

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[bis[µ2-8-ethyl-5-oxo-2-(piperazin-1yl)-5,8-dihydropyrido[2,3-d]pyrimidine-6-carboxylato]nickel(II)]

Zhe An* and Ling Zhu

School of Chemistry and Life Science, Maoming University, Maoming 525000, People's Republic of China Correspondence e-mail: anzhe6409@sina.com

Received 22 December 2009; accepted 24 December 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.007 Å; *R* factor = 0.066; *wR* factor = 0.199; data-to-parameter ratio = 13.2.

The title compound, $[Ni(C_{14}H_{16}N_5O_3)_2]_n$ or $[Ni(ppa)_2]_n$, where ppa is 8-ethyl-5-oxo-2-(piperazin-1-yl)-5,8-dihydropyrido[2,3d]pyrimidine-6-carboxylate, was synthesized under hydrothermal conditions. The Ni^{II} atom (site symmetry $\overline{1}$) exhibits a distorted *trans*-NiN₂O₄ octahedral geometry defined by two monodentate *N*-bonded and two bidentate *O*,*O'*-bonded ppa monoanions. The extended two-dimensional structure is a square grid. An intermolecular N–H···O hydrogen bond occurs.

Related literature

For manganese, cobalt and zinc complexes of the ppa anion, see: Huang *et al.* (2008); Xu *et al.* (2009); Qi *et al.* (2009), respectively. For background to the medicinal uses of pipe-midic acid, see: Mizuki *et al.* (1996).

V = 1598.8 (3) Å³

Mo $K\alpha$ radiation

 $0.43 \times 0.28 \times 0.22 \text{ mm}$

7593 measured reflections

2762 independent reflections

2389 reflections with $I > 2\sigma(I)$

 $\mu = 0.66 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.034$

Z = 2

Experimental

Crystal data

$$\begin{split} & [\mathrm{Ni}(\mathrm{C}_{14}\mathrm{H}_{16}\mathrm{N}_{5}\mathrm{O}_{3})_{2}] \\ & M_{r} = 663.35 \\ & \mathrm{Monoclinic}, \ P2_{1}/c \\ & a = 6.1249 \ (6) \ \mathrm{\AA} \\ & b = 21.250 \ (2) \ \mathrm{\AA} \\ & c = 12.5511 \ (12) \ \mathrm{\AA} \\ & \beta = 101.846 \ (2)^{\circ} \end{split}$$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{\rm min} = 0.764, T_{\rm max} = 0.868$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.066$	1 restraint
$vR(F^2) = 0.199$	H-atom parameters not refined
S = 1.00	$\Delta \rho_{\rm max} = 0.89 \text{ e} \text{ Å}^{-3}$
2762 reflections	$\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$
209 parameters	

Table 1

```
Selected bond lengths (Å).
```

Ni1—O2 Ni1—O1	2.013 (3) 2.051 (3)	Ni1-N5 ⁱ	2.207 (3)
	1 1		

Symmetry code: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$.

Table 2

Hydrogen-bond geometry (Å, $^{\circ}$).

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT-Plus* (Bruker, 2004); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge financial support from the program for talent introduction in Guangdong Higher Education Institutions (grant No. 201191) and the scientific research start-up funds for talent introduction in Maoming University (grant No. 208058).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5292).

References

Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Huang, J., Hu, W.-P. & An, Z. (2008). Acta Cryst. E64, m547.
- Mizuki, Y., Fujiwara, I. & Yamaguchi, T. (1996). J. Antimicrob. Chemother. 37 (Suppl. A), 41–45.
- Qi, X., Shao, M. & Li, C.-X. (2009). Acta Cryst. E65, m1334.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Xu, W., Zhu, D.-S., Song, X.-D. & An, Z. (2009). Acta Cryst. E65, m1223.

supporting information

Acta Cryst. (2010). E66, m123 [https://doi.org/10.1107/S1600536809055408]

Poly[bis[µ₂-8-ethyl-5-oxo-2-(piperazin-1-yl)-5,8-dihydropyrido[2,3*d*]pyrimidine-6-carboxylato]nickel(II)]

Zhe An and Ling Zhu

S1. Comment

Pipemidic acid (Hppa, C₁₄H₁₆N₅O₃, 8-Ethyl-5,8-dihydro-5-oxo-2- (1-piperazinyl)-pyrido(2,3-d)-pyrimidine-6-carboxylic acid) is member of a class of quinolones used to treat infections (Mizuki *et al.*, 1996). The manganese, cobalt and zinc complexes of the ppa anion have been reported (Huang *et al.*, 2008; Xu *et al.* 2009; Qi Xu *et al.*2009). The title nickel(II) complex, (I), is reported here (Fig. 1).

The nickel(II) atom is coordinated by four oxygen atoms and two N atoms from four ppa ligands (two monodentate-N and two O,*O*-bidentate) to form a square grid propagating in (Fig. 2).

S2. Experimental

A mixture of Ni(CH₃COO)₂.4H₂O (0.063 g, 0.25 mmol), Hppa (0.15 g, 0.5 mmol), sodium hydroxide (0.04 g, 1 mmol) and water (15 ml) was stirred for 30 min in air. The mixture was then transferred to a 25 ml Teflon-lined hydrothermal bomb. The bomb was kept at 443 K for 72 h under autogenous pressure. Upon cooling, green prisms of (I) were obtained from the reaction mixture.

S3. Refinement

The carbon-bound H atoms were positioned geometrically (C—H = 0.93-0.97 Å) and were included in the refinement in the riding model approximation, with U(H) = 1.2Ueq(C). The H on Nitrogen atoms were located in a difference Fourier map, and were refined with a distance restraint of N—H = 0.86 (1) / %A and with $U_{iso}(H) = 1.2$ Ueq(N).

Figure 1

The asymmetric unit of (I), expanded to show the metal atom coordination showing 50% displacement ellipsoids.

Figure 2

A view of part of a two-dimensional polymeric sheet in (I) showing the square-grid connectivity.

Poly[bis[µ₂-8-ethyl-5-oxo-2-(piperazin-1-yl)-5,8- dihydropyrido[2,3-d]pyrimidine-6-carboxylato]nickel(II)]

Crystal data

[Ni(C₁₄H₁₆N₅O₃)₂] $M_r = 663.35$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 6.1249 (6) Å b = 21.250 (2) Å c = 12.5511 (12) Å $\beta = 101.846$ (2)° V = 1598.8 (3) Å³ Z = 2

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{\min} = 0.764, T_{\max} = 0.868$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.066$ $wR(F^2) = 0.199$ S = 1.00 F(000) = 692 $D_x = 1.378 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3258 reflections $\theta = 2.5-28.3^{\circ}$ $\mu = 0.66 \text{ mm}^{-1}$ T = 296 KPrism, green $0.43 \times 0.28 \times 0.22 \text{ mm}$

7593 measured reflections 2762 independent reflections 2389 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 25.1^{\circ}, \ \theta_{min} = 2.5^{\circ}$ $h = -7 \rightarrow 7$ $k = -25 \rightarrow 23$ $l = -14 \rightarrow 9$

2762 reflections209 parameters1 restraintPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.122P)^2 + 2.8827P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} = 0.007$
neighbouring sites	$\Delta \rho_{\rm max} = 0.89 \ { m e} \ { m \AA}^{-3}$
H-atom parameters not refined	$\Delta \rho_{\rm min} = -0.39 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ni1	0.5000	0.5000	0.5000	0.0219 (3)	
C1	0.7141 (7)	0.47283 (19)	0.3080 (4)	0.0293 (9)	
C2	0.5607 (7)	0.41749 (19)	0.2771 (3)	0.0310 (9)	
C3	0.3908 (6)	0.39745 (18)	0.3348 (3)	0.0250 (8)	
C4	0.2685 (7)	0.34232 (19)	0.2900 (3)	0.0287 (9)	
C5	0.0880 (8)	0.3175 (2)	0.3310 (4)	0.0380 (11)	
Н5	0.0416	0.3397	0.3863	0.046*	
C6	0.0596 (7)	0.2340 (2)	0.2186 (4)	0.0310 (9)	
C7	0.3168 (7)	0.3083 (2)	0.2024 (4)	0.0333 (10)	
C8	0.5934 (9)	0.3829 (2)	0.1908 (4)	0.0448 (12)	
H8	0.7017	0.3972	0.1544	0.054*	
C9	0.5451 (11)	0.2956 (3)	0.0587 (6)	0.0655 (18)	
H9A	0.7027	0.3014	0.0599	0.079*	
H9B	0.5179	0.2510	0.0652	0.079*	
C10	0.4140 (17)	0.3190 (6)	-0.0446 (8)	0.0426 (8)	
H10A	0.2601	0.3080	-0.0501	0.168*	
H10B	0.4681	0.3005	-0.1039	0.168*	
H10C	0.4278	0.3640	-0.0473	0.168*	
C11	-0.1716 (9)	0.1431 (2)	0.2519 (4)	0.0462 (13)	
H11A	-0.2457	0.1731	0.2908	0.055*	
H11B	-0.0778	0.1164	0.3051	0.055*	
C12	-0.3438 (8)	0.1034 (2)	0.1784 (4)	0.0375 (10)	
H12A	-0.4224	0.0785	0.2233	0.045*	
H12B	-0.4517	0.1311	0.1343	0.045*	
C13	0.0646 (7)	0.1360 (2)	0.1181 (4)	0.0330 (10)	
H13A	0.1711	0.1080	0.1622	0.040*	
H13B	0.1435	0.1611	0.0735	0.040*	
C14	-0.1164 (7)	0.0976 (2)	0.0452 (4)	0.0297 (9)	
H14A	-0.2129	0.1259	-0.0039	0.036*	
H14B	-0.0469	0.0694	0.0013	0.036*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H5N	-0.163 (7)	0.035 (2)	0.152 (3)	0.044*	
N1	0.4839 (7)	0.3299 (2)	0.1527 (3)	0.0454 (11)	
N2	0.2161 (6)	0.25401 (17)	0.1666 (3)	0.0354 (9)	
N3	-0.0183 (7)	0.26577 (19)	0.2969 (4)	0.0427 (10)	
N4	-0.0326 (6)	0.17705 (17)	0.1881 (3)	0.0327 (8)	
N5	-0.2530 (5)	0.06053 (15)	0.1053 (3)	0.0262 (7)	
01	0.3477 (5)	0.42282 (13)	0.4188 (2)	0.0288 (7)	
O2	0.6982 (5)	0.50474 (11)	0.3906 (2)	0.0270 (7)	
03	0.8546 (7)	0.4840 (2)	0.2525 (3)	0.0579 (11)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0256 (4)	0.0139 (4)	0.0257 (4)	-0.0008 (2)	0.0040 (3)	-0.0028 (3)
C1	0.032 (2)	0.022 (2)	0.034 (2)	-0.0029 (17)	0.0055 (18)	-0.0007 (17)
C2	0.041 (2)	0.022 (2)	0.031 (2)	-0.0069 (17)	0.0088 (18)	-0.0052 (17)
C3	0.0291 (19)	0.0178 (18)	0.026 (2)	-0.0008 (15)	0.0020 (16)	-0.0002 (16)
C4	0.034 (2)	0.023 (2)	0.030 (2)	-0.0027 (17)	0.0072 (17)	-0.0047 (17)
C5	0.040 (2)	0.032 (2)	0.046 (3)	-0.0112 (19)	0.019 (2)	-0.019 (2)
C6	0.032 (2)	0.024 (2)	0.038 (2)	-0.0061 (17)	0.0082 (18)	-0.0090 (18)
C7	0.041 (2)	0.028 (2)	0.034 (2)	-0.0039 (18)	0.0117 (19)	-0.0074 (18)
C8	0.059 (3)	0.037 (3)	0.043 (3)	-0.017 (2)	0.022 (2)	-0.012 (2)
C9	0.077 (4)	0.060 (4)	0.068 (4)	-0.025 (3)	0.034 (3)	-0.018 (3)
C10	0.0396 (18)	0.047 (2)	0.0409 (17)	0.0122 (15)	0.0083 (14)	0.0059 (15)
C11	0.052 (3)	0.041 (3)	0.053 (3)	-0.025 (2)	0.028 (2)	-0.021 (2)
C12	0.039 (2)	0.031 (2)	0.045 (3)	-0.0097 (19)	0.015 (2)	-0.011 (2)
C13	0.029 (2)	0.029 (2)	0.045 (2)	-0.0055 (17)	0.0152 (19)	-0.0153 (19)
C14	0.032 (2)	0.0219 (19)	0.037 (2)	-0.0034 (16)	0.0120 (18)	-0.0042 (17)
N1	0.061 (3)	0.040 (2)	0.042 (2)	-0.025 (2)	0.026 (2)	-0.0145 (18)
N2	0.047 (2)	0.0271 (18)	0.035 (2)	-0.0156 (16)	0.0169 (17)	-0.0112 (16)
N3	0.044 (2)	0.030(2)	0.057 (3)	-0.0140 (17)	0.0198 (19)	-0.0192 (19)
N4	0.0348 (18)	0.0239 (18)	0.042 (2)	-0.0081 (15)	0.0143 (16)	-0.0121 (16)
N5	0.0275 (17)	0.0193 (16)	0.0303 (18)	-0.0026 (13)	0.0020 (14)	-0.0004 (14)
01	0.0317 (15)	0.0215 (14)	0.0351 (16)	-0.0043 (11)	0.0111 (12)	-0.0069 (12)
O2	0.0329 (16)	0.0184 (14)	0.0298 (16)	0.0003 (11)	0.0066 (12)	-0.0026 (11)
03	0.069 (3)	0.061 (2)	0.055 (2)	-0.037 (2)	0.040 (2)	-0.026 (2)

Geometric parameters (Å, °)

Ni1—O2 ⁱ	2.013 (3)	C9—C10	1.464 (12)
Ni1—O2	2.013 (3)	C9—N1	1.498 (7)
Ni1—O1 ⁱ	2.051 (3)	С9—Н9А	0.9700
Ni1—O1	2.051 (3)	С9—Н9В	0.9700
Ni1—N5 ⁱⁱ	2.207 (3)	C10—H10A	0.9600
Ni1—N5 ⁱⁱⁱ	2.207 (3)	C10—H10B	0.9600
C1—O3	1.236 (6)	C10—H10C	0.9600
C1—O2	1.260 (5)	C11—N4	1.472 (6)
C1—C2	1.505 (6)	C11—C12	1.509 (6)

supporting information

C2—C8	1.358 (6)	C11—H11A	0.9700
C2—C3	1.448 (6)	C11—H11B	0.9700
C3—O1	1.260 (5)	C12—N5	1.480 (6)
C3—C4	1.441 (6)	C12—H12A	0.9700
C4—C7	1.398 (6)	C12—H12B	0.9700
C4—C5	1.413 (6)	C13—N4	1.450 (5)
C5—N3	1.305 (6)	C13—C14	1.522 (6)
С5—Н5	0.9300	C13—H13A	0.9700
C6—N2	1.334 (6)	C13—H13B	0.9700
C6—N4	1.357 (5)	C14—N5	1,467 (5)
C6—N3	1 357 (6)	C14—H14A	0.9700
C7—N2	1 341 (6)	C14—H14B	0.9700
C7—N1	1 382 (6)	N5—Ni1 ^{iv}	2207(3)
C8—N1	1 348 (6)	N5—H5N	0.90(4)
	0.0300		0.90 (4)
0-110	0.9500		
O2 ⁱ —Ni1—O2	180.0	С9—С10—Н10В	109.5
O2 ⁱ —Ni1—O1 ⁱ	88.73 (11)	H10A-C10-H10B	109.5
O2-Ni1-O1 ⁱ	91.27 (11)	C9—C10—H10C	109.5
O2 ⁱ —Ni1—O1	91.27 (11)	H10A-C10-H10C	109.5
O2—Ni1—O1	88.73 (11)	H10B—C10—H10C	109.5
O1 ⁱ —Ni1—O1	180.0	N4—C11—C12	110.6 (4)
O2 ⁱ —Ni1—N5 ⁱⁱ	90.14 (12)	N4—C11—H11A	109.5
02—Ni1—N5 ⁱⁱ	89.86 (12)	C12—C11—H11A	109.5
O1 ⁱ —Ni1—N5 ⁱⁱ	91.00 (11)	N4—C11—H11B	109.5
01—Ni1—N5 ⁱⁱ	89.00 (11)	C12—C11—H11B	109.5
Ω^{2i} Ni1 N5 ⁱⁱⁱ	89.86 (12)	H11A—C11—H11B	108.1
Ω_{2} Ni1 N_{5}	90.14 (12)	N5-C12-C11	114.8 (4)
01^{i} Ni1 N5 ⁱⁱⁱ	89.00 (11)	N5—C12—H12A	108.6
01—Ni1—N5 ⁱⁱⁱ	91.00 (11)	C11—C12—H12A	108.6
$N5^{ii}$ $Ni1$ $N5^{iii}$	180.0	N5-C12-H12B	108.6
03-C1-02	122.8 (4)	C11—C12—H12B	108.6
03-C1-C2	1184(4)	H12A— $C12$ — $H12B$	107.6
02 - C1 - C2	118.9 (4)	N4—C13—C14	1104(3)
C8-C2-C3	118.6 (4)	N4—C13—H13A	109.6
C8-C2-C1	116.2 (4)	C14— $C13$ — $H13A$	109.6
C_{3} C_{2} C_{1}	125 1 (4)	N4—C13—H13B	109.6
01 - C3 - C4	119 5 (4)	C14— $C13$ — $H13B$	109.6
$01 - C_3 - C_2$	1261(4)	H_{13A} $-C_{13}$ $-H_{13B}$	109.0
$C_4 - C_3 - C_2$	1120.1(1) 1144(4)	N5-C14-C13	113.6(4)
$C_{7} - C_{4} - C_{5}$	113.4(4)	N5 - C14 - H14A	108.8
C7 - C4 - C3	113.0(4) 123.4(4)	C_{13} C_{14} H_{14A}	108.8
C_{1} C_{2} C_{3}	123.4(4) 122.9(4)	N5 C14 H14B	108.8
$N_3 - C_5 - C_4$	122.9(4) 124.7(4)	C_{13} C_{14} H_{14B}	108.8
N3_C5_H5	127.7 (7)	$H_{14} - C_{14} - H_{14} B$	107.7
C4 - C5 - H5	117.6	$\begin{array}{c} 11177 \\ \hline \\ C8 \\ \hline \\ N1 \\ \hline \\ C7 \\ \hline \end{array}$	1186(1)
$V_{-} = V_{-} = V_{-}$	11/.0	C_{8} N1 C0	110.0(4)
$\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}$	110.3(4)	$\begin{array}{c} \text{C7} \text{N1} \text{C9} \\ \text{C7} \text{N1} \text{C9} \\ \end{array}$	117.7 (4)
IN2	120.2 (4)	U/NIU9	121.3 (4)

N4—C6—N3	117.4 (4)	C6—N2—C7	115.9 (4)
N2—C7—N1	117.8 (4)	C5—N3—C6	115.5 (4)
N2—C7—C4	123.5 (4)	C6—N4—C13	120.5 (4)
N1—C7—C4	118.6 (4)	C6—N4—C11	122.5 (4)
N1—C8—C2	126.3 (5)	C13—N4—C11	113.0 (3)
N1—C8—H8	116.9	C14—N5—C12	108.4 (3)
С2—С8—Н8	116.9	C14—N5—Ni1 ^{iv}	113.5 (2)
C10—C9—N1	110.6 (7)	C12—N5—Ni1 ^{iv}	115.6 (2)
С10—С9—Н9А	109.5	C14—N5—H5N	109 (3)
N1—C9—H9A	109.5	C12—N5—H5N	103 (4)
С10—С9—Н9В	109.5	Ni1 ^{iv} —N5—H5N	107 (3)
N1—C9—H9B	109.5	C3—O1—Ni1	127.3 (3)
Н9А—С9—Н9В	108.1	C1—O2—Ni1	134.0 (3)
C9-C10-H10A	109.5		10 110 (0)
O3—C1—C2—C8	1.5 (7)	N3—C6—N2—C7	5.9 (7)
O2—C1—C2—C8	-176.7 (4)	N1	178.4 (4)
O3—C1—C2—C3	178.7 (4)	C4—C7—N2—C6	1.4 (7)
O2—C1—C2—C3	0.6 (6)	C4—C5—N3—C6	2.0 (8)
C8—C2—C3—O1	176.7 (4)	N2—C6—N3—C5	-7.5 (8)
C1—C2—C3—O1	-0.5 (7)	N4—C6—N3—C5	174.0 (4)
C8—C2—C3—C4	-1.8 (6)	N2-C6-N4-C13	11.1 (6)
C1—C2—C3—C4	-178.9 (4)	N3—C6—N4—C13	-170.2(4)
O1—C3—C4—C7	-174.8 (4)	N2-C6-N4-C11	167.2 (4)
C2—C3—C4—C7	3.8 (6)	N3—C6—N4—C11	-14.2(7)
O1—C3—C4—C5	5.1 (6)	C14—C13—N4—C6	-147.5 (4)
C2-C3-C4-C5	-176.4 (4)	C14—C13—N4—C11	54.4 (5)
C7—C4—C5—N3	4.1 (7)	C12-C11-N4-C6	149.6 (4)
$C_{3}-C_{4}-C_{5}-N_{3}$	-175.8(5)	C12-C11-N4-C13	-52.7(6)
C5-C4-C7-N2	-5.8(7)	C_{13} C_{14} N_{5} C_{12}	54.2 (5)
C_{3} C_{4} C_{7} N_{2}	174 0 (4)	$C13$ — $C14$ — $N5$ — $Ni1^{iv}$	-1761(3)
$C_{5}-C_{4}-C_{7}-N_{1}$	177.2 (4)	$C_{11} - C_{12} - N_5 - C_{14}$	-530(5)
$C_3 - C_4 - C_7 - N_1$	-29(7)	$C11 - C12 - N5 - Ni1^{iv}$	1784(3)
C_{3} C_{2} C_{8} N_{1}	-1.0(8)	C4-C3-O1-Ni1	178.8(3)
$C_1 - C_2 - C_8 - N_1$	176.4 (5)	$C_{1}^{2} = C_{3}^{2} = O_{1}^{2} = N_{1}^{2}$	170.0(3)
$N_{1} = C_{2} = C_{3} = N_{1}$	52 7 (6)	O^{2i} Nil Ol C3	1707(3)
N4 C13 C14 N5	-563(5)	02 - Ni1 - 01 - C3	-0.2(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.8(3)	N_{2} N_{1} O_{1} C_{2}	0.5(3)
$C_2 = C_8 = N_1 = C_7$	2.0(6) -177.7(6)	N5 - N1 - 01 - C3	-90.4(3)
C2-Co-N1-C9	-177.7(0)	$N_{3} = N_{1} = 0_{1} = 0_{3}$	-90.4(3)
$N_2 = C_1 = N_1 = C_8$	-1/7.2(5)	03-01-02-Nii	-1/8.7(4)
$V4 - V - INI - V\delta$	0.0(7)	1 - 02 - 01	-0.7(6)
$\frac{1}{2} - \frac{1}{2} - \frac{1}$	2.0 (ð) 170 8 (5)	OI - INII - O2 - OI	-1/9.5(4)
$C_{10} = C_{10} = N_{11} = C_{20}$	1/9.8 (5)	UI - NII - U2 - CI	0.5(4)
C10 - C9 - N1 - C8	-89.8 (8)	$N3^{\mu}$ $N11$ $O2$ $C1$	-88.5 (4)
C10—C9—N1—C7	90.4 (7)	N3 ^m —N11—O2—C1	91.5 (4)
N4—C6—N2—C7	-175.6 (4)		

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, y+1/2, -z+1/2; (iii) x+1, -y+1/2, z+1/2; (iv) -x, y-1/2, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N5—H5 <i>N</i> ···O3 ^v	0.90 (4)	2.29 (4)	3.161 (5)	163 (5)

Symmetry code: (v) -x+1, y-1/2, -z+1/2.