 (9)	C23—C22—H22A	119.9
C27—O6—Nd1	135.75 (8)	C21—C22—H22A	119.9
C2—N1—C1	118.06 (12)	C24—C23—C22	119.98 (13)
C2—N1—Nd1	120.55 (9)	C24—C23—H23A	120.0
C1-N1-Nd1	119.81 (8)	С22—С23—Н23А	120.0
C11—N2—C12	117.69 (12)	C23—C24—C25	120.16 (13)
C11—N2—Nd1	122.51 (9)	C23—C24—H24A	119.9
C12—N2—Nd1	117.62 (8)	C25—C24—H24A	119.9

N1—C1—C5	122.46 (12)	C26—C25—C24	119.92 (13)
N1—C1—C12	118.03 (11)	С26—С25—Н25А	120.0
C5—C1—C12	119.51 (12)	С24—С25—Н25А	120.0
N1—C2—C3	123.59 (13)	C25—C26—C21	119.94 (13)
N1—C2—H2A	118.2	С25—С26—Н26А	120.0
C3—C2—H2A	118.2	C21—C26—H26A	120.0
C4—C3—C2	118.44 (13)	05-C27-O6	125.19 (12)
C4—C3—H3A	120.8	05-C27-C28	117.15 (11)
C2—C3—H3A	120.8	06-C27-C28	117.66 (11)
C_{3} $-C_{4}$ $-C_{5}$	119 63 (13)	$C_{33} = C_{28} = C_{29}$	119.27(12)
$C_3 - C_4 - H_4 A$	120.2	C_{33} C_{28} C_{27}	120.46(12)
C5-C4-H4A	120.2	$C_{29} C_{28} C_{27}$	120.10(12) 120.27(11)
C4-C5-C1	117 69 (12)	$C_{29} = C_{29} = C_{28}$	120.27(11) 120.22(13)
C4-C5-C6	122 59 (13)	C_{30} C_{29} H_{29A}	119.9
$C_{1} - C_{5} - C_{6}$	122.39(13) 119.70(13)	C_{28} C_{29} H_{29A}	119.9
C7 - C6 - C5	120 58 (13)	$C_{20} = C_{20} = C_{20} = C_{20}$	120.09(13)
C7 C6 H6A	110 7	$C_{31} C_{30} H_{30A}$	120.09 (13)
$C_{2} = C_{2} = H_{2}$	119.7	C_{20} C_{30} H_{30A}	120.0
C_{5}	117.7	$C_{23} = C_{30} = H_{30} = H_{30}$	120.0 110.87(13)
C_{0}	121.22 (13)	$C_{32} = C_{31} = C_{30}$	119.87 (13)
$C_0 - C_1 - H_1 A$	119.4	C_{20} C_{21} H_{21A}	120.1
$C_{0} = C_{1} = C_{1}$	117.4	C_{21} C_{22} C_{23}	120.1 120.20(14)
$C_{9} = C_{8} = C_{12}$	117.00(13) 122.62(13)	$C_{21} = C_{22} = C_{23}$	120.20 (14)
$C_{9} = C_{8} = C_{7}$	122.02(13) 110.71(12)	C_{22} C_{22} H_{22A}	119.9
C12 - C8 - C7	119./1 (13)	$C_{33} - C_{32} - H_{32A}$	119.9
C10 - C9 - C8	119.56 (13)	$C_{28} = C_{33} = C_{32}$	120.33 (13)
C_{10} C_{9} H_{9A}	120.2	C28—C33—H33A	119.8
$C_8 = C_9 = H_9 A$	120.2	С32—С33—Н33А	119.8
09-010-011	118.52 (15)		
O4 ⁱ —Nd1—O1—C13	-98.30 (8)	O1—Nd1—N2—C12	72.08 (9)
O6—Nd1—O1—C13	-41.56 (9)	N1—Nd1—N2—C12	17.66 (8)
O5 ⁱ —Nd1—O1—C13	179.68 (8)	O4—Nd1—N2—C12	-91.79 (9)
O2—Nd1—O1—C13	1.33 (7)	C13—Nd1—N2—C12	91.68 (9)
O3—Nd1—O1—C13	124.60 (8)	C20—Nd1—N2—C12	-77.39 (9)
N1—Nd1—O1—C13	98.18 (8)	Nd1 ⁱ —Nd1—N2—C12	-117.61 (8)
N2—Nd1—O1—C13	49.60 (8)	C2—N1—C1—C5	3.41 (19)
O4—Nd1—O1—C13	-154.52 (7)	Nd1—N1—C1—C5	-162.33 (10)
C20—Nd1—O1—C13	165.30 (8)	C2—N1—C1—C12	-176.14 (12)
Nd1 ⁱ —Nd1—O1—C13	-122.72 (7)	Nd1—N1—C1—C12	18.12 (15)
O4 ⁱ —Nd1—O2—C13	73.69 (8)	C1—N1—C2—C3	-0.8 (2)
O6—Nd1—O2—C13	146.72 (8)	Nd1—N1—C2—C3	164.86 (11)
O5 ⁱ —Nd1—O2—C13	-3.38 (10)	N1—C2—C3—C4	-2.1(2)
O3—Nd1—O2—C13	-130.13 (8)	C2—C3—C4—C5	2.4 (2)
O1—Nd1—O2—C13	-1.31 (7)	C3—C4—C5—C1	0.0 (2)
N1—Nd1—O2—C13	-73.41 (8)	C3—C4—C5—C6	178.85 (14)
N2—Nd1—O2—C13	-135.39 (8)	N1—C1—C5—C4	-3.0 (2)
O4—Nd1—O2—C13	130.12 (9)	C12—C1—C5—C4	176.50 (12)
C20—Nd1—O2—C13	-155.92 (10)	N1—C1—C5—C6	178.08 (12)

Nd1 ⁱ —Nd1—O2—C13	89.53 (8)	C12—C1—C5—C6	-2.39 (19)
O4 ⁱ —Nd1—O3—C20	-7.61 (10)	C4—C5—C6—C7	-176.12 (14)
O6—Nd1—O3—C20	-74.92 (9)	C1—C5—C6—C7	2.7 (2)
O5 ⁱ —Nd1—O3—C20	61.73 (9)	C5—C6—C7—C8	-0.3 (2)
O2—Nd1—O3—C20	-157.25 (8)	C6—C7—C8—C9	178.22 (14)
O1—Nd1—O3—C20	115.79 (9)	C6—C7—C8—C12	-2.5 (2)
N1—Nd1—O3—C20	142.18 (9)	C12—C8—C9—C10	-2.2 (2)
N2—Nd1—O3—C20	-151.59 (10)	C7—C8—C9—C10	177.14 (14)
O4—Nd1—O3—C20	-5.11 (7)	C8—C9—C10—C11	1.2 (2)
C13—Nd1—O3—C20	160.95 (8)	C12—N2—C11—C10	-1.04 (19)
Nd1 ⁱ —Nd1—O3—C20	-6.30 (8)	Nd1—N2—C11—C10	-163.83 (10)
O4 ⁱ —Nd1—O4—C20	-177.11 (9)	C9—C10—C11—N2	0.5 (2)
O6—Nd1—O4—C20	107.28 (8)	C11—N2—C12—C8	-0.05 (18)
O5 ⁱ —Nd1—O4—C20	-93.26 (8)	Nd1—N2—C12—C8	163.59 (9)
O2—Nd1—O4—C20	124.56 (10)	C11—N2—C12—C1	179.54 (11)
O3—Nd1—O4—C20	4.93 (7)	Nd1—N2—C12—C1	-16.82 (14)
O1—Nd1—O4—C20	-120.82 (8)	C9—C8—C12—N2	1.64 (19)
N1—Nd1—O4—C20	-29.59 (8)	C7—C8—C12—N2	-177.71 (12)
N2—Nd1—O4—C20	35.95 (8)	C9—C8—C12—C1	-177.94 (12)
C13—Nd1—O4—C20	-154.15 (10)	C7—C8—C12—C1	2.71 (18)
Nd1 ⁱ —Nd1—O4—C20	-177.11 (9)	N1—C1—C12—N2	-0.35 (17)
O4 ⁱ —Nd1—O4—Nd1 ⁱ	0.0	C5—C1—C12—N2	-179.91 (12)
O6—Nd1—O4—Nd1 ⁱ	-75.61 (4)	N1—C1—C12—C8	179.25 (11)
O5 ⁱ —Nd1—O4—Nd1 ⁱ	83.85 (4)	C5—C1—C12—C8	-0.30 (18)
O2—Nd1—O4—Nd1 ⁱ	-58.33 (10)	Nd1-01-C13-02	-2.37(13)
O3—Nd1—O4—Nd1 ⁱ	-177.96 (6)	Nd1-01-C13-C14	177.83 (10)
O1—Nd1—O4—Nd1 ⁱ	56.29 (6)	Nd1—O2—C13—O1	2.47 (14)
N1—Nd1—O4—Nd1 ⁱ	147.52 (3)	Nd1—O2—C13—C14	-177.74 (10)
N2—Nd1—O4—Nd1 ⁱ	-146.94 (3)	O1—C13—C14—C19	170.57 (13)
C13—Nd1—O4—Nd1 ⁱ	22.96 (11)	O2—C13—C14—C19	-9.23 (19)
C20—Nd1—O4—Nd1 ⁱ	177.11 (9)	Nd1—C13—C14—C19	-43.6 (16)
O4 ⁱ —Nd1—O6—C27	-24.01 (12)	O1—C13—C14—C15	-7.96 (19)
O5 ⁱ —Nd1—O6—C27	31.03 (14)	O2—C13—C14—C15	172.24 (12)
O2—Nd1—O6—C27	-115.64 (13)	Nd1—C13—C14—C15	137.8 (15)
O3—Nd1—O6—C27	105.61 (12)	C19—C14—C15—C16	-1.3 (2)
01—Nd1—06—C27	-82.91(13)	C13—C14—C15—C16	177.23 (13)
N1—Nd1—O6—C27	166.87 (11)	C14—C15—C16—C17	-0.6(2)
N2—Nd1—O6—C27	169.17 (13)	C15—C16—C17—C18	1.5 (2)
04—Nd1—06—C27	58.26 (12)	C16—C17—C18—C19	-0.5(2)
C13—Nd1—O6—C27	-100.77(12)	C15-C14-C19-C18	2.3 (2)
C_{20} Nd1 $-C_{27}$	82.26 (12)	C_{13} C_{14} C_{19} C_{18}	-176.25(13)
$Nd1^{i}$ $Nd1$ $O6$ $C27$	21.25 (12)	C17—C18—C19—C14	-1.4 (2)
$O4^{i}$ Md1 N1 C2	18.15 (14)	Nd1-03-C20-04	9.94 (14)
06—Nd1—N1—C2	178.90 (9)	Nd1	-169.30(9)
05^{i} Nd1 N1 C2	-31.09(10)	Nd1 ⁱ	-170.2(5)
02 - Nd1 - N1 - C2	100.88 (10)	Nd1-04-C20-03	-8.59(12)
03 - Nd1 - N1 - C2	-114.61 (11)	Nd1 ⁱ	9.0 (6)
01—Nd1—N1—C2	48.65 (10)	Nd1	170.64 (11)
01 101 101 02			1,0,0,(11)

N2—Nd1—N1—C2	176.34 (11)	Nd1 ⁱ O4C20Nd1	-161.6 (6)
O4—Nd1—N1—C2	-88.11 (10)	O3—C20—C21—C26	157.87 (13)
C13—Nd1—N1—C2	75.05 (10)	O4—C20—C21—C26	-21.38 (19)
C20—Nd1—N1—C2	-100.15 (10)	Nd1-C20-C21-C26	112.6 (4)
Nd1 ⁱ —Nd1—N1—C2	-58.31 (12)	O3—C20—C21—C22	-18.49 (18)
O4 ⁱ —Nd1—N1—C1	-176.47 (8)	O4—C20—C21—C22	162.26 (12)
O6—Nd1—N1—C1	-15.72 (12)	Nd1-C20-C21-C22	-63.7 (4)
O5 ⁱ —Nd1—N1—C1	134.29 (10)	C26—C21—C22—C23	0.2 (2)
O2—Nd1—N1—C1	-93.74 (10)	C20—C21—C22—C23	176.63 (12)
O3—Nd1—N1—C1	50.77 (9)	C21—C22—C23—C24	-1.0 (2)
O1—Nd1—N1—C1	-145.97 (10)	C22—C23—C24—C25	0.9 (2)
N2—Nd1—N1—C1	-18.27 (9)	C23—C24—C25—C26	0.2 (2)
O4—Nd1—N1—C1	77.27 (10)	C24—C25—C26—C21	-1.0 (2)
C13—Nd1—N1—C1	-119.57 (10)	C22-C21-C26-C25	0.8 (2)
C20—Nd1—N1—C1	65.23 (10)	C20—C21—C26—C25	-175.54 (13)
Nd1 ⁱ —Nd1—N1—C1	107.07 (9)	Nd1 ⁱ O5C27O6	10.3 (2)
O4 ⁱ —Nd1—N2—C11	-21.91 (13)	Nd1 ⁱ	-170.72 (9)
O6—Nd1—N2—C11	2.17 (10)	Nd1	-28.0 (2)
O5 ⁱ —Nd1—N2—C11	143.22 (9)	Nd1	152.96 (9)
O2—Nd1—N2—C11	-87.28 (10)	O5—C27—C28—C33	-172.26 (13)
O3—Nd1—N2—C11	96.61 (11)	O6—C27—C28—C33	6.83 (18)
O1—Nd1—N2—C11	-125.12 (10)	O5—C27—C28—C29	7.60 (18)
N1—Nd1—N2—C11	-179.55 (11)	O6—C27—C28—C29	-173.31 (12)
O4—Nd1—N2—C11	71.01 (10)	C33—C28—C29—C30	-1.2 (2)
C13—Nd1—N2—C11	-105.52 (10)	C27—C28—C29—C30	178.96 (13)
C20—Nd1—N2—C11	85.41 (10)	C28—C29—C30—C31	1.0 (2)
Nd1 ⁱ —Nd1—N2—C11	45.18 (11)	C29—C30—C31—C32	0.2 (2)
O4 ⁱ —Nd1—N2—C12	175.30 (8)	C30—C31—C32—C33	-1.3 (3)
O6—Nd1—N2—C12	-160.63 (9)	C29—C28—C33—C32	0.1 (2)
O5 ⁱ —Nd1—N2—C12	-19.57 (11)	C27—C28—C33—C32	179.95 (14)
O2—Nd1—N2—C12	109.92 (9)	C31—C32—C33—C28	1.1 (2)
O3—Nd1—N2—C12	-66.19 (9)		

Symmetry code: (i) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg5 are the centroids of the C28–C33, C21–C26 and C14–C19 phenyl rings, respectively. Cg3 and Cg4 are the centroids of the N2/C8–C12 and N1/C1–C15 pyridine rings, respectively.

D—H···A	<i>D</i> —Н	Н…А	D····A	D—H…A
C3—H3A···O1 ⁱⁱ	0.93	2.57	3.4729 (19)	163
C11—H11A···O6	0.93	2.50	3.1239 (19)	125
C26—H26A···O2 ⁱ	0.93	2.56	3.4393 (19)	158
C7—H7 <i>A</i> ··· <i>Cg</i> 1 ⁱⁱⁱ	0.93	2.89	3.4554 (18)	121
C16—H16 A ··· $Cg2^{iv}$	0.93	2.98	3.7544 (18)	141
C17—H17 A ···C $g3^{v}$	0.93	2.94	3.7287 (19)	143

C24—H24 A ··· $Cg4^{vi}$	0.93	2.81	3.6620 (17)	153	
C30—H30 <i>A</i> ··· <i>Cg</i> 5 ^{vii}	0.93	2.73	3.6435 (18)	167	

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+1, -z+2; (iii) -x+1, -y+1, -z+1; (iv) x, y+1, z+1; (v) -x+1, -y+2, -z+2; (vi) -x, -y, -z+1; (vii) x, y, z-1.