

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(2,3-Difluorophenyl)ethyl toluene-4sulfonate

Xiaoqiang Sun,^a Chunyan Shao,^a Yuan Cui,^a Xiuqin Zhang^{b*} and Rongging Lu^a

^aKey Laboratory of Fine Petrochemical Engineering, Jiangsu Polytechnic University, Changzhou 213162, People's Republic of China, and ^bHigh Technology Research Institute of Nanjing University, Changzhou 213162, People's Republic of China Correspondence e-mail: ycui_rong@163.com

Received 17 December 2009; accepted 24 December 2009

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; R factor = 0.046; wR factor = 0.180; data-to-parameter ratio = 13.8.

In the title compound, $C_{15}H_{14}F_2O_3S$, the dihedral angle between the aromatic rings is 6.19 (13)°. In the crystal, molecules are linked by $C-H \cdots O$ hydrogen bonds, generating [110] chains.

Related literature

For related structures, see: Zhang & Zang (2008); Xi et al. (2008); Wang & Qin (2008).

Experimental

Crystal data C15H14F2O3S $M_r = 312.32$

Triclinic, $P\overline{1}$ a = 7.487 (12) Å

b = 8.386 (14) Å c = 12.69 (2) Å $\alpha = 91.67 (3)^{\circ}$ $\beta = 96.51 (3)^{\circ}$ $\gamma = 105.65 (3)^{\circ}$ $V = 761 (2) \text{ Å}^{3}$	Z = 2 Mo K α radiation $\mu = 0.24 \text{ mm}^{-1}$ T = 295 K $0.21 \times 0.21 \times 0.16 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2003) $T_{\rm min} = 0.955, T_{\rm max} = 0.966$	4133 measured reflections 2630 independent reflections 2246 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.018$
Refinement	

$R[F^2 > 2\sigma(F^2)] = 0.046$	191 parameters
$wR(F^2) = 0.180$	H-atom parameters constrained
S = 1.10	$\Delta \rho_{\rm max} = 0.35 \text{ e} \text{ Å}^{-3}$
2630 reflections	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1-H1\cdots O1^{i}$	0.93	2.58	3.442 (7)	154
Symmetry code: (i) r	-1 v - 1 z			

Symmetry code: (i) x - 1, y - 1, z.

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors are grateful to Jiangsu Polytechnic University and the Natural Science Foundation of China (No.20872051) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5283)

References

Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, Q. & Qin, H. (2008). Chin. J. Chem. Ind. Eng. 25, 271-272.

Xi, H., Gao, Y., Sun, X., Meng, Q. & Jiang, Y. (2008). Acta Cryst. E64, o1853.

Zhang, C. & Zang, Y. (2008). Chin. J. Organo-Fluorine Ind. 2, 48-50.

supporting information

Acta Cryst. (2010). E66, o283 [https://doi.org/10.1107/S1600536809055329]

2-(2,3-Difluorophenyl)ethyl toluene-4-sulfonate

Xiaoqiang Sun, Chunyan Shao, Yuan Cui, Xiuqin Zhang and Rongqing Lu

S1. Comment

Toluene-4-sulfonic acid 2-(2,3-difluoro-phenyl)-ethyl ester is an important intermediate for the synthesis of natural products. We have already synthesized and reported several related structures (Zhang *et al.*,2008; Xi *et al.*,2008; Wang *et al.*2008). In this research we report the X-ray crystal structure of the title compound, (I).

In the structure, the dihedral angle between the benzene(C1—C6) and benzene(C9—C14) ring is 6.18° . Weak intermolecular C–H···O hydrogen bonds and C–F···F interactions contribute to the crystal packing.

S2. Experimental

A solution of 2-(2,3-difluoro-phenyl)-ethanol (5 g, 32 mmol) in pyridine (15 ml) was added slowly (in 1 h) to a solution of p-toluenesulfonyl chloride (7.23 g, 38 mmol) in pyridine (17 ml) in ice bath. After being stirred for 3 h in ice bath, The solvent was evaporated on a rotary evaporator and the resulting solid was recrystallized in methanol, yielding the title compound (7.5 g, 76%). Colourless blocks of (I) were grown in methanol by slow evaporation at room temperature.

S3. Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å, 0.96 Å or 0.97 Å, and $U_{iso}(H)=1.2$ Ueq(*C*-methylene,*C*-aromatic) or 1.5Ueq(*C*-methyl).

Figure 1

The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level and H atoms represented as spheres of arbitrary radius.

2-(2,3-Difluorophenyl)ethyl toluene-4-sulfonate

Crystal data $C_{15}H_{14}F_{2}O_{3}S$ $M_{r} = 312.32$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.487 (12) Å b = 8.386 (14) Å c = 12.69 (2) Å a = 91.67 (3)° $\beta = 96.51$ (3)° $\gamma = 105.65$ (3)° V = 761 (2) Å³ Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Z = 2 F(000) = 324 $D_x = 1.363 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2108 reflections $\theta = 2.5-26.9^{\circ}$ $\mu = 0.24 \text{ mm}^{-1}$ T = 295 K Block, colorless $0.21 \times 0.21 \times 0.16 \text{ mm}$

Absorption correction: multi-scan (*SADABS*; Bruker, 2003) $T_{min} = 0.955$, $T_{max} = 0.966$ 4133 measured reflections 2630 independent reflections 2246 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.018$	$k = -9 \rightarrow 7$
$\theta_{\rm max} = 25.0^{\circ}, \theta_{\rm min} = 2.5^{\circ}$	$l = -14 \rightarrow 15$
$h = -8 \longrightarrow 8$	

Rejinemeni	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: inferred from
$wR(F^2) = 0.180$	neighbouring sites
S = 1.10	H-atom parameters constrained
2630 reflections	$w = 1/[\sigma^2(F_o^2) + (0.125P)^2 + 0.1095P]$
191 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{ m max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.35 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

Special details

D C

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	1.10764 (8)	0.91567 (7)	0.72239 (5)	0.0436 (3)
F1	0.7545 (3)	0.2961 (2)	1.01476 (15)	0.0728 (6)
F2	0.8697 (2)	0.6359 (2)	1.04849 (14)	0.0664 (5)
01	1.3018 (3)	0.9177 (3)	0.75887 (18)	0.0631 (6)
O2	1.0724 (3)	1.0423 (2)	0.65329 (16)	0.0631 (6)
O3	1.0172 (2)	0.9271 (2)	0.83135 (14)	0.0489 (5)
C1	0.5485 (4)	0.3112 (3)	0.8590 (2)	0.0493 (6)
H1	0.5108	0.1962	0.8487	0.059*
C2	0.6824 (4)	0.3906 (3)	0.9445 (2)	0.0474 (6)
C3	0.7407 (3)	0.5666 (3)	0.96112 (19)	0.0429 (6)
C4	0.6655 (3)	0.6682 (3)	0.8921 (2)	0.0430 (6)
C5	0.5301 (4)	0.5870 (3)	0.8060 (2)	0.0498 (6)
Н5	0.4780	0.6508	0.7597	0.060*
C6	0.4721 (4)	0.4123 (4)	0.7884 (2)	0.0542 (7)
H6	0.3841	0.3633	0.7308	0.065*
C7	0.7222 (4)	0.8606 (3)	0.9135 (2)	0.0525 (7)
H7A	0.8020	0.8899	0.9808	0.063*
H7B	0.6105	0.8961	0.9195	0.063*
C8	0.8273 (4)	0.9564 (3)	0.8242 (2)	0.0532 (7)
H8A	0.7579	0.9164	0.7549	0.064*
H8B	0.8392	1.0741	0.8340	0.064*
C9	0.9802 (3)	0.7116 (3)	0.66443 (19)	0.0369 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C10	1.0027 (4)	0.5709 (3)	0.7179 (2)	0.0430 (6)	
H10	1.0835	0.5837	0.7808	0.052*	
C11	0.9002 (4)	0.4104 (3)	0.6741 (2)	0.0479 (6)	
H11	0.9161	0.3180	0.7086	0.057*	
C12	0.7747 (3)	0.3873 (3)	0.5795 (2)	0.0469 (6)	
C13	0.7558 (4)	0.5309 (3)	0.5248 (2)	0.0511 (7)	
H13	0.6763	0.5179	0.4614	0.061*	
C14	0.8594 (4)	0.6939 (3)	0.5678 (2)	0.0466 (6)	
H14	0.8475	0.7870	0.5327	0.056*	
C15	0.6567 (5)	0.2110 (4)	0.5350 (3)	0.0740 (10)	
H15A	0.7362	0.1383	0.5346	0.111*	
H15B	0.6007	0.2168	0.4638	0.111*	
H15C	0.5605	0.1691	0.5791	0.111*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0463 (4)	0.0295 (4)	0.0505 (4)	0.0020 (3)	0.0082 (3)	0.0014 (3)
F1	0.0742 (12)	0.0693 (12)	0.0839 (13)	0.0319 (10)	0.0117 (10)	0.0265 (10)
F2	0.0549 (10)	0.0767 (12)	0.0594 (11)	0.0096 (8)	-0.0050 (8)	-0.0008(8)
O1	0.0448 (11)	0.0510 (11)	0.0832 (15)	-0.0004 (8)	0.0024 (10)	-0.0082 (10)
02	0.0868 (15)	0.0357 (10)	0.0659 (13)	0.0110 (10)	0.0173 (11)	0.0143 (9)
03	0.0545 (11)	0.0423 (10)	0.0471 (11)	0.0101 (8)	0.0038 (8)	-0.0037 (8)
C1	0.0527 (15)	0.0376 (13)	0.0559 (16)	0.0057 (11)	0.0167 (12)	-0.0006 (11)
C2	0.0452 (14)	0.0464 (14)	0.0560 (16)	0.0165 (11)	0.0175 (12)	0.0132 (12)
C3	0.0356 (12)	0.0515 (15)	0.0402 (13)	0.0084 (10)	0.0077 (10)	-0.0008 (11)
C4	0.0425 (13)	0.0397 (14)	0.0476 (14)	0.0089 (11)	0.0146 (11)	0.0023 (10)
C5	0.0528 (15)	0.0511 (15)	0.0471 (15)	0.0172 (12)	0.0047 (11)	0.0066 (12)
C6	0.0501 (15)	0.0521 (16)	0.0532 (16)	0.0031 (12)	0.0050 (12)	-0.0047 (13)
C7	0.0617 (16)	0.0400 (14)	0.0580 (16)	0.0141 (12)	0.0180 (13)	-0.0007 (12)
C8	0.0637 (17)	0.0395 (14)	0.0618 (17)	0.0203 (12)	0.0148 (13)	0.0060 (12)
C9	0.0366 (12)	0.0320 (12)	0.0403 (12)	0.0058 (9)	0.0061 (10)	0.0011 (9)
C10	0.0458 (13)	0.0388 (13)	0.0423 (13)	0.0100 (10)	0.0011 (10)	0.0026 (10)
C11	0.0543 (15)	0.0329 (13)	0.0562 (16)	0.0106 (11)	0.0088 (12)	0.0051 (11)
C12	0.0420 (13)	0.0414 (14)	0.0531 (15)	0.0025 (11)	0.0133 (11)	-0.0085 (11)
C13	0.0456 (14)	0.0582 (16)	0.0414 (14)	0.0036 (12)	-0.0004 (11)	-0.0042 (12)
C14	0.0523 (14)	0.0442 (14)	0.0415 (13)	0.0109 (11)	0.0033 (11)	0.0076 (10)
C15	0.072 (2)	0.0494 (17)	0.084 (2)	-0.0101 (15)	0.0149 (17)	-0.0241 (16)

Geometric parameters (Å, °)

S1—O2	1.456 (3)	С7—Н7А	0.9700	
S101	1.470 (3)	C7—H7B	0.9700	
S1—O3	1.618 (3)	C8—H8A	0.9700	
S1—C9	1.808 (3)	C8—H8B	0.9700	
F1—C2	1.369 (3)	C9—C14	1.417 (4)	
F2—C3	1.384 (3)	C9—C10	1.417 (4)	
O3—C8	1.500 (4)	C10—C11	1.418 (4)	

supporting information

C1 $C2$	1 406 (4)	C10 H10	0.0300
C1 - C2	1.400(4)		0.9300
	1.428 (4)		1.412 (4)
	0.9300		0.9300
C2—C3	1.423 (5)	C12—C13	1.438 (4)
C3—C4	1.414 (4)	C12—C15	1.555 (4)
C4—C5	1.421 (4)	C13—C14	1.434 (4)
C4—C7	1.561 (4)	С13—Н13	0.9300
C5—C6	1.414 (5)	C14—H14	0.9300
С5—Н5	0.9300	C15—H15A	0.9600
С6—Н6	0.9300	C15—H15B	0.9600
C7—C8	1.569 (4)	C15—H15C	0.9600
			0.000
O2—S1—O1	119.16 (13)	O3—C8—C7	108.0 (2)
O2—S1—O3	109.80 (14)	O3—C8—H8A	110.1
01-51-03	103.90 (15)	С7—С8—Н8А	110.1
02 - 81 - 69	110.16(16)	$O_3 - C_8 - H_8 B$	110.1
01 S1 C9	100 /8 (13)	C7 C8 H8B	110.1
01 - 51 - 02	109.40(13)		100.1
03 - 51 - 09	105.00(12)		108.4
	118.26 (17)		121.1 (2)
C2-C1-C6	118.1 (3)	C14—C9—S1	120.24 (19)
C2—C1—H1	121.0	C10—C9—S1	118.7 (2)
C6—C1—H1	121.0	C9—C10—C11	119.0 (2)
F1—C2—C1	119.1 (3)	С9—С10—Н10	120.5
F1—C2—C3	119.5 (3)	С11—С10—Н10	120.5
C1—C2—C3	121.4 (2)	C12—C11—C10	121.8 (2)
F2—C3—C4	120.7 (3)	C12—C11—H11	119.1
F2—C3—C2	118.2 (2)	C10-C11-H11	119.1
C4—C3—C2	121.1 (3)	C11—C12—C13	118.7 (2)
$C_{3}-C_{4}-C_{5}$	1171(3)	C11—C12—C15	121 2 (3)
$C_3 - C_4 - C_7$	1211(2)	C_{13} C_{12} C_{15}	1201(3)
C_{5} C_{4} C_{7}	121.1(2) 121.7(2)	C_{14} C_{13} C_{12} C_{13}	120.1(3)
$C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	121.7(2) 122.2(3)	$C_{14} = C_{13} = C_{12}$	120.2 (5)
$C_0 = C_3 = C_4$	122.2 (3)	$C_{12} = C_{12} = U_{12}$	119.9
	118.9		119.9
C4—C5—H5	118.9	C9 - C14 - C13	119.2 (2)
C5-C6-C1	120.1 (3)	C9—C14—H14	120.4
С5—С6—Н6	120.0	C13—C14—H14	120.4
C1—C6—H6	120.0	C12—C15—H15A	109.5
C4—C7—C8	113.2 (2)	C12—C15—H15B	109.5
С4—С7—Н7А	108.9	H15A—C15—H15B	109.5
С8—С7—Н7А	108.9	C12—C15—H15C	109.5
С4—С7—Н7В	108.9	H15A—C15—H15C	109.5
С8—С7—Н7В	108.9	H15B—C15—H15C	109.5
H7A—C7—H7B	107.7		
O2—S1—O3—C8	41.5 (2)	S1—O3—C8—C7	146.04 (19)
O1—S1—O3—C8	170.02 (17)	C4—C7—C8—O3	-70.1 (3)
C9—S1—O3—C8	-75.8 (2)	O2—S1—C9—C14	-3.1 (2)
C6—C1—C2—F1	178.5 (2)	O1—S1—C9—C14	-136.0 (2)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1 (4) 0.1 (3) 178.4 (2) -178.1 (2) 0.2 (4) -178.3 (2) -0.1 (3) -1.2 (3)	$\begin{array}{c} O3 \\ -S1 \\ -C9 \\ -C10 \\ O1 \\ -S1 \\ -C9 \\ -C10 \\ O3 \\ -S1 \\ -C9 \\ -C10 \\ -C11 \\ S1 \\ -C9 \\ -C10 \\ -C11 \\ -C12 \\ C10 \\ -C11 \\ -C12 \\ -C13 \end{array}$	114.0 (2) 177.34 (18) 44.5 (2) -65.6 (2) -0.9 (4) 178.70 (19) -0.9 (4) 2.1 (4)
C7C4C5C6 C4C5C6C1 C2C1C6C5 C3C4C7C8 C5C4C7C8	-177.4 (2) 0.6 (4) -0.5 (4) 116.4 (3) -66.7 (3)	C15-C12-C13-C14 C10-C9-C14-C13 S1-C9-C14-C13 C12-C13-C14-C9	177.7 (2) 1.2 (4) -178.31 (18) 0.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C1—H1···O1 ⁱ	0.93	2.58	3.442 (7)	154

Symmetry code: (i) x-1, y-1, z.